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Abstract

immune response to haemosporidian parasites.

unique alleles, compared to the uninfected group.

systems in MHC previously but understudied in TLRs.

Background: In the arms race between hosts and parasites, genes involved in the immune response are targets for
natural selection. Toll-Like Receptor (TLR) genes play a role in parasite detection as part of the innate immune
system whereas Major Histocompatibility Complex (MHC) genes encode proteins that display antigens as part of
the vertebrate adaptive immune system. Thus, both gene families are under selection pressure from pathogens. The
bananaquit (Coereba flaveola) is a passerine bird that is a common host of avian malarial parasites (Plasmodium sp.
and Haemoproteus sp.). We assessed molecular variation of TLR and MHC genes in a wild population of bananaquits
and identified allelic associations with resistance/susceptibility to parasitic infection to address hypotheses of avian

Results: We found that allele frequencies are associated with infection status at the immune loci studied. A
consistent general trend showed the infected groups possessed more alleles at lower frequencies, and exhibited

Conclusions: Our results support the theory of natural selection favoring particular alleles for resistance while
maintaining overall genetic diversity in the population, a mechanism which has been demonstrated in some
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Background

The survival of any multicellular organism is dependent
upon an effective immune response to ward off invaders.
The genes involved in this defense are thus targets for
natural selection, and multifaceted mechanisms underlie
vertebrate immune gene evolution driven under selective
pressure from parasites [1-3].

Two major immune gene families in the vertebrate im-
mune system are the Major Histocompatibility Complex
(MHC) of the adaptive immune system and the Toll-like
Receptor (TLR) family of the innate immune system.
The MHC is a genetically diverse multigene family that
plays a vital role: the host's MHC receptor molecules
bind peptides (antigens) produced by pathogens. MHC
molecules then display the antigen on the cell’s surface
for recognition by T-cells and subsequent attack on the
foreign invader [4]. Therefore, an individual's MHC
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genotype governs its ability to detect particular patho-
gens, affecting its susceptibility to parasitic infection and
specific diseases [5, 6].

The MHC has long been the subject for the study of main-
tenance of genetic diversity by balancing selection. Balancing
selection may be driven by negative frequency-dependent se-
lection, in which rare alleles confer a selective advantage,
and/or heterozygote advantage, in which heterozygotes are
more fit than homozygotes [7, 8]. Additionally selection may
fluctuate over space and time [9]. Heterozygote advantage
implies that the highest number of MHC alleles would con-
fer the highest fitness by allowing for recognition of the lar-
gest diversity of pathogens. However, too much MHC
variability can result in removal of T-cells capable of distin-
guishing “self” from “non-self” and increase the chance of
autoimmune disease, potentially conferring higher fitness to
individuals with intermediate MHC diversity (the “optimal-
ity” hypothesis) [10, 11].

While studies of the impacts of immunogenetic vari-
ation on a host’s response to pathogens have mainly fo-
cused on MHC genes, genetic variability in other immune
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loci such as TLRs may also play an important role [12].
TLRs recognize conserved pathogen-associated molecular
patterns (PAMPs) derived from different classes of mi-
crobes, and upon binding a foreign ligand, induce a signal
cascade for the inflammatory response [13]. Evidence sug-
gests TLRs are not as polymorphic as MHC as they are
dominated by stabilizing or purifying selection due to
functional constraints, but positive selection has been
shown in putative ligand-binding regions of TLRs [14—
16]. TLRs are therefore under similar host-parasite select-
ive pressures as MHC, so genetic variability at these loci
likely affect a host’s resistance, and TLR diversity of avian
species of conservation concern has begun to be explored
[17, 18].

In an attempt to further address associations between
host immune gene diversity and susceptibility to para-
sites, we studied a wild population of bananaquits (Coer-
eba flaveola). The bananaquit, a non-migratory songbird
commonly found in the Caribbean and parts of South
America and Mexico, lives in a variety of habitats, in-
cluding forests, shrublands, and human environments
such as parks. It shares the characteristics of many
“finch-like” tanagers, such as a small body size, colorful
plumage, and has a primarily nectivorous diet [19]. The
bananaquit is a common host of Haemosporidian para-
sites  (Plasmodium spp., and Haemoproteus spp.),
blood-borne pathogens vectored by dipteran insects.
These parasites cause avian malaria, which affects a wide
range of birds worldwide and can impact the host’s fe-
cundity, lifespan, and survivorship [20-22]. One would
expect the genetic makeup of MHC and TLR genes in a
bananaquit population to evolve in concert in the face of
these parasites. In particular, any adaptation in TLR
genes would likely be evidenced in the variable extracel-
lular leucine-rich repeat region (LRR) associated with
detection of the particular PAMPs. In MHC genes, we
would expect evolution of exons 2 and 3 in MHC Class
I genes and exon 3 in MHC Class II genes, which en-
code the peptide-binding regions.

Using a population of bananaquits with different infec-
tion statuses sampled from.

Guanica Forest in Puerto Rico, we attempted to identify
TLR and MHC allelic associations with resistance or sus-
ceptibility to parasitic infection. This population was shown
to be subject to infection by three genetically distinct line-
ages of Haemoproteus, the host specialist LAO7 and host
generalists OZ02 and OZ21, and the overall parasite preva-
lence of the population over the time of the sampling
period averaged 51% [23, 24]. We grouped these individuals
by infection status and use a pooled amplicon sequencing
approach to identify alleles present at MHC and TLR loci.
We expected to find different allele frequencies and
sequence divergence among the groups, and looked for
supporting evidence of mechanisms of selection. If at a
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particular locus, uninfected bananaquits exhibit higher al-
lelic diversity compared to infected bananaquits, the mech-
anism of heterozygote advantage would be supported for
that locus. Alternatively, if uninfected bananaquits exhibit
lower allelic diversity, frequency-dependent selection or
positive selection for particular genes that confer resistance
is more likely explanation.

Results

Sample collection & processing

A total of 99 bananaquits were collected from Guanica For-
est and used in this study. Of those, 45 were uninfected, 41
were infected with the LAQ7 strain of Haemoproteus sp., and
13 were infected with various strains of Haemoproteus sp.
(either OZ02 or OZ21 lineages) (Additional file 1: Table S1).

Pooled Sequencing & Sequence Processing

Ultimately, we successfully amplified, indexed, equimo-
larly pooled, sequenced, and called alleles for 5 immune
loci in the same 99 bananaquit individuals:45 in the unin-
fected group (called UNI) 41 in the group infected with
host-specialist LA07 (called LA07), and 13 in the group
infected with either OZ02 or OZ21 (called INF). (UNI =
uninfected, LAO7 = infected with host-specialist LAQ7
strain, or INF = infected with OZ02 and OZ21). The 5 im-
mune loci included two portions of MHC1-UAA gene (re-
ferred to here as MHC1-UAA-1 and MHC1-UAA-2) and
3 TLRs (TLR1A, TLR2B, and TLR7-1).

Upon sequencing, 15,845,214 raw reads were produced.
After merging sequence reads and filtering by quality and
length, 6,093,555 reads were retained (mean of 1,218,711
reads/locus; mean of 12,310 reads/locus/individual).

Allele characterization

All of the five loci were polymorphic, with a range of 3—
14 alleles (Table 1). In the UNI group 2-5 alleles were
seen among the loci, the LA07 group showed between 1
and 7 alleles per locus, and the INF group showed 3-7
alleles.

Alleles within each locus were the same length and
among the loci ranged from 363 to 384 nucleotides.
There were between 2 and 16 polymorphic sites in each
locus corresponding to a proportion of polymorphic
sites of 0.005—0.042 (Table 2).

A large portion of TLR genes are conserved but the
recognition of particular PAMPs of parasites occurs by
particular polymorphic amino acids of the extracellular
N-terminal domain containing leucine-rich repeats
(LRR). Primers were therefore designed for each TLR
such that coding regions for a portion of the LRR do-
main were amplified. In the three TLRs successfully se-
quenced in this study, TLR1A, TLR2B, and TLR7-1, the
levels of polymorphism observed suggest at least a por-
tion of these pathogen recognition areas were amplified,



Antonides et al. BMC Evolutionary Biology (2019) 19:107

Table 1 Summary of loci/amplicons sequenced
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GROUP

UNI

LAO7

INF

n =90 (45 individuals)

n =282 (41 individuals)

n=26 (13 individuals)

Total # # Alleles # Unique Amplicon Avg. Allele # Alleles # Unique Amplicon Avg.  # Alleles # Unique Amplicon Avg.
Alleles Alleles Depth Depth Alleles Depth Allele Alleles Depth Allele
(# reads) (# reads) Depth (# reads) Depth
LOCUS TLR1A 7 4 0 3310 828 5 0 171 342 5 2 2709 542
TLR2B 14 5 0 2467 493 7 2 2387 341 7 7 1465 209
TLR7 7 5 0 3216 643 5 0 3741 748 7 2 3695 528
MHC1- 3 3 0 3816 1272 1 0 3442 3442 3 0 3616 1205
UAA-1
MHC1- 4 2 0 4382 2191 4 0 3875 969 4 0 2794 699
UAA-2

Loci/amplicons and their presumptive alleles by group (phred score > 20, amplicon depth > 1000, allele depth > 100, minor allele frequency = 4%). UNI Uninfected
group, LAO7 infection with LAO7 strains (host specialist), INF various infection strains other than LA07

which enhances our chances of detecting signatures of
selection.

In MHC Class I genes, the peptide binding groove is
formed when the al and a2 domains (encoded by exons
2 and 3 of the gene) of the alpha chain fold in to form a
pocket where the ligand is recognized. The particular
amino acids lining the walls of this groove are highly
polymorphic to recognize various ligands, and are
encoded by multiple short regions spaced throughout
the nucleotide sequence that encodes the al and a2 do-
mains. Because the amino acids which line the groove
depends on the 3D structure of the protein, those pre-
cise nucleotide regions cannot be determined by exam-
ination of the genome sequence alone. In the case of the
MHC Class I gene that was successfully amplified in this
study (MHC1-UAA), the primers were designed such
that two separate regions of the genome sequence en-
coding the al and a2 domains would be flanked in an
attempt to capture at least a portion of the
peptide-binding region. The first locus, MHC1-UAA-1,
has a length of 371 nucleotides: the first 333 bp code for
111 amino acids, then there is a stop codon, and then 35
more nucleotides of an intronic region. The second

Table 2 Summary of sequence variation across loci/amplicons

locus, MHC1-UAA-2, has a length of 364 nucleotides:
the first 1-312 nucleotides code for 104 amino acids,
then there is a stop codon, and then 48 nucleotides of
an intronic region. Unfortunately both regions
(MHC1-UAA-1 and MHC1-UAA-2) spanned by our
primers showed no or little polymorphism in either cod-
ing or non-coding (intron) regions.

Statistical analyses

Frequency-based analyses

For each locus, contingency tables were constructed with
the frequency of each allele in each of the three groups
(UNI, LAO7, INF) in order to test for associations between
allele frequencies and groups (Chi-square, Fisher’s Exact
Test, and Wilk’s G) and the statistical results are given in
Additional file 1 (Table S4). In each case the null hypothesis
that the allele frequencies and groups are independent was
rejected at a significance level of o = 0.05. When comparing
UNI vs. COMBO (the weighted average of LA07 and INF),
the same premise held true: the allele frequencies are sig-
nificantly different among groups. Charts comparing allele
frequencies can be seen in Fig. 1 for the TLR loci and Fig. 2
for the MHC loci, and individual alleles within each locus

# Alleles Length # Polymorphisms # Polymorphisms / Length m
TLRT1A 7 363 5 0.014 0.006
TLR2B 14 384 16 0.042 0.013
TLR7 7 372 8 0.022 0.008
MHC1-UAA-1 3 371 2 0.005 0.004
MHC1-UAA-2 4 364 4 0.011 0.006
Mean over loci 7 371 7 0.019 0.007
St. Dev. over loci 4 8 5 0.014 0.004
Range over loci 3-14 363-384 2-16 0.005-0.042 0.004-0.013

Presumptive alleles detected at each locus/amplicon and their overall genetic variation. m = nucleotide diversity (average pairwise differentiation between unique

allele sequences)
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Fig. 1 Allele frequency differences at TLR loci between experimental groups. All group/locus correlation/association tests are overall significant at
among groups based on Chi-square test and/or Fisher's exact test. Alleles with significantly higher (green up-arrow) or lower (red down-arrow)
frequencies based on the 95% confidence interval of the null distribution upon resampling. UNI Uninfected group, LAO7 infected with LAO7
strains, INF infected with various strains other than LA07. COMBO represents combined infected groups (the weighted average of LA07 and INF)

W UNI WLAD7 WINF

TLR7-1 TLR7-2 TLR7-3 TLR74 TLR75 TLR7-6 TLR7-7

and group whose frequencies are significantly higher or
lower (i.e. above or below the 95% CI) than the expected
frequencies based on the resampling method are indicated.
Figure 3 indicates expected heterozygosity for each locus:
standard error bars indicate there are differences in mean
expected heterozygosity between groups at the TLR2B and

MHCI1-UAA-1 loci, with uninfected groups showing lower
heterozygosity than infected groups.

Distance-based analyses
The results of the hierarchical AMOVA to determine
sources of allele sequence variation are shown in
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Fig. 2 Allele frequency differences at MHC loci between experimental groups. All group/locus correlation/association tests are overall significant
at among groups based on Chi-square test and/or Fisher's exact test. Alleles with significantly higher (green up-arrow) or lower (red down-arrow)
frequencies based on the 95% confidence interval of the null distribution upon resampling. UNI Uninfected group, LAO7 infected with LAO7
strains, INF infected with various strains other than LAO7. COMBO represents combined infected groups (the weighted average of LAO7 and INF)
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Additional file 1 (Table S5). For all loci, the highest
source of variation (77-90%) was within populations (i.e.
the groups UNI, LAO7, and INF), whereas the source of
variation among the populations ranges from 0 to 22%.
The source of variation among regions (i.e. the groups
UNI and COMBO) ranges from 0 to 13% across loci.
Phi-PT values (the sequence-based FST analogue) repre-
senting the pairwise differentiation at each locus for each
pair of populations range from 0 to 0.299, and are in
most cases significant.

Discussion

We found that the allele frequencies at the three TLR
and two MHC loci sequenced in this study, as well as
the expected heterozygosities, are associated with infec-
tion status in the bananaquit. This result is to be ex-
pected if particular alleles and/or the overall number of
alleles at these loci confer or contribute to pathogen re-
sistance or susceptibility.

Parasite-mediated selection is thought to drive im-
mune genes to evolve primarily under.

balancing selection, in which polymorphisms at these
loci are maintained via negative frequency-dependent se-
lection or heterozygote advantage (over-dominance) [25,
26]. Evidence for balancing selection has been shown in
studies of MHC diversity in birds and other taxa [27-
29]. These findings include birds exposed to avian mal-
aria, which suggest that balancing selection is capable of
maintaining MHC variation even in populations under-
going a genetic bottleneck [30]. Evidence for mecha-
nisms underlying balancing selection are mixed. For
example, in the mouse lemur, particular rare MHC al-
leles were found to be associated with resistance to
nematode infection [31], whereas in the alpine ibex,
MHC heterozygosity was associated with resistance to
bacterial conjunctivitis [32]. Additionally, support for the
“optimality hypothesis” has been shown: in the stickle-
back an intermediate level of MHC alleles was associated
with resistance to tapeworms and parasitic fungi [33]. In
the Chinese egret, both a particular MHC allele and an
intermediate number of alleles was associated with infec-
tion status and burden by parasitic nematodes [34].

At TLR loci, evolution by balancing selection has been
implicated in humans [35], and in bank voles both par-
ticular alleles of some TLRs and heterozygosity of other
TLRs are associated with resistance to the blood pathogen
Bartonella [36]. Evidence in other mammalian taxa, how-
ever, suggests directional selection is the dominant force
[37]. Avian studies have indicated TLR genes evolve pri-
marily under stabilizing or purifying selection attributed
to functional constraints, with small portions of the gene
under episodic positive selection for amino acid diversifi-
cation [14, 16]. Studies of TLRs in avian species on a
micro-evolutionary scale are rare, but research aimed at
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detecting balancing selection in populations of conserva-
tion concern indicate that genetic drift is the dominant
force shaping their genetic variability [38, 39].

We found the presence and frequency of immune al-
leles at each locus show an overall significant trend in
which infected individuals harbor some unique alleles
and also have more alleles than uninfected individuals.
The pattern is exemplified with TLR2B, in which the
UNI group has 5 alleles ranging in frequency from
0.096-0.373, the LAO7 group has 7 alleles (five shared
with UNI and two additional ones) ranging from 0.008—
0.234, and the INF group (OZ strains) has 7 alleles (all
unique) ranging from 0.106—0.236.

This supports the idea that particular alleles confer re-
sistance rather than high allelic diversity, and the lower
frequency or absence of those alleles confer susceptibil-
ity. Among the five loci, the exception to this pattern is
one region of the MHC1-UAA gene, MHC1-UAA-1, in
which LAO7 is fixed for one allele whereas the other
groups have three alleles.

An advantage of the pooled sequencing approach is its
relatively low cost and high efficiency [40], but it pre-
cludes the identification of genotypes within or among
loci. Therefore observed zygosity cannot be determined,
but the expected heterozygosity at each locus and group
may give additional insight into mechanisms that may
be operating, such as overdominance. In particular, with
TLR2B and MHC1-UAA-2 locus, the mean expected
heterozygosity is significantly lower in uninfected groups
than in infected groups, which, taken along with the al-
lele frequency data, suggests that heterozygote advantage
is not operating to confer resistance at these loci.

The hierarchicall AMOVA takes nucleotide sequence
distances into consideration to estimate the biggest con-
tributions to the genetic variance present in each locus:
within the group itself, among the groups, or between
the regions into which the groups fall (i.e. uninfected or
infected). Our data supported the hypothesis that host
TLR and MHC sequences diverge in the presence of
parasites, although they showed different sources for this
genetic variance.

Among the TLRs, no source of variation is seen among
regions, but there is variation among groups, indicating
that sequence variation between uninfected and infected
individuals is attributable to the particular infection status
(specialist LAO7 vs. generalist OZ strains) and not infec-
tion as a whole. The highest contribution among groups is
at locus TLR2B, where it accounts for 22% of the molecu-
lar variance. This can also be seen in the high pairwise dif-
ferentiation values of UNI vs. INF (Phi-PT = 0.244) and
LAO7 vs. INF (Phi-PT =0.184) at that locus. Additionally,
the high molecular divergence between INF and the other
groups reflects the previous findings of only unique alleles
in that group at that locus. The other two TLR loci,
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TLR1A and TLR7, show among group variation contribu-
tions of 6-10% and significant pairwise Phi-PT values ran-
ging from 0.036—0.091. Taken together these data support
the idea that TLR sequence evolution occurs in response
to selection pressure by pathogens, and different alleles re-
spond to particular strains of Haemoproteus. This might
be expected for adaptive immune system genes like MHC
which evolve in response to novel pathogens, but innate
TLRs are thought to be more general in the PAMPs they
recognize (e.g. they are expected to recognize PAMPs con-
served among protozoans, but not to differentiate between
ligands of lineages within one genus).

Among the MHC-UAA loci, the region (uninfected or
infected) accounted for 9-13% of the variation, and the
group accounts for 0-14% of the variation. Pairwise
Phi-PT values showed differentiation among populations
ranging from significant values of 0.126-0.364. These
data supported the hypothesis that host MHC sequences
divergence is due to general infection status as well as to
the infection status by lineage.

Caveats

Some caveats exist regarding interpretation of our data.
The underlying assumption to our analyses is the equimo-
lar pooling of individual products for equal representation
during sequencing. While our best efforts were made to en-
sure this is the case, technical error could be introduced
during the experiment, such as from variation in fluoromet-
ric quantification of DNA or undetected sequencing errors.
Therefore, while we expect our results to have biological
significance, we cannot rule out potential impacts from
technical error on the patterns we observed. Additionally,
opportunistic sampling may not precisely reflect the alleles
present in the entire population. For example, the striking
pattern at the TLR2B locus of no overlap in alleles between
the INF group (the smallest group) and the other groups
could be impacted in part by technical error or effects of
sampling. Additional studies with more sampling and se-
quencing (at these loci and others) would help to address
these potential impacts and further explore the underlying
biological mechanisms in the observed patterns.

Caution is to be used regarding the interpretation of
the two loci (MHC1-UAA-1 and MHCI1-UAA-2) com-
posing regions of the MHCI1-UAA gene. Although the
vast majority of polymorphisms seen at the two loci in
the MHC-UAA gene are contained in noncoding re-
gions, these regions are expected to be in linkage dis-
equilibrium with the rest of the gene. We can say that in
general, the MHC data showed the same trend as the
TLR data, which supports the hypothesis that particular
alleles confer resistance and that heterozygote advantage
is not operating. While our results suggest that particu-
lar alleles of TLRs confer resistance, rather than hetero-
zygote advantage, they also do not contradict the
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“optimal” number of alleles theory. The diversity seen in
the infected groups may be too high, and the smaller
number of alleles in the uninfected groups may be the
optimal number for parasite recognition without auto-
immune consequences. However, we cannot determine
if birds that were infected did not survive and thus were
unrepresented in our study.

Additionally, since all bananaquits in this study were
collected from the same time and place, we have assumed
they were all equally likely to be exposed to hemospori-
dian parasites at the same rate. Thus our above interpret-
ation of the data is based on the assumption that
uninfected group of bananaquits are uninfected because
their immunogenetic repertoire allowed them to recognize
and clear Haemoproteus infections. Similarly we assume
that the LAO7 group does not have the immune alleles ne-
cessary to recognize or clear the LAQ7 strain of Haemo-
proteus, and the INF group’s immune genes do not allow
for recognizing or clearing the OZ strains of Haemopro-
teus. An alternative way of interpreting the data would re-
sult if one were to start with the assumption that the
uninfected groups are instead those individuals that have
not been exposed to parasites (so the results of that group
become uninformative for our purposes). In this scenario
the infected groups are those that are infected but survive,
so presumably have an immunogenetic repertoire that al-
lows the individuals to live with chronic malaria (as op-
pose to dying during the acute stage). In this case, any
increased allelic diversity in these immune genes (relative
to birds that died) would result from balancing selection
due to heterozygote advantage.

Conclusions

Among TLRs we observed a large amount of alleles
maintained overall in the population, but within individ-
uals the presence of certain alleles at each locus seem to
confer resistance, as indicated by being present in higher
frequencies in the uninfected groups than the infected
groups and the sequence divergence between the alleles
of the groups. As postulated by the red queen hypoth-
esis, pathogens evolve in response to the most common
alleles in the host population [41, 42]. Therefore rare al-
leles confer a selective advantage to the host, and over
time directional selection causes the previously common
alleles become less common and the previously rare al-
leles become more common.

In this study these “rare alleles” are present at a high
frequency in the uninfected groups but rarer in the in-
fected groups. While a high amount of polymorphism is
required at these loci in the population as a whole (as
evident in the many additional alleles in the other
groups), within individuals it is particular alleles which
matter (those which are still able to recognize and re-
spond to pathogens). This supports the notion of
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directional or frequency-dependent selection (as op-
posed to heterozygote advantage) in the individual. To
our knowledge, this is the first study to demonstrate as-
sociations between TLR alleles and infection statuses in
a wild avian population, and our data suggest that cer-
tain alleles confer resistance and may differentially
recognize haemosporidian pathogens even at the
sub-genus level.

Methods

The experimental design for the investigation of immune
gene alleles among bananaquits of different infection
statuses using pooled sequencing of target amplicons is
described below and summarized in Fig. 4.

Sample collection

Bananaquit individuals were collected opportunistically
along with other local avifauna via mist nets in Guanica
Forest of Puerto Rico in 2001 as reported in [24]. Briefly,
blood (5-10ul) from the brachial vein was drawn in the field
and placed in Puregene cell lysis buffer, and genomic DNA
was subsequently extracted by salt precipitation as reported
in [24]. Animals were released upon blood collection. All
applicable international, national, and institutional guide-
lines for the care and use of animals were followed: blood
samples were collected and transported under the appro-
priate permits and licenses from local governments follow-
ing protocols approved by the University of Pennsylvania
and the University of Missouri, St Louis [24].
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Identification of infection status

In each individual, presence or absence of haemosporid-
ian parasite infection was determined by PCR amplifica-
tion of a conserved region of ribosomal rRNA as
reported in [43]. For those that were infected, the lineage
of Plasmodium spp. or Haemoproteus spp. was subse-
quently determined by amplification and sequencing of
the mitochondrial cytochrome b using a variety of pri-
mer combinations as reported in [44].

Pooled sequencing

The concentrations of the extracted genomic DNA from
these previously sampled individuals with determined infec-
tion statuses were measured with a Nanodrop,spectrophot-
ometer, and working solutions of 20 ng/ul were prepared.
In order to create a library of pooled amplicons from all in-
dividuals at all loci we performed two PCR steps: the first
to amplify the loci in all samples and the second to add Illu-
mina flow-cell adapters and group-specific indexes to all
samples. First we designed locus-specific primer sequences
for portions of 12 immune (MHC and TLR) genes based
on the annotated bananaquit genome [45]. For some genes
(e.g. the MHC Class I gene MHC1-UAA), two sets of
primers flanking different regions within the gene were
chosen to increase our changes of capturing the
peptide-binding region. The primers were chosen such that
they flanked genomic regions containing putative
ligand-binding sites and spanned no longer than 390 bp of

* Blood collection
* DNA Extraction

PREPARATION | * Equimolar pooling of barcoded amplicons

* Miseq Sequencing
* Read trimming and filtering
SEQUENCING

* De-multiplexing of reads (AmpliClean)

Avpcon | * Sequence clustering and filtering and allele assignment (AmpliSAS)

DETERMINATION

* Frequency-based analyses (Chi Square, Fisher’s Exact Test)

STATISTICAL | ® Distance-based analyses (AMOVA, Phi-PT)

ANALYSES

sequencing of target amplicons (Right) Schematic of Primer Design

SAMPLING | ® Determination of Infection Status 5°
J
* Locus amplification A
* Group barcoding
Ampucon | * Reaction cleanup

L5 E— 3
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7//4 Locus specific primers

NN Group specific index primers

Fig. 4 (Left) Overview of experimental design for investigating immune alleles among birds of different infection statuses using pooled
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the locus (to allow room for appending to the sequences
for a 500-cycle MiSeq run).

We performed a two-step PCR to append Illumina
adapters and unique indices to amplicons (Fig. 4, right
panel). Specifically, we tailed the 5" end of the
locus-specific primers with 29-34bp of the Illumina
TruSeq Universal adapter sequences (Additional file 1:
Table S2). Thus the first round of PCR amplified the loci
(with the individuals in each experimental group in a
separate plate) and created sequences which could be
recognized by the primers in the next step of PCR. At
this locus amplification step, if the locus did not amplify
in the 99 individuals upon PCR optimization, that locus
was disregarded from the study. The second PCR step
incorporated the remaining Illumina Truseq Universal
Adapter sequence and group index and includes the flow
cell adapter sequence (Additional file 1: Table S2). In
this way the locus-specific amplicons were labeled by ex-
perimental group (UNI=uninfected, LAO7 = infected
with host-specialist LAO7 strain, or INF = infected with
0Z02 and OZ21). See Additional file 1: Table S3 for
PCR conditions.

The resulting products were cleaned using Sephadex
columns and visualized by agarose gel electrophoresis.
Each successful product (representing an amplicon
from one locus from one individual) was quantified
using an Invitrogen Quant-iT PicoGreen dsDNA assay
kit, and read on a Neo Synergy plate fluorometer, in
which the standard curve was replicated in triplicate
and each plate was read three times and the values
averaged.. The products were subsequently pooled
equimolarly to a total of 10nM. This library of
pooled products was sequenced for paired-end reads
using a 500-cycle Illumina Miseq.

Sequence processing

The raw reads (2x250bp) were merged with BBmap
(Bushnell, https://sourceforge.net/projects/bbmap), with
an overlap of 12 bases and a minimum length of 30
bases. Cutadapt was used for adapter removal, and
Trimmomatic was used to clip lower quality bases (less
than Phred-20) from both the 5" and 3" [46, 47]. Using a
custom script, we sorted the trimmed, merged, and
quality-controlled reads into separate fastq files using
the experimental group indexes.

Amplicon and allele identification

We used AmpliSAS for amplicon identification and
allele identification from the pooled sequencing reads
[48]. Reads from each of the three experimental
group’s fastq file were first processed using the associ-
ated program AmpliCLEAN to remove reads not cor-
responding to any amplicon (locus) based on
locus-specific forward and reverse primer sequences.
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AmpliSAS was then used for each experimental group
to a) de-multiplex reads into amplicons based on
locus-specific primers; b) cluster amplicon sequences
into potential alleles and artifacts (due to PCR or se-
quencing errors); and c) filter artifacts and assign true
alleles. The amplicon read depths were set at a mini-
mum of 1000 reads and the maximum allowed by
AmpliSAS of 5000 reads. The maximum number of
alleles to be considered per amplicon was 15. Cluster-
ing parameters for alleles and artifacts allowed for 1%
substitution errors and 0.01% indel errors. Filtering
parameters included a minimum allele frequency of
4%, and sequences that were chimeras from other
major sequences were discarded.

We calculated summary statistics for each locus to
quantify their overall genetic variation. These included
the number of segregating sites, Watterson’s estimator
®, and nucleotide diversity ().

Statistical analyses

For all subsequent analyses we compared allele fre-
quency and molecular distance differences within and
among the three groups (UNI, LA07, INF). In addition,
we created a group named COMBO which combines the
two groups with infected individuals into one group
(LAO7 + INF), using a weighted average to take into ac-
count sample size, in order to compare all uninfected
with all infected individuals.

Frequency-based analyses

Allele frequencies for each locus and group were cal-
culated from the AmpliSAS output by dividing the
number of reads for a particular allele by the total
number of reads for that amplicon, such that the fre-
quency of all alleles for a particular locus per group
summed to one. Thus the number of reads per ampli-
con (locus) per treatment group were used as allele
frequencies. To test for allelic frequency differences
among groups we used XLSTAT to compute several
association tests against the null hypothesis of inde-
pendence between the rows (the frequency of particu-
lar alleles) and columns (the experimental group) of
the contingency tables at a significance level of a=
0.05. A Chi-square test for independence was per-
formed and the strength of any effect was calculated
by the association parameter Cramer’s V. We also
performed a Fisher’s Exact Test on contingency tables
small enough (<5x3) for an exact p-value, and a
Wilks” G* Likelihood-Ratio Test for independence.

To robustly determine particular alleles with signifi-
cantly high or low frequencies, we implemented a ran-
domized resampling technique in which the observed
values of each allele for each group was compared to a
null distribution of allele frequencies for each allele. The


https://sourceforge.net/projects/bbmap

Antonides et al. BMC Evolutionary Biology (2019) 19:107

null distribution was created by assuming the weighted
average of the three groups represent the allele fre-
quency of the population, based on group sample sizes
and parasite prevalence of the overall population. Group
sample sizes were calculated as twice the number of dip-
loid individuals in the group (the number of alleles rep-
resented in the pool): 2n =90 for UNI, 21 = 82 for LA07,
and 2n = 26 for INF. The parasite prevalence in the over-
all population during the sampling period averaged 34%
for the LAO7 strain and 15.75% for OZ strains (the INF
group), with the remaining 50.25% of individuals unin-
fected [24]. We then generated 1000 simulated popula-
tions of 100 individuals in which each individual has two
alleles at a locus. For each simulated population the ex-
pected allele frequency was calculated for each allele,
and then a 95% confidence interval (CI) for allele fre-
quency was estimated across all replicates. The ClIs were
interpreted as the null distribution, to which the ob-
served allele frequencies were compared. If the observed
value of an allele was within the CI, it was not signifi-
cantly different from the null distribution; it was signifi-
cantly high or low if the observed value was larger or
smaller than the CI. Additionally, expected heterozygos-
ity for each locus and group were calculated based on
their allele frequencies, with +/- one standard error
from the mean.

Distance-based analyses
For each locus we wished to identify molecular variance
among the alleles present within and among experimental
groups while taking into account the sample sizes of the
groups. We again estimated the theoretical number of al-
leles present for a particular locus and group by multiply-
ing the allele frequency by the sample size for the group
(2* the number of diploid individuals in the group). The
equimolar pooling of all individuals at all loci prior to se-
quencing was implemented in an effort to sequence all
DNA molecules evenly and distribute noise produced dur-
ing sequencing evenly among all individuals/groups/loci/
alleles. Thus we make the assumption that any
over-counting of these theoretical numbers is done so
proportionately, and these theoretical numbers of alleles
were used as a proxy for individual haplotypes in the
population for Analysis of Molecular Variance (AMOVA).
We implemented AMOVA in GenAlEx with a hier-
archical structure to represent the presence or absence
of infection as well as infection by certain lineages [49,
50]. There were two broad “regions” (UNI and COMBO)
and three “populations” (UNI and LAOQ7 and INF). LAO7
and INF were populations in the COMBO region, while
UNI was the only population in the UNI region. Then
we created a haploid distance matrix for calculation of
Phi-Statistics (an F-Statistics analog for sequence data),
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on which AMOVA is based. We also calculated Phi-PT
values for pairwise group comparisons based on 999 per-
mutations as a measurement of genetic divergence
among groups.

Additional file

Additional file 1: Supplementary Tables. Table S1. Bananquit
individual sample IDs and group name by infection status. Collected in
Guanica Forest, Puerto Rico in 2001. Table S2. Locus- and group- specific
primers (5" - > 3") for loci successfully amplified and sequenced to quality-
control specifications. Table S3. PCR conditions for library preparation of
the loci successfully used in this study, listed by volume (ul) out of a total
reaction volume of 25ul. Working solution concentrations listed. Locus
amplification thermocycler profile: initial denaturing for 94 (2 m), 35 cycles
of 94 (30s), annealing temp (30s), and 72 (30s), and final extension of 72
(5m). Group adapter/index thermocycler profile: initial denaturing for 94
(2'm), 30 cycles of 94 (30s), annealing temp (30s), and 72 (30s), and final
extension of 72 (2m). Table S4. Results of association/correlation tests at
a significance of a=.05 on contingency tables of allele frequencies.
Table S5. Distance-based analyses for molecular variance. AMOVA with
hierarchical structure (Regions = UNI vs. COMBO (LA07 + INF); Populations
=UNI vs. LAO7 vs. INF). Input in GenAlEx is a haploid distance matrix
(each nucleotide position represented as a site and coded for calculation
of Phi-Statistics. For pairwise group comparisons, Phi-PT values are shown
below the diagonal. Probability, P(rand > = data) based on 999 permuta-
tions is shown above diagonal. (DOCX 41 kb)
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