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A B S T R A C T   

Cerebral cavernous malformation (CCM) is a polygenic disease with intricate genetic interactions contributing to 
quantitative pathogenesis across multiple factors. The principal pathogenic genes of CCM, specifically KRIT1, 
CCM2, and PDCD10, have been reported, accompanied by a growing wealth of genetic data related to mutations. 
Furthermore, numerous other molecules associated with CCM have been unearthed. However, tackling such 
massive volumes of unstructured data remains challenging until the advent of advanced large language models. 
In this study, we developed an automated analytical pipeline specialized in single nucleotide variants (SNVs) 
related biomedical text analysis called BRLM. To facilitate this, BioBERT was employed to vectorize the rich 
information of SNVs, while a deep residue network was used to discriminate the classes of the SNVs. BRLM was 
initially constructed on mutations from 12 different types of TCGA cancers, achieving an accuracy exceeding 
99%. It was further examined for CCM mutations in familial sequencing data analysis, highlighting an upstream 
master regulator gene fibroblast growth factor 1 (FGF1). With multi-omics characterization and validation in 
biological function, FGF1 demonstrated to play a significant role in the development of CCMs, which proved the 
effectiveness of our model. The BRLM web server is available at http://1.117.230.196.   

1. Introduction 

Cerebral cavernous malformation (CCM; OMIM 116860), also 
known as cerebral cavernous angiomas, can manifest as sporadic or 
autosomal dominant conditions. These conditions consist of a varied 
range of relatively prevalent lesions that have important clinical im-
plications [58]. These angiomas may arise sporadically or be inherited, 
with identified causative genes primarily attributed to KRIT1, CCM2, 

and PDCD10 [31], which have been linked to the molecular diagnostic 
criteria of the condition for the last two decades [44]. However, not all 
sources succeeded in identifying mutations within specified loci of the 
above three genes. The advent of next-generation sequencing techniques 
has unveiled a broader spectrum of CCM-associated genes. With regard 
to transcriptome sequencing, the focus had been on 1325 genes dis-
playing differential expression between CCM endothelial cells 
(CCMECs) and Human brain microvascular endothelial cells (HBMECs) 
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[44], along with 80 enriched pathway terms [31]. Additionally, whole 
genome sequencing (WGS) had even detected instances of heterozygous 
inversion without mutations [47]. Presently, the most advanced 
approach, single cell RNA sequencing (scRNA-seq), has provided a 
comprehensive gene expression atlas for mouse models of CCM across 
various cell groups [36]. 

Despite the collective findings from these aforementioned studies, an 
all-encompassing pathogenic genetic mutations for CCM remains 
elusive. Consequently, the substantial body of recent research has shif-
ted its focus from singular genes to polygenic factors associated with 
diseases. This study aims to explore the genetic regulatory aspects of 
inherited CCM WGS data, based on SNVs’ annotated textual information 
mining. 

Those multi-factor texts were presented in various forms, encom-
passing functional descriptions [58], regulatory networks [7], scientific 
literatures [54], and retrievable databases [38], thereby rendering these 
discoveries as distinct “informational isolated island” [17]. Complex 
disease traits have been revealed to stem from the interplay of multiple 
elements. Among the potential contributors to the pathogenesis of 
complex diseases, SNVs, genes, and gene interactions stand out as 
prominent factors [50]. In response, researchers have formulated 
various algorithms aimed at scrutinizing biomarkers. Examples include 
the penalized logistic regression [8], multi-factor dimension reduction 
[8], set association [59], Bayesian network and random forest method 
[62], to name a few. However, these algorithms are limited by the need 
for explicit feature extractions, which must be engineered artificially. 

While genetic information is inherently an aspect of natural lan-
guage, where large language model (LLM) had been devoted to natural 
language processing (NLP) in comprehensive feature tracking and 
summarization. The two primary NLP technologies currently utilized are 
GPT [55] and BERT [13]. GPT has not received any specific biological 
training, although the recently developed scGPT [11] had been limited 
to single cell sequencing analysis. BioBERT [25], on the other hand, 
specializes in the biomedical field and has been utilized for biomedical 
natural language encoding. Such language learning model had been 
applied to molecular interactions mining [48]. 

By using BioBERT [25] for NLP, unstructured annotation texts were 
converted into per-SNV vectors. All SNV information was transformed 
into computationally manageable vectors, which was a great challenge 
to overcome gradient disappearance and performance degradation in 
traditional deep neural networks. These issues were effectively 
addressed since the invention of ResNet [51]. The ResNet50 was bor-
rowed in this study for BioBERT encoded vector classification with 
intention, as it provides an ideal balance of depth and computational 
efficiency for a variety of tasks [51]. Thus, classification of input vectors 
for vast variants was carried out using reconstructed ResNet50 [51], 
although ResNet was originally employed in image recognition. 

Using BioBERT [25] as encorder and ResNet50 [51] as classifier, we 
name our model as BRLM, short for BioBERT vectorized input for ResNet 
classification language model, dedicated to pathogenicity classification 
of SNVs in annotation texts. BRLM’s performance was validated on 12 
TCGA cancers to ensure its accuracy and robustness. To demonstrate its 
proficiency in resolving practical problems, we successfully classified 
SNVs for familial CCM WGS variants, and analyzed mutated genes 
involved in perturbated pathways. 

BRLM was ultimately applied on CCM risk element mining to isolate 
the top three risk levels SNVs (pathogenic, likely pathogenic and un-
certain significance) for further investigation. Three-level SNVs were 
verified by genetic functional domains and protein-protein interactions 
(PPIs) to demonstrate its effectiveness regarding pathogenicity. Subse-
quently, these three-class mutated genes were undergo KEGG pathway 
enrichment analysis with up- and downstream cumulative effect eval-
uation. The integrative results outlined an upstream regulator gene 
FGF1, which provided a clear and concise multi-omics atlas of CCM 
functional landscape. 

2. Results 

2.1. Accuracy evaluation of BRLM 

The BRLM model was initially trained on 12 TCGA cancers, 
encompassing 367,224 SNVs from 3104 patients. The datasets sourced 
from TCGA were diverse, containing mutations from various organs and 
volumes to achieve optimal parameters for best performance. The 
dataset comprised a large-scale cases of popular cancers (ACC, BRCA, 
and GBM), a small-scale cases of rare cancers (CHOL, DLBC, and KICH), 
as well as a medium-sized cases of common cancers. Detailed informa-
tion about the 12 TCGA datasets is presented in Table 1, including de-
scriptions, patient numbers, mutation amounts, and links for each 
dataset. The density distribution of the aforementioned SNVs is depicted 
in Fig. 1A (left). 

Concurrently, the vectors were input into the ResNet50 classifier, 
whose structure is illustrated in the mid-panel of Fig. 1A along with its 
classification results in the right panel. Adhering to the American Col-
lege of Medical Genetics and Genomics (ACMG) [39] criteria for variant 

Table 1 
TCGA data information.  

Abbreviation Cancer Patients SNVs Link 

ACC Adrenocortical 
carcinoma  

90 20,161 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
ACC 

BLCA Bladder Urothelial 
Carcinoma  

130 39,309 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
BLCA 

BRCA Breast invasive 
carcinoma  

982 84,713 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
BRCA 

CESC Cervical squamous cell 
carcinoma and 
endocervical 
adenocarcinoma  

194 35,606 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
CESC 

CHOL Cholangiocarcinoma  35 3833 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
CHOL 

COAD Colon adenocarcinoma  154 54,349 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
COAD 

DLBC Lymphoid Neoplasm 
Diffuse Large B cell 
Lymphoma  

48 7276 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
DLBC 

ESCA Esophageal carcinoma  185 36,288 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
ESCA 

GBM Glioblastoma 
multiforme  

290 22,044 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
GBM 

KICH Kidney Chromophobe  66 5923 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
KICH 

KIPAN KICH (Kidney 
Chromophobe), KIRC 
(Kidney renal clear cell 
carcinoma), and KIRP 
(Kidney renal papillary 
cell carcinoma)  

644 47,875 https://www. 
linkedomics.org/ 
data_download/ 
TCGA-KIPAN/ 

LGG Brain Lower Grade 
Glioma  

286 9847 https://portal. 
gdc.cancer.gov/ 
projects/TCGA- 
LGG  
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Fig. 1. BRLM model construction and performance evaluation. (A)BRLM structure, including BioBERT encoded annotation of SNVs into 728-dimensional vectors 
visualized by UMAP (left), ResNet50 model architecture for SNV classification (middle); and classification results presented by UMAP (right). (B) TCGA pan-cancer 
classified variants distribution in Nightingale rose diagram. (C) Classification performances among four biomedical encoders in 12 TCGA cancers after 100 epochs. 
(D) Classification accuracy of BRLM per 10 epochs in 12 TCGA cancers. (E) Classification F1-score of BRLM per 10 epochs in 12 TCGA cancers. (F) Expression 
comparison between tumor and normal tissues as validation of TCGA variants classification. 
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classification, all TCGA SNVs were categorized into five classes, namely 
Class 1 (pathogenic), Class 2 (likely pathogenic), Class 3 (uncertain 
significance), Class 4 (likely benign), and Class 5 (benign). Likewise, the 
final classification results are highly consistent with the clusters formed 
by UMAP. It is notable that mutations in Class 3 (uncertain significance) 
comprised the largest fraction of the sequencing analysis outcomes, and 
the results of BRLM align closely with this distribution. 

In addition to presenting overall statistics, we analyzed the distri-
bution of classes within each tumor type, as depicted in Fig. 1B. Due to 
the diverse nature of tumor variants, their classification proportions 
exhibit distinct characteristic. Class 3, representing SNVs of uncertain 
significance, is prominent across multiple tumors (CESC, CHOL, DLBC, 
GBM, KICH, KIPAN, and LGG). Conversely, for other tumors such as 
BRCA, BLCA, COAD, and ESCA, the classes demonstrate relatively equal 
proportions. Notably, more than 90% of the cases in ACC are constituted 
by Class 4 (likely benign) variants. These findings are consistent with 
pre-established pathogenic evidence, that certain types of cancers such 
as ACC, BRCA, CESC, and COAD may exhibit a focal concentration of 
pathogenic SNVs, resulting in clear categorized mutations and drug 
targets. However, most carcinomas exhibit significant heterogeneity and 
individual variability, making it difficult to classify intricate risk factors. 

After completing 100 training epochs across 12 cancers in TCGA, the 
performance comparison of frequently used encoders in the biomedical 
field (BERT, ClinicalBERT, and fastText) is presented in Fig. 1C, which is 
a three-dimensional line graph for the accuracy, mAP (mean average 
precision), and F1-score. The performance reveals that BioBERT is su-
perior to other encoders, particularly in accuracy and F1-score. 

To further evaluate the model’s performance, we presented the curve 
graphs for accuracy and F1-score at 10-epoch intervals for each type of 
cancer in Fig. 1D and E. The plots demonstrate consistent testing per-
formance throughout each training epoch, with the optimal values of 
accuracy ranging from 0.91 to 0.99 and F1-score ranging from 0.80 to 
0.97. As the F1-score represents the harmonic mean of precision and 
recall, their line graphs were further included in Supplementary 
Figure S1, where the optimal precision ranges from 0.821 to 0.988 and 
the optimal recall ranges from 0.753 to 0.967 across the 12 datasets. 

To further validate the classification results, we extracted tumor- 
related variants and integrated them with TCGA RNAseq dataset 
expression analysis. Differential expression comparison between tumor 
and normal conditions for each class is illustrated in Fig. 1F. The clas-
sified cancer-related SNVs (Class 1 and 2) exhibit extremely-significant 
differences, while Class 3 (uncertain disease-associated probability) 
demonstrates significant difference. In contrast, no significant expres-
sion differences are observed between the normal and tumor groups for 
neutral mutations (class 4 and 5). 

2.2. Generalizability assessment of BRLM 

Following the optimal model structure determined through multi- 
cancer verification on the TCGA dataset, BRLM was subsequently 
employed to analyze a familial WGS data with the aim of identifying 
variants associated with CCM. The genetic pedigree of the family was 
composed of four CCM affected individuals and four unaffected in-
dividuals marked by asterisks; see Supplementary Figure S2 for details. 
Based on the WGS analysis with Genome Analysis Toolkit (GATK) [5] 
workflow for germline short variants, 409,666 germline variants were 
identified. Several benign SNVs were found in the three well-known 
CCM-related genes (KRIT1, CCM2 and PDCD10), while a large amount 
of variants with unknown impacts were also identified. These benign 
mutations have a high frequency in population and are located within 
intronic areas, whose detailed information can be found in Supple-
mentary Table S1. We thus developed BRLM to assist the labor-intensive 
tasks of SNVs interpretation and integration. The entire variants were 
then annotated and transformed into BioBERT embedded vectors. 

Classification results from ResNet50 are visualized in Fig. 2A using 
the UMAP technique, which underscores the specificity of BRLM in SNV 

classification through clusters of aggregated distributions. Validations of 
these results drawn upon both SIFT scores and Clinvar records are 
demonstrated in Fig. 2B and C. The SIFT scoring mechanism ranges from 
0 to 1 (Fig. 2B), with color intensity reflecting the severity of detrimental 
effects where a score of 0 indicates the most deleterious mutation. On 
the other hand, Fig. 2C illustrates the Clinvar category mapping. Based 
on the comparison between the two plots, BRLM shows a good perfor-
mance in identifying CCM-related variants. Specifically, Class 1 and 2 in 
Fig. 2A are consistent with risk SNVs as aligned with the yellow clusters 
in Fig. 2B and the red unlabeled variants in Fig. 2C. Similarly, the 
classification results for Class 4 and 5 also correlate well with the pat-
terns observed in both graphs. 

However, the classification of variants with uncertain significance 
(Class 3) remains a contentious issue due to discrepancies between the 
score deficiency highlighted in Fig. 2B and the benign or likely benign 
categorization in Fig. 2C. To further assess the effectiveness of our 
classification results, an additional eleven algorithms for variant clas-
sification were utilized. The detailed UMAP plots of the outcomes can be 
found in Supplementary Figure S3. Of the total eleven algorithms, nine 
could only annotate a limited number of variants albeit with diverse 
clusters, whereas the remaining two were incapable of categorizing the 
variants. The majority of classified SNVs demonstrated to be consistent 
with ours. Additionally, BRLM was able to estimate unpredicted variants 
by other algorithms, highlighting the comprehensiveness and superior-
ity of our model. 

Owing to the doubtable SNVs in Class 3, we investigated their 
functional regions. In Fig. 2D, statistical data is presented regarding 
overall functional variants (left) and specific exonic variants (right). Due 
to the substantial number of functional mutations within Class 3, we 
further localized their chromosome distribution in Fig. 2E, corre-
sponding to functional and specific exonic SNVs. The overall distribu-
tion pattern remains consistent across both sets of variants. The 
mutation coordinate and distribution is an important part of the input 
text. However, functional mutations are distributed near exonic muta-
tions, revealing a possible regulatory impact. 

To narrow down valid data, we extracted positive sites from SNVs 
depicted in Fig. 2E. These positive sites were defined by the variant 
quality score recalibration (VQSR) model in GATK. VQSR learned fea-
tures by machine-learning algorithms from mutation sites to distinguish 
positives from negatives. The detailed parameter settings for VQSR are 
introduced in Section 3.3. 

Circos graphs presented in Fig. 2F and G illustrate the positive sites 
distribution comparison between Class 1, 2 and 3. Fig. 2F portrays 
greater risk variants within Class 1 and 2, whereas Fig. 2G emphasizes 
abundant mutual effects within Class 3. Mutated genetic functional re-
gions are colored at the outermost chromosomes, where exonic variants 
are highlighted in red. Their frequencies are depicted in curves and bars 
of the two middle rings that are obtained from the 1000 Genomes and 
the Genome Aggregation Database (gnomAD), and internal lines indi-
cate Protein-Protein Interactions (PPI) among them. Conversely, dele-
terious interactions among genes in Class 1 and 2 are only centered on 
three links with six genes highlighted in bold: FGF1, FGF6, ABCB1, 
ABCG2, IL4R, and CTLA4. Consequently, interactive effects among these 
genes have higher priorities in our following analysis. 

2.3. Enrichment analysis of candidate genes and pathways 

To explore the biological functions affected by the categorized CCM- 
related mutations, an initial KEGG pathway enrichment analysis was 
performed for the mutated genes within Class 1, 2 and 3, yielding 661 
enriched pathways. The simplifyEnrichment package was then invoked 
to cluster the similarity matrix of enriched terms into groups using 
“binary cut” [16], and the results are illustrated by the heatmap in  
Fig. 3A. Based on the eight clusters with descriptive vocabulary fre-
quencies indicated by font size, the mutated genes play significant roles 
in the developmental processes and signaling activities on cell adhesion 
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Fig. 2. BRLM mutation classification for a familial CCM WGS. (A) UMAP plot for the BRLM classified CCM SNVs. (B) UMAP of the SNVs with SIFT Scores attached. 
(C) UMAP for SNVs annotated with Clinvar categories. (D) Functional variants statistics of regulatory and exonic regions for the five classes. (E) Statistics of potential 
pathogenic variants distribution within functional and exonic regions for Class 1, 2 and 3. (F) Circos plot with low-density functional areas distribution connected by 
PPI between high CCM risk variants in Class 1, 2. (G) Circos plot with high-density functional areas distribution connected by PPI between uncertain CCM risk 
variants in Class 3. 
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and proliferation. 
In order to further characterize the functional terms, the top 50 

pathways were grouped into k-means clusters, illustrated in Fig. 3B. It is 
notable that the top cluster relevant to cell junction adhesion comprises 
17 distinct pathways, while the other three clusters are associated with 
cGMP-PKG activation, AGE-RAGE signaling, and metabolic correlation. 
However, these top 50 pathways were still extremely complicated, we 
thus narrowed them down to feature the top ten pathways with the most 
significant p-values, as highlighted in Fig. 3C. 

According to the specific results in Fig. 3C, cell signaling pathways 
hold a consistently substantial proportion. Particularly, the PIK3-Akt, 
MAPK, Ras, and Rap1 signaling pathways hold the top four positions, 
with focal adhesion ranking the third. The aforementioned SNVs iden-
tified in Class 1, 2 and 3 exhibited the potential to induce aberrant cell 
functions, thereby becoming predisposing factors for CCM. 

2.4. Simulation of Mutated Genes Perturbation among Pathways 

After confirming the involvement of SNVs in enriched pathways, the 
next study was to address the functional roles of the mutated genes with 
accumulative effects, which have remained untouched in previous CCM 

studies. To quantify the functional implications of mutated genes at the 
pathway level, an algorithm calculated pathway mutations accumula-
tive perturbation score (PMAP score) was adopted [26]. The PMAP score 
was used to measure the actual perturbation impact on enriched path-
ways under a candidate gene set encompassing the three classes (Class 1, 
2 and 3). A comprehensive list of perturbed pathways along with their 
PMAP scores for each class is provided in the Supplementary Table S2. 
According to their PMAP scores comparison, the scores were almost 
equal between Class 1 and 2, which turned out different from Class 3. We 
thus take the Class 1, 2 as a whole in the follow-up study regarding 
perturbation. 

Since the gene list in Class 3 contained uncertainties that differ from 
the well-established lists in Class 1, 2, their proportion of perturbed gene 
sets were compared within the top 10 highest scored pathways. This 
result is depicted in Fig. 4A as a tree plot. Based on the pie charts at the 
end of each tree branch, the perturbation rate of Class 1, 2 is mainly 
higher or competitive to that of Class 3. Nevertheless, the number of 
mutated genes in Class 3 far exceed those in Class 1, 2. Moreover, the 
pathways with remarkably high PMAP scores (including PIK3-Akt, 
MAPK, Ras, and Rap1 signaling pathways) are also consistent with the 
top ten enriched results in Fig. 3C. These findings suggest that the SNVs 

Fig. 3. Enrichment results for mutated genes in Class 1, 2 and 3. (A) Similarity clustering heatmap for enriched pathways with term frequencies exhibited by font 
size. (B) K-means clustering for the top 50 pathways with the most significant p-values. (C) The top 10 enriched pathways enumeration in terms of p-values. 
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Fig. 4. Pathways perturbation simulation derived from mutated genes in Class 1, 2 and 3. (A) Tree plot for the top 10 pathways with the highest PMAP score, where 
the pie chart shows the proportion of involved genes from Class 1, 2 and Class 3. It is evident that fewer mutated genes in Class 1, 2 play more important perturbation 
roles than those in Class 3. (B) Containment relationship for top 10 perturbated pathways and functional domain mutated genes. (C) Sankey plot for risk CCM-related 
elements in three levels for mutations, genes and pathways. 
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have an influence on CCM cellular signaling functions, with major ef-
fects from Class 1, 2 and minor effects from Class 3. 

For primary perturbed genes with functional relevance were identi-
fied among Class 1 and 2, we thus constructed a perturbated network 
focusing on the top ten scored pathways connected by these genes (see 
Fig. 4B). The ratios of overlap perturbed genes are shown in Supple-
mentary Figure S4, which distinguishes genes that uniquely belong to 
one pathway or perturb two or more pathways. The five PPI-linked 
genes (FGF1, FGF6, ABCB1, ABCG2, and IL4R) from Fig. 2F with Class 
1 and 2 SNVs are highlighted in bold blue. Furthermore, one of the 
known pathogenic genes for CCM, KRIT1, is conspicuously present in 
this network (in brown bold font). However, two intronic variants in 
KRIT1 were common with frequencies exceeding 0.04 in the 1000 Ge-
nomes database as shown in the Supplementary Table S1. Among the 
pathways, Vascular Smooth Muscle Contraction and GABAergic Synapse 
exhibit remarkable perturbation scores despite being excluded from the 
top 10 enriched pathways in Fig. 3C, with p-values of 0.002 and 0.03 
respectively. This further supports the idea that perturbation algorithms 
applied in BRLM can help uncover ignored information. 

In order to determine the significant risk pathways, the overlap be-
tween the top 10 scored (in Fig. 4B) and top 10 enriched (in Fig. 3C) 
pathways were extracted. Combined with the major effect genes 
harboring functional SNVs in protein interactions highlighted in Fig. 4B, 
the elements at three levels (mutation, gene, and pathway level) were 
established as critical CCM pathogenic routes, elucidated through the 
three-bucket Sankey graph in Fig. 4C. The first bucket effectively out-
lines the presence of seven functional SNVs within these genes (six Class 
1 SNVs in FGF1 and one Class 2 SNV in FGF6). Notably, all seven SNVs 
have just been cataloged with rsIDs from NCBI dbSNP, yet none of them 
bear any reports pertaining to CCM or related biological implications. 
The second bucket contains a pair of functionally pathogenic mutated 
genes, namely FGF1 and FGF6 from the fibroblast growth factor family. 
While the four risk pathways in the third bucket coincide with the top 
four scored and five enriched results. The overlapping results support 
the accuracy of both enriched and perturbated pathways, which can 
improve the integrity of CCM-related mutation knowledge. 

To assess the effectiveness of the above CCM-related three-level risk 
elements, whose classification entities were extracted from PubMed by 
BioBERT [25]. The PubMed publication proportion statistics from 2010 
to 2023 are shown as three trends for each level in Supplementary 
Figure S5. According to the Supplementary Figure S5A, only SNV 
rs17217240 had been reported in 2010, while there was no literature 
support for the others. Regarding the materials for these two genes 
displayed in Supplementary Figure S5B, over the past two decades, FGF1 
has received considerable attention but no relation to CCM, while FGF6 
has been scarcely reported. Finally, the statistics for pathway publica-
tions reflect overall continuance attention, albeit with varying numeri-
cal records as illustrated by the Supplementary Figure S5C. These 
publication statistics unveil abundant diversity in features for variant 
classification. 

2.5. FGF1 is the upstream master regulator gene of perturbated pathways 

Based on the enrichment analysis and the perturbation analysis, 
RNA-seq differential expression geneset between CCMECs and HBMECs 
introduced before had verified for final major-effect gene determination 
[44]. FGF1 is found to be highly up-regulated (p-value=0 and 
log2FoldChange=1.8), while FGF6 takes no statistical difference (p-val-
ue=0.71 and log2FoldChange=− 0.6). The detailed differentially 
expressed results for genes engaged in perturbated pathways are illus-
trated in the Supplementary Table S3. Herein, we dive into the details of 
FGF1 from multi-omics as shown in Fig. 5, including the scRNA-seq 
expression clusters (Fig. 5A), the WGS mutant transcripts (Fig. 5B), 
the RNA-seq expression profiles (Fig. 5C), and the perturbated pathways 
(Fig. 5D). 

For exploring expressed cell groups of FGF1, scRNA-seq was carried 

out on a pair group of CCM mouse model under two normal conditions 
and two deletions of Pdcd10 [36]. The UMAP plots for joint clustering 
are displayed in Fig. 5A, with 16,220 cells from the two Pdcd10-wt mice 
and 19,135 cells from the two Pdcd10-ko mice after low-quality cells 
filtering. Based on gene-marked UMAPs among 12 cell clusters, FGF1 
identifies special expression in cluster 8 whose marker genes (Aqp4, 
Gfap, and Slc1a2 colored in blue) are primarily associated with astro-
cytes. This cluster also includes the receptor genes for the FGFR family, 
with Fgfr3 and Fgfr1 (colored in blue) exhibiting specific and significant 
expression. Additionally, Atp1b1, a marker for capillaries (colored in 
red) is also highly expressed in this cluster. Recent research has indi-
cated that astrocytes propel neurovascular dysfunction during cerebral 
cavernous malformation lesion formation [29]. 

All six SNVs in FGF1 were classified as Class 1, corresponding to two 
transcripts: FGF1–008 (transcript ID: ENST00000378046) and 
FGF1–013 (transcript ID: ENST00000411960). Both transcripts per-
formed protein-coding functions with most mutants situated on the 
longer one (FGF1–013), see transcripts distribution in Fig. 5B. All the 
transcripts for FGF1 are listed in the Supplementary Figure S6 refer-
enced from GENECODE19 (https://www. gencodegenes.org/human/ 
release_19.html). 

To further explore the cumulative influence between the major-effect 
gene FGF1 and other minor-effect genes found by BRLM, differential 
expression profiles whose parameters taken from the Supplementary 
Table S3 are constructed in Fig. 5C. The minor-effect genes were 
detected in positive sites across Class 1, 2 and 3, along with the corre-
sponding perturbated pathways from Fig. 4. Most of these genes show 
significant differential expression in both p-value < 0.05 and | 
log2FoldChange|> 1 indicated by read dots in Fig. 5C. 

According to the categorized multi-effect genes based on mutation 
and expression, an expanded biological regulatory landscape featuring 
partially function exploration is conducted in Fig. 5D. FGF1, highlighted 
in orange, demonstrates a master regulatory role, while the remaining 
genes are associated with minor impact SNVs across Class 1, 2 and 3. As 
we can see from Fig. 5D, FGF1 is located upstream, indicating the direct 
perturbation of the four signaling pathways denoted by orange boxes. 
Importantly, among them the downstream of Rap1 Signaling pathway is 
positioned to one of the known CCM pathogenic genes, KRIT1. These 
four signaling pathways play critical roles in cell growth and tissue 
development, which can impact vascular integrity. 

In addition to the direct action of FGF1 on the four signaling path-
ways, two indirect processes, namely Vascular Smooth Muscle 
Contraction and GABAergic Synapse indicated by green boxes, are 
regulated by Ca2 + levels via Calcium Signaling Pathway, a down-
stream fundamental cellular signaling process of FGF1. Above findings 
indicate that FGF1 may activate downstream signals, which suggests a 
significant role in the occurrence and development of familial CCMs. In 
order to improve the reliability of our model, we have provided further 
evidence for the regulatory function of FGF1 in CCM. The supporting 
literatures are chronologically rearranged in Figure S6 and detailed in 
Section S2 of the Supplementary file. These materials provide a 
comprehensive overview of FGF1, emphasizing its potent role in 
inducing angiogenesis in the brain by regulating multiple growth factor 
signaling pathways. The development of FGF1 as a powerful stimulator 
of angiogenesis for various brain-related diseases will be emphasized in 
the Discussion section. 

According to the previous studies, the technologies of genetic or 
chemical CCM induced models are still immature. The typical cell 
experiment was to cultivate cells (mostly endothelial cells) from CCM 
patients for further research based on the original RNAseq results in 
Fig. 5C [44]. On the other hand, there are diverse findings showing 
FGF1’s pivotal role in angiogenesis, as detailed in Section S3 of the 
Supplementary file. The main results and conclusions are summarized as 
follows. Firstly, FGF1 is found to induce the proliferation and migration 
of endothelial cells at the cellular level [61], whose results are displayed 
in Supplementary Figure S7. Secondly, the FGF1 morpholino 
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Fig. 5. The FGF1 acts as the master regulator gene upstream of perturbed pathways from multi-omics results integration. (A) FGF1 specific expressed in Astrocytes 
Cluster from scRNA-seq. The markers for “Astrocytes” cluster are colored in blue, while the marker for “Capillaries” is in red. (B) FGF1 mutation sites distribution in 
two mutant transcripts from WGS. (C) Differential expression profiles for multi-effect genes from RNA-seq. (D) Main effect gene FGF1 with multiple functional 
variants located upstream of peaked genes from perturbated and enriched pathways, reacted with mutated genes in Class 1, 2 and 3 including KRIT1, one of the three 
known CCM pathogenic genes. Multi-connection mutated genes in the same pathway are outlined with dashed lines. 
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knockdown zebrafish embryos display anomalous cell aggregation in the 
intermediate cell mass [46], whose results are shown in Supplementary 
Figure S8. Last but not least, in a rat model involving the implantation of 
collagen-suspended beads into exposed femoral pedicles, a notable 
enhancement in vascular density is observed at 1 and 6 weeks compared 
to the bolus administration of FGF1 [32], whose results are presented in 
Supplementary Figure S9 and Supplementary Figure S10. 

3. Materials and Methods 

The BRLM web server is available at http://1.117.230.196 and the 
source codes are available at https://github.com/wangyiqi80664 
3897/BRLM. The raw sequence data reported in this paper have been 
deposited in the Genome Sequence Archive (Genomics, Proteomics & 
Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids 
Res 2022), China National Center for Bioinformation / Beijing Institute 
of Genomics, Chinese Academy of Sciences (GSA-Human: HRA005489) 
that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. The 
other results are shown in Supplementary files. 

3.1. CCM family samples collection 

The samples for these eight family members were collected at Shiyan 
Taihe Hospital, Hubei, China, whose family genetic pedigree is pre-
sented in Supplementary Figure S2A. Informed consent was obtained 
from all subjects, and this study was approved by Taihe Hospital. The 
inclusion and exclusion criteria for the data are based on the MRI results 
as shown in Supplementary Figure S2B-I, with four individuals in the 
case group and four in the control group. Each MRI image was reviewed 
by three independent doctors who produced the official reports and the 
cross-referenced slices. The case group comprises the proband in Sup-
plementary Figure S2B, a 34-year-old male patient with CCM, and three 
affected first-degree relatives, including his mother (died of CCM) in 
Supplementary Figure S2C, aunt (52 years old) in Supplementary 
Figure S2D, and brother (30 years old) in Supplementary Figure S2E. 
The control group comprised four relatives from his cousin’s family in 
Supplementary Figure S2F-I. Seven samples were obtained from collat-
eral blood, except for the mother, who unfortunately passed away due to 
the condition. Her sample was obtained from a block of angioma tissue. 

3.2. Whole genome sequencing 

Genomic DNA extracted from blood was assessed for quality using 
PicoGreen and gel electrophoresis. At least 10 μg of non-degraded DNA 
was provided for WGS. Tissue extraction used the Maxwell 16 Tissue 
DNA Purification Kit (Promega), which followed the manufacturer’s 
instructions and utilized 10 mg of tissue. Additional quality controls 
were conducted, including assessing DNA purity and integrity through 
agarose gel electrophoresis. Furthermore, DNA purity was determined 
using Nanodrop detection (OD 260/280 ratio), and DNA quantification 
was carried out with Qubit 2.0. To shear approximately 300 ng of high- 
quality DNA samples (OD 260/280 =1.8–2.0), a Covaris S220 Sonicator 
(Covaris) was used to generate fragments of ~350 bp. The fragmented 
DNA was purified using Illumina’s Sample Purification Beads. Adapter- 
ligated libraries were prepared using TruSeq Nano DNA Sample Prep 
Kits (Illumina) in accordance with the Illumina protocol. The sequencing 
was conducted on an Illumina HiSeq system for 2 * 150 paired-end 
sequencing at Novogene in Wuhan, China. 

3.3. CCM family WGS analysis 

After quality control and trimming by Fastp [9], the dataset con-
sisting of high-quality clean sequences in fastq format was obtained. 
Subsequently, sequence alignment to the GRCH37 reference genome 
was executed using SAMtools with default parameters, achieving a 
mapping rate of over 90%. The Germline short variant discovery 

pipeline of GATK version 4 (GATK4) [5] was then employed. 
To evaluate the feasibility of each site in our data and identify false 

positives, VQSR of GATK was employed in two modes: SNP mode and 
Indel mode. For each mode, distinct reference databases were assigned 
to the corresponding argument sets, and their parameters are detailed in  
Table 2. In SNP mode, the utilized databases included HapMap3.3 [10], 
OMNI2.5 [40], 1000 Genomes [12], and dbSNP (http://www.ncbi.nlm. 
nih.gov/projects/SNP/). While in Indel mode, the databases consisted of 
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) and Mills Gold 
[30]. Each of the aforementioned databases necessitates the determi-
nation of four key parameters: “known” (whether the data is used as 
known variation for marking), “training” (whether the data is used for 
training), “truth” (whether the data is used as the ground truth for 
verifying), and “prior” (the weight of the data set in model training, or 
prior likelihood). 

3.4. SNVs annotation texts preparation 

To annotate SNVs for model training, a multi-step pipeline was 
employed. Initially, this pipeline established a comprehensive annota-
tion process involved three SnpEff and seven ANNOVAR referencing 
databases. Simultaneously, relevant gene information was curated from 
prominent genetic databases, encompassing details such as function, 
expression, phenotype, and pathway. 

The annotation databases encompassed resources like Clinvar [24] 
(version 20220320), 1000 Genomes (version 1000g2015aug_ALL and 
1000g2015aug_AFR) [12], dbSNP (http://www.ncbi.nlm.nih.gov/proj 
ects/SNP/), SIFT [28], GWAS [53], Kaviar [15], eigen [22], and gno-
mAD [23]. 

Besides the above database annotations, further gene information 
had also added to the descriptions of the SNVs accordingly, including the 
functions, expressions, distributions, phenotypes presented in Gene-
Cards (https://www.genecards.org/) and NCBI (https://www.ncbi.nlm. 
nih.gov/), and the pathway terms presented in Gene Ontology (GO, http: 
//geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG, https://www.genome.jp/kegg/). 

All these genetic insights were incorporated into natural language 
descriptions for BioBERT with the input format demonstrated in Table 3 
and an example shown in Supplementary Table S5. The input files are 
available for downloading from the web server (http://1.117.230.1 
96/results_download), along with the source codes (https://github. 
com/wangyiqi806643897/BRLM). 

3.5. TCGA verified dataset 

Initial verification of SNVs by BRLM was conducted using data 

Table 2 
Data parameters of GATK VQSR.  

Resource “known” “training” “truth” “prior” Reason 

SNP mode: 
HapMap 

false true true  15.0 Strict quality control 
and experimental 
verification 

OMNI false true true  12.0 Gold standard for 
genotypes 

1000 G false true false  10.0 Deficiency of 
comprehensive 
experimental 
verification 

dbSNP true false false  2.0 Submitted results 
without rigorously 
verification 

Indel 
mode: 
Mills 
Gold 

true true true  12.0 Verified dataset 

dbsnp true false false  2.0 Same as SNP mode  

Y. Wang et al.                                                                                                                                                                                                                                   

http://1.117.230.196
https://github.com/wangyiqi806643897/BRLM
https://github.com/wangyiqi806643897/BRLM
https://ngdc.cncb.ac.cn/gsa-human
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://geneontology.org/
http://geneontology.org/
https://www.genome.jp/kegg/
http://1.117.230.196/results_download
http://1.117.230.196/results_download
https://github.com/wangyiqi806643897/BRLM
https://github.com/wangyiqi806643897/BRLM


Computational and Structural Biotechnology Journal 23 (2024) 843–858

853

obtained from twelve cancers within the Cancer Genome Atlas (TCGA). 
Cancer types from TCGA, accompanied by their abbreviations, included 
Adrenocortical carcinoma (ACC), Breast invasive carcinoma (BRCA), 
Bladder urothelial carcinoma (BLCA), Colon adenocarcinoma (COAD), 
Cervical squamous cell carcinoma and endocervical adenocarcinoma 
(CESC), Cholangiocarcinoma (CHOL), Lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC), Esophageal carcinoma (ESCA), Glioblastoma 
multiforme (GBM), Kidney chromophobe (KICH), Pan-kidney cohort 
(KICH+KIRC+KIRP) abbreviated as (KIPAN), and Brain lower grade 
glioma (LGG). Following verification of the aforementioned cancers, 
mutation annotation format (MAF) files were downloaded, with each 
line representing a single variant. These original MAF files were then 
converted into avinput format by convert2annovar.pl in ANNOVAR 
(http://annovar.openbioinformatics. org/en/latest/). 

3.6. Analyzing environment configuration 

WGS analysis was conducted on a server having 128 G RAM and two 
Silver 4114 CPUs (40 cores in total), installed with CentOS 7.0. SAM-
tools mapping was performed using 8 cores, while the SNVs calling step 
utilized 16 cores. 

BRLM was implemented by using python3.8 with the deep learning 
framework of PyTorch1.9. The learning rate was optimized by Adam 
with an initial value of 10− 2, a reduction factor of 0.1, and a batch size of 
8. The model was evaluated on a cluster having four NVIDIA V100 GPUs. 

3.7. BRLM’s workflow 

The overall workflow of BRLM is shown in Fig. 6. After obtaining 
annotation texts for SNVs, the BioBERT encoder and ResNet classifier 
pipelines were developed for classification, with the training on TCGA 
and testing on CCM datasets. 

3.7.1. Encoding variants 
The encoder for SNVs was achieved by BioBERT which stands out as 

an extensively employed model in the field of natural language pro-
cessing for medical and biological purposes. It was developed as a 
specialized iteration past the BERT (Bidirectional Encoder Representa-
tions from Transformers), initially pretrained on English Wikipedia and 
BooksCorpus [13]. 

Nevertheless, owing to the significant presence of biomedical- 
specific proper nouns (such as KRIT1, c.369 A>G) or terms (like 
exonic, intronic), BERT’s general models struggled to achieve a satis-
factory performance. This limitation prompted the emergence of Bio-
BERT, tailored for tasks involving biomedical text mining. This variant 
was pretrained on PubMed abstracts (available at PubMed: htt 
ps://pubmed.ncbi.nlm.nih.gov/) and full-text articles from PubMed 
Central (accessible at PMC: https://www.ncbi.nlm.nih.gov/pmc/). 
Considering that descriptions of SNVs for annotation could also be 
categorized as domain-specific natural language expressions, we lever-
aged BioBERT’s entity extraction capabilities to supplant the manual 
literature querying process in the interpretation of SNVs. 

All variants were annotated within sentences, activating the encod-
ing module for deep learning purposes. Regarding BRLM, we utilized 
BioBERT to encode annotated texts, yielding 728-dimensional vectors 
per SNV. The employed model version was biobert-base-cased-v1.1, 
with a batch size of 100 and the “mean” pooling algorithm for pooler 
output. Regarding pooling, it is used to reduce the size of the feature 
maps and avoid sacrificing too much information [6]. The “mean” 
pooling focuses on overall features with less influence from outliers, 
making it more robust than the “max” pooling operation [20]. 

Moreover, instructions were incorporated into each annotated sen-
tence subsequent to the annotations generated by ANNOVAR. The 

Table 3 
BioBERT input text format.   

Anno 
Category 

Text Format 

Annotation Pos Chr:{text} Start:{text} End:{text} Ref:{text} Alt:{text}  
Ref Func.refGene:{text}Gene.refGene:{text}GeneDetail. 

refGene:{text} ExonicFunc.refGene:{text} AAChange. 
refGene:{text}  

Database CLNALLELEID:{text} CLNDN:{text} CLNDISDB:{text} 
CLNREVSTAT:{text} CLNSIG:{text} 
1000g2015aug_ALL:{text} 1000g2015aug_AFR:{text} 
avsnp150:{text} avsift:{text} GWAVA_region_score: 
{text} GWAVA_tss_score:{text} 
GWAVA_unmatched_score:{text} Kaviar_AF:{text} 
Kaviar_AC:{text} Kaviar_AN:{text} 
gnomAD_exome_ALL:{text} gnomAD_exome_AFR: 
{text} gnomAD_exome_AMR:{text} 
gnomAD_exome_ASJ:{text} gnomAD_exome_EAS: 
{text} gnomAD_exome_FIN:{text} 
gnomAD_exome_NFE:{text} gno-mAD_exome_OTH: 
{text} gnomAD_exome_SAS:{text}  

Info NCBI_Summary:{text} GeneCards_Summary:{text} 
Swiss-Prot_Summary:{text} GO:{text} KEGG:{text}  

Fig. 6. BRLM workflow for variant annotations classifying. Starting with annotated data wrangling, embedded vectors are constructed by BioBERT, which are 
classified by ResNet50 for distinct datasets. 
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instruction format followed the pattern of “Disease name” + “mutation 
sites”. These disease names were contingent upon the data sources, 
either TCGA cancer species or CCM. 

3.7.2. Classifying embedded vectors 
The ResNet50 [51] was borrowed to identify pathogenic mutations, 

whose architecture was illustrated in Fig. 1A. The neural network depth 
designed for mutation site analysis significantly outperformed tradi-
tional neural networks in handling SNVs’ large data inputs, preventing 
gradient vanishing and performance degradation. 

To elucidate the unique structure of ResNet, we conducted a 
comparative summary of its specific advantages against two other 
classical convolutional neural networks (VGG and Inception), as depic-
ted in Fig. 7A. The skip connection proposed in ResNet is a significant 
breakthrough of deep neural network, which provides a shortcut for 
gradients to flow more easily through the network during back-
propagation. Instead of passing through every layer, gradients can take a 
shortcut and directly propagate to deeper layers. This helps to mitigate 
the vanishing gradient problem, allowing the network to learn more 
effectively even as it becomes very deep. 

In BRLM, the classification architecture was similar to ResNet50 but 
differed in network size. Precisely, we tailored our network input to 
accommodate the 728-dimensional vectors generated from BioBERT, 
and adjusted the subsequent layers accordingly. The detailed structures 
are outlined in Fig. 7B, recording the kernel size, quantity of kernels, and 

stride size in each layer of the four residual blocks. In regards to the 
stacked residual blocks, each block comprised of three convolutional 
layers with a “skip connection” that bypassed the three layers within 
each individual block. The goal was to achieve a five-class classification, 
as demonstrated in Fig. 1C. For this unbalanced dataset, the class weight 
was applied in the “CrossEntropyLoss” function, resulting in the loss 
being calculated as 

L =
∑

i

Ni

N

∑

j
yi

jlog pi
j (1)  

where Ni is the number of samples in class i with N =
∑

Ni, yi
j is the label 

of sample j in class i, and pi
j is the predicted probability of sample j in 

class i. 
The training, validation, and test sets were divided using a 7:1:2 

splitting ratio. This ratio had been considered to be the optimal criteria 
[33]. The evaluations were performed based on a pre-labeled pan-cancer 
dataset sourced from TCGA by accuracy, precision, recall, mean average 
precision (mAP), and F1-score. Precisely, the predictions are recognized 
in the following manner: (i) True positive (TP) is the number of SNVs 
classified as pathogenic variants correctly; (ii) False positive (FP) is the 
number of SNVs classified as pathogenic variants incorrectly (unrelated 
mutation in fact); (iii) False negative (FN) is the number of SNVs deemed 
as non-pathogenic variants incorrectly; and (iv) True negative (TN) is 
the number of SNVs deemed as non-pathogenic variants correctly. The 

Fig. 7. Particular structure of ResNet compared with classical convolutional neural networks and ResNet50 architecture diagram in BRLM. (A) ResNet residual 
network with skip connection can solve gradient vanishing problem. (B) ResNet-50 architecture constructed in BRLM for SNVs classification. 
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formulas are as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5) 

Emphasizing the primacy of training BRLM from TCGA, we eventu-
ally incorporated CCM variant vectors for testing. 

3.8. Visualization of Classification Results 

The basic plots in this paper were created in R, using the ggplot2 
package’s built-in functions. This package was used for basic graphing 
methods, such as barplots, dotplots, roseplots, and Sankey diagrams. 
Furthermore, different types of graphs were developed employing 
certain packages, which will be introduced in later sections. 

3.9. UMAP construction for variants 

Utilizing BRLM input vectors extracted from BioBERT, it was 
observed that the variants were present in a 728-dimensional space, 
which makes retaining the global structural information derived from 
ResNet50 classification results. To effectively map the entire set of 
variants onto a two-dimensional space, the Uniform Manifold Approxi-
mation and Projection (UMAP) dimensionality reduction technique was 
employed. 

Variants embedding vectors from TCGA or CCM datasets can be 
utilized as input entities for the “umap” package in R4.1. All UMAP 
graphs presented in this paper were generated using 5 components 
representing five distinct classes and 20 neighbors, while considering 
multiple categorical labels including class, SIFT score, Clinvar signifi-
cance, and density. 

3.10. Variety of genetic mutations statistics 

The statistical charts for SNVs were generated using the R4.1 pack-
age known as “maftools”, which is designed to process MAF files. The 
“bcftools” was used to convert ANNOVAR multi-anno files from VCF to 
MAF. Finally, “plotmafSummary” function was employed for charts 
generating. 

3.11. SNVs chromosome distribution statistics 

Two types of chromosome distribution charts were utilized: the first 
employed a chromosome distribution strip map using the CMplot 
package in R4.2, while the second utilized a circos plot. 

The circos chromosome plot was generated with the RCircos package 
for R version 4.2 and its chromosome track was constructed based on the 
UCSC HG19 Human CytoBandIdeogram data, which was imported along 
with the corresponding gene set. Additional tracks were pre-built, each 
with their own subfunction calls. The middle two frequency statistics 
channels presented the 1000 Genomes and genomAD records for each 
mutation site and converted them into input invocation matrices be-
forehand. Internal lines were aligned with PPI pairs from the STRING 
database. 

3.12. Genes enrichment 

The ClusterProfiler package was primarily utilized for enriching 
mutant genes in the R4.2 software package with the “dotplot” function 

of Fig. 3C visualizing the top 10 pathways, and the “treeplot” function 
was called to produce tree diagram in Fig. 4A. In order to summarize 
entire significant enriched results, the simplifyEnrichment package was 
used to cluster similarity matrices calculated by “term_similarity” 
function with a new method named “binary cut” [16]. With the simi-
larity matrix, we can directly apply “simplifyEnrichment” function to 
perform partition around medoids (PAM) with two groups on the simi-
larity matrix in each iteration step. The similarity clustering algorithm 
was applied to cluster pathways, as depicted in the heatmap of Fig. 3A. 

Similarly, the K-means clustering algorithm utilized the “emap-
plot_cluster” function from the ClusterProfiler package to create the 
network displayed in Fig. 3B. 

3.13. Genes perturbation algorithm 

In order to measure the pathway mutations perturbation levels, the 
cumulative effect of mutated genes were quantified by PMAP scores 
using an R package known as PMAPscore (https://cran.r-project.org/we 
b/packages/PMAPscore/vignettes/PMAPscore.html). The package’s 
“get_mut_status” function has been modified to accommodate variants in 
Class 1, 2 and 3. Subsequently, the cumulative effect of genetic muta-
tions on pathways is utilized to determine the PMAP scores. This score 
employs a standard cumulative perturbation measurement to capture 
the positioning and impact of genetic mutations on pathways. The for-
mulas of perturbation scores for genes and their cumulative effect in 
pathway are as follows. 

Gene’s Perturbation score: 

GMPscore(gi) = 1i
(
gj
)
+
∑N

j=1
βij

GMPscore
(
gj
)

Nds
(
gj
) (6)  

where GMPscore
(
gi
)

denotes the perturbation score of mutated gene gj, 

1i

(
gj

)
is an indicator function with 1i

(
gj

)
= 1 if gj belongs to class i, 

otherwise 0, βij is the relationship between genes gi and gj (if gj is directly 
interacted with gi, βij = 1, else is 0), N is the total number of genes in 

pathway pi, Nds

(
gj

)
is the number of genes at the downstream of gene gj. 

Pathway’s Perturbation score: 

PMAPscore(pi) =

∑N
k=1GMPscore(gk)

Ndc
(7)  

where PMAPscore(pi) denotes the perturbation score of pathway pi, N is 
the total number of genes in pathway pi, GMPscore

(
gk
)

denotes the 
perturbation score of gene gk in the pathway pi, Ndc denotes the number 
of genes that have mutated in the pathway pi. 

3.14. Public scRNA-seq data analysis 

The public scRNA-seq raw data were obtained from the Gene 
Expression Omnibus database with ID GSE155788 (https://www.ncbi. 
nlm.nih.gov/geo/). The Data analysis relied on Seurat (version 4.0.5), 
the filtering criteria was nFeature_RNA < 300 or > 12000 with > 15% 
expression of mitochondrial genes. After completing quality control, the 
next step was normalization. This was accomplished by using the 
“LogNormalize” method with default scale factor and log- 
transformation. Subsequently, the “FindVariableFeatures” algorithm 
calculated a subset of features that yielded significant cell-to-cell vari-
ation in the dataset. This function returned 2000 default features per 
dataset, which will be used in downstream analysis. 

Prior to the dimensionality reduction, a linear transformation (called 
scaling) was applied with the “ScaleData” function. Next, the “RunPCA” 
function was invoked for linear dimensionality reduction on the scaled 
data. In order to determine the dimensionality, the JackStraw procedure 
was executed for principal components selection. As a result, the 
remaining cells were clustered together with the npcs of 30 and a 
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resolution of 0.3. The final clusters were annotated based on the markers 
shown in [36]. 

4. Discussion 

We have shown that BRLM, constructed from BioBERT encoder and 
ResNet classifier, can serve as a SNVs annotation learning model to assist 
variants classification and interpretation. BRLM was designed with the 
aim of conducting mutation sites analysis associated with various dis-
eases. The accuracy of BRLM was verified on twelve cancer types in 
TCGA, whose progressive accuracy in each epoch was observed across 
all cancer datasets. The generalizability was validated on CCM 
sequencing analysis, with SIFT scoring and Clinvar annotation validated 
on the classification results. Following the perturbation scoring algo-
rithm to quantify the multi-effects of mutated genes in pathways, an 
upstream master regulator gene FGF1 was found supported by the 
astrocyte cluster of scRNAseq and differential expression of RNAseq. Our 
results demonstrate the feasibility of BRLM in classifying SNVs and 
contribute to the discovery of major pathogenic factors. 

BRLM innovatively employed the NLP algorithm in WGS pathogenic 
information mining, making the image classifier applicable to variants 
classification. The application of NLP models in single-cell sequencing 
datasets has gained popularity, but this technique is still limited in 
clinical laboratories. Some other studies have focused on molecular in-
formation mining from published biological texts. It should be NLP’s 
first use in genome sequencing to solve clinical problems. As for this 
CCM family who visited for procreation guidance, we had to categorize 
all SNVs with no reasonable pathogenicity found in known CCM-caused 
genes, and further employed the perturbation scoring algorithms to 
quantify the accumulation effects of multi-class mutations in pathways. 
Finally, the pathogenic mechanisms in CCM were elucidated, showing 
that a major gene FGF1 could contribute to CCM development alongside 
the minor genes’ effects. This suggests that the applicability of this 
model can be widely used in clinical genetic counseling. 

FGF1 can be detected in recent sequencing results owing to the broad 
usage of bulk sequencing, other than previous CCM omics studies that 
have only probed three known genes. For instance, the direct PCR 
implementation revealed five variants in the CCM3/SERPINI1 asym-
metric bidirectional promoter [41], and the analysis of coding exons 
identified a novel missense mutation, c .422 T > G, in CCM3 [42]. With 
the widespread adoption of next-generation sequencing (NGS), an 
expanded set of genes can now be examined. When the mini-bulk RNA 
sequencing data of MAP3K3 mutant individuals were compared with 
those of MAP3K3 WT individuals during fCCM3 lesion formation, FGF1 
was found to be another up-regulated gene, indicating the activation of 
ERK1 and ERK2 cascades [56]. Additionally, the downstream of FGF1, 
namely TGFBR2 and ACTG2, were found to be consistent with our 
perturbed results, indicating shared pathways such as Hippo and MAPK 
signaling [43]. Subsequently, Fgf1 expression decreased after GJA1–20k 
altered the endothelial cell transcriptome with hypermethylation of its 
gene body in animal experiments [49]. 

The FGF family, comprising six subfamilies (FGF1, FGF4, FGF7, 
FGF8, FGF9, and FGF19) [35], plays a critical role in embryonic 
development and organogenesis by maintaining progenitor cells and 
promoting their growth, differentiation, survival, and patterning [21]. 
The FGF1 subfamily, inclusive of FGF1 and FGF2, serves as potent 
angiogenic inducers that control multiple growth factor signaling. The 
FGF1 subfamily regulates vessel formation [34], promotes strong 
angiogenic responses [27], and induces vessel maturation [14]. Notably, 
it has been implicated as a potential instigator of aberrant angiogenesis 
[18], which could be linked to the pathogenesis of arteriovenous mal-
formations [19] and other cerebral vascular anomalies [45]. As the only 
gene in the FGF family undergoing clinical trials [4], FGF1 shows 
promise for stimulating blood vessel growth in the brain and addressing 
various brain-related diseases, including intracranial aneurysm [60], 
Alzheimer’s disease [52], brain tumors [3], brain injuries [4], and 

ischemic stroke [63]. 
According to the multi-omics data of FGF1 in CCM and its relative 

biological functions, we speculated that the BRLM analyzed results of 
FGF1 was an upstream regulatory gene with clinical implications in 
CCM. The CCM-related elements presentation was a landscape of per-
turbed pathways with FGF1 positioned upstream and interacting with 
downstream mutated genes, including a known CCM pathogenic gene, 
KRIT1. 

Moreover, BRLM is just constructed from genomic data, an inte-
grating model can be anticipated with multimodality data (such as 
clinical records, images, vital signs monitoring, etc.), which may be 
expected to provide more clarity in understanding pathogenicity 
mechanisms and elucidating functional genes. Our next efforts will be 
focused on refining information consolidation and multimodal learning 
exploitation. Alternatively, directions of future work on BRLM will 
encompass three models. Firstly, the initial text-coding module will be 
upgraded into a time-dependent version so that the progression of dis-
eases can be accommodated [1]. Secondly, an image encoding module 
will be added to cope with visual data [37]. Finally, a transformer is 
conceived so that various modalities, such as texts and images, can be 
handled simultaneously [2]. Our intention is to construct a medical 
knowledge graph illustrating the topological relationships among clin-
ical symptoms, laboratory indicators, biological markers, related dis-
eases, and targeted drugs [57]. The prototype functions have been 
integrated into the public interface, incorporating targeted drug 
retrieval and ceRNA network construction. Further development of 
these functionalities will be presented in our following studies. 

In conclusion, this study offers a novel insight for pathogenic factors 
exploration through biomedical language. 

analysis, potentially assisting manual retrieval methods and making 
up complicated biological experiments. 

5. Conclusions 

In this study, a biomedical language learning model called BRLM was 
developed to classify and link SNVs, with the goal of assisting in the 
labor-intensive tasks of interpretation and integration. The pipeline was 
utilized to classify variants into five categories, as defined by ACMG 
guidelines with multi-class interaction network construction. Compre-
hensive databases were compiled containing annotations that describe 
variants in biomedical natural language. To facilitate this, we employed 
the BioBERT, which primarily focuses on entity recognition during 
embedding. Then the encoded vectors were used to train a convolutional 
neural network. This model was trained on 12 TCGA datasets and tested 
on a familial CCM dataset. From the classified results, we performed 
pathway variants accumulative perturbation analysis, and found a 
master regulatory gene, FGF1, that could be highly related to CCM. The 
core contribution of this study resides in the integration of a large lan-
guage model into a variant classifier, where the former is able to capture 
the essential information from the massive input data while the latter 
guarantees better usage of the acquired information. The effectiveness of 
this protocol has been verified by multi-omics sequencing analysis. 
Moreover, a web server has been realized to facilitate the broad usage of 
the proposed model. This study highlights the potential of our approach 
to comprehend the complex interplay of genetic variants within bio-
logical terms. 
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[19] Hatva E, Jääskeläinen J, Hirvonen H, Alitalo K, Haltia M. Tie endothelial cell- 
specific receptor tyrosine kinase is upregulated in the vasculature of arteriovenous 
malformations. J Neuropathol Exp Neurol 1996;55:1124–33. 
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