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Abstract: Beyond their significant contribution to the dietary and industrial supplies, marine algae
are considered to be a potential source of some unique metabolites with diverse health benefits.
The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis,
protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective
efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired
proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders
and the associated complications after cerebral ischemia and brain injuries. As was evident in
various preclinical studies, algal compounds conferred neuroprotection against a wide range of
neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid β,
or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders.
While a significant number of algal compounds with promising neuroprotective capacity have been
identified over the last decades, a few of them have had access to clinical trials. However, the recent
approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer’s disease
enlightened the future of marine algae-based drug discovery. In this review, we briefly outline
the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of
pharmacological intervention, and then review the literature on the neuroprotective potentials of algal
compounds along with the underlying pharmacological mechanism, and present an appraisal on the
recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based
drug development.
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1. Introduction

Neurons and supporting cells of the brain encounter degenerative changes during physiological
or pathological aging, ischemic stroke, or other brain injuries [1]. The degenerative brain disorders
such as Alzheimer’s disease (AD) and Parkinson’s diseases (PD) are the consequence of pathological
brain aging, which are characterized by the region-specific loss of neurons [2]. Globally, these diseases
account for the major causes of dementia among the elderly [3]. Although the exact etiologies of these
brain disorders are not revealed yet, they share some common pathophysiology, such as oxidative
stress (OS), neuroinflammation, mitochondrial dysfunction, protein misfolding, and defective protein
clearance system that, in turn, make these diseases complicated [4,5], whereas, ischemic, traumatic,
and other brain injuries, if not fatal, ensue secondary damage and constitute the appreciable causes of
cognitive deficits among patients. Like neurodegenerative disorders, brain injuries also follow the
same pathophysiology [6,7]. Whatever the forms of dementia disorder, the current therapeutic option
can only alleviate symptoms, rather than halting the disease progression. Moreover, current drugs are
associated with multiple side effects. Considering the tremendous social and economic impact of these
diseases, scientists are, therefore, paying research efforts to discover the potential therapeutic agents
that can target disease pathogenesis without causing undesirable effects in patient’s health. Although
synthetic drugs have some advantages such as easy to develop, naturally-derived compounds have
received priority as they are relatively well-tolerated. Natural compounds have been claimed to show
anti-inflammatory, antioxidant, and immunomodulatory effects [8]. Compounds showing multiple
pharmacological effects offer a better solution for the remedy of neurological disorders with complex
pathomechanisms [9]. In the published literature, a significant quantity of natural products has been
reported to show neuroprotective activity against a wide range of toxic insults [10,11]. Some of them
have shown therapeutic promise in preclinical studies [12] and clinical trials [13,14].

Macroalgae, also known as seaweed, are among the highly abundant marine lives and potentially
contribute to the renewable resources for food and industrial products [15–17]. Beyond this
importance, algal metabolites, such as phenolics, alkaloids, terpenoids, carotenoids, phytosterols,
and polysaccharides have attracted much attention to medicinal chemistry due to their structural
uniqueness and functional diversity [17–20]. These biofunctional compounds have shown to
provide neuroprotection in preclinical models of neurodegenerative diseases, ischemic stroke, brain
trauma, diabetes, and obesity, among many others, owing to their antioxidant, anti-inflammatory,
and immunomodulatory capacities [21–28]. Evidence suggests that algal metabolites, particularly
fucoxanthin, fucosterol, and fucoidan could be potential leads for the development of therapy against
CNS diseases [22,29–31]. Although the algal metabolite-based drug discovery progresses very slowly,
the discovery of sodium oligomannate and its conditional approval as an anti-AD drug [32] raises
hope for the future development of potential therapeutic agents from marine algae.

Over the last decade, some excellent works reviewed the neuroprotective effects of marine algae
and their metabolites [21–23,29,33–35]. However, some of these reviews limited their scope either to a
single pathogenic mechanism such as neuroinflammation [22] or to categorical brain disorders such
as AD or PD [22,23,29,34,35]. Others have reviewed literature published a decade or half a decade
ago [23,36]. Moreover, a few of them included reports that cover ischemic or other brain injuries.
In the meantime, information on some potential algal compounds with neuroprotective activity has
appeared in the scientific platform and there has also been significant progress in the clinical aspect.
Addressing the knowledge gap and the possible limitations, offering a comprehensive review updating
information on the neuroprotective effects of algal compounds and their therapeutic advances is
timely. In this comprehensive review, we first briefly outline the pathobiology of neurodegenerative
disorders, ischemic stroke, and traumatic brain injury and then provide pharmacological insights into
the neuroprotective potentials of algal metabolites and highlight the recent progress in algae-based
drug discovery. Finally, the rational strategy for algal compounds-based drug development has
been discussed.
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2. Pathophysiology of Brain Disorders

2.1. Neurodegenerative Disorders (AD and PD)

Neurodegenerative disorders, including AD and PD, are of major public health concern and
contribute to the prime causes of dementia among elderly people. The pathological hallmarks of AD
include extracellular deposition of amyloid plaque and intraneuronal aggregation of neurofibrillary
tangles (NFT) [37]. On the other hand, PD is characterized by the degeneration of dopaminergic
neurons in the substantia nigra [37] with the pathological hallmark of intraneuronal aggregation of
α-synuclein [38]. Although the exact pathophysiology of these brain disorders remains elusive, it has
been demonstrated that OS, neuroinflammation, mitochondrial dysfunction, and protein misfolding
largely contribute to their development [37]. OS and neuroinflammation are two considerably diverse
disease processes in many pathological events [39]. Conversely, they are interplayed with each other
in the entire disease process. Thus, inhibition of neuroinflammation may reduce the OS and vice versa.

Oxidative stress (OS) is a pathological condition that develops when the production of reactive
oxygen species (ROS) reaches an excessive level with lower efficiency of the cellular antioxidant
defense system [40]. Factors contributing to OS in the brain include excitotoxicity, depletion of the
cellular antioxidant system, high susceptibility to lipid peroxidation, and high oxygen demand [41].
OS may lead to mitochondrial dysfunction, which further results in the excessive ROS generation
and establishes a vicious cycle of OS [42,43]. Moreover, the endoplasmic reticulum (ER), a site for
protein folding, also takes part in ROS generation [44]. Protein misfolding in ER results in ER stress
that is further responsible for ROS production [45]. ROS potentially contributes to the damage of cells
through compromising the structure and function of biomolecules, including lipid peroxidation, protein
oxidation, and deoxyribonucleic acid (DNA) damage, which eventually install neurodegeneration [38].

Neuroinflammation is another inevitable pathogenic factor of many neurodegenerative
disorders [46]. Microglial activation is the major contributor to neuroinflammation [46]. A range of
stimuli, including infection, trauma, toxic insults, and ischemia, may initiate microglial activation and
disrupt the central nervous system (CNS) homeostasis [47,48]. Once activated, microglia released
pro-inflammatory and neurotoxic elements, like chemokines, cytokines, proteases, eicosanoids,
ROS, and excitatory amino acids [47]. All of these elements are documented as a key player
in neuroinflammation-associated OS as well as chronic neurodegeneration [49]. The deposition
of misfolded proteins, as evident in the major NDD, can also induce an inflammatory response,
which further causes OS [50].

Dysregulation of cholesterol homeostasis is also a critical factor that could induce OS
and inflammation, and thus may contribute to the pathogenesis of major brain disorders [51].
This disturbance in cholesterol metabolism in the brain is under the regulation of a cholesterol transport
mechanism. Liver X receptor beta (LXR-β), once activated, promotes multiple genes that regulate
reverse cholesterol transport and thus confers neuroprotection [52,53]. For instance, LXR-β agonist
enhanced survival of dopaminergic neurons [54] and reduced the burden of mutant huntingtin [55] as
well as promoted amyloid β (Aβ) clearance [56]. With the significant evidence of the implication of
OS, neuroinflammation, and cholesterol dyshomeostasis in the pathobiology of neurodegenerative
disorders, these pathological factors could be targeted for the development of potential therapeutics.

2.2. Ischemic Stroke

Ischemic stroke is responsible for the second-highest number of deaths and disability around the
world [57]. It is a pathological condition resulting from sudden occlusion of blood supply to the brain.
If the patient survives, the affected brain areas accompany the secondary damage due to the restoration
of blood flow and reoxygenation. This ischemia/reperfusion (I/R) event initiates mitochondrial ROS
generation [58] and subsequent inflammatory response [59].

Mitochondrial ROS is not only a crucial early driver of acute damage but is also considered an
initiator of the consequence of a series of pathological features that develop over time following the
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reperfusion [60]. Initially, upon reperfusion, the burst of ROS production results in oxidative damage
to mitochondria, and thereby disrupts ATP production [61], which ultimately initiates neuronal cell
death cascades [62]. ROS-mediated mitochondrial damage further installs the inflammatory response
via the activation of microglia and astrocytes as well as an influx of immune cells recruited by cytokines,
adhesion molecules, and chemokines across the activated cerebral blood vessels [63]. This activation
of the innate immunity triggers nuclear factor-kappa-B (NF-κB)-mediated production of numerous
inflammatory cytokines that contribute to I / R injury [64]. Therefore, targeting OS and inflammatory
response could be imperative to develop novel therapeutic strategies for the management of stroke.

2.3. Traumatic Brain Injury

Traumatic brain injury (TBI), an acquired brain injury caused by an external force or shock, is also
considered to be a major cause of death globally, particularly in countries with a frequent incidence of
traffic accidents [65]. Despite significant medical advances in recent times, the clinical outcomes of
severely head-injured patients are not satisfactory.

As in ischemic stroke, mechanisms underlying the damages to the brain tissue with TBI are
categorized into two classes: primary and secondary damages. Primary damage that irreversibly
involves the mechanical damage of the skull and the brain has been complicated following the brain
contusions, rupturing blood vessels, axonal injuries, and intracranial hemorrhages [66], whereas the
secondary damage causes neuronal degeneration over time due to various biochemical changes such
as OS, excitotoxicity, inflammation, and mitochondrial dysfunction [67]. Following TBI, various OS
markers such as lipid peroxidation products, oxidized protein moieties, and DNA damage products
accumulate in the brain while antioxidants and enzymes molecules such as glutathione (GSH),
glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferases (GST), superoxide
dismutase (SOD), and catalase (CAT) markedly decline [68]. It is suggested that treatment modalities
associated with conferring neuroprotection on injured brain tissue and regeneration at the recovery
stage of injured neurons have greater promise to restore at the site of brain injury following TBI.

3. Neuropharmacological Potentials of Marine Algae and Their Metabolites: Evidence from In
Vitro Studies

Several compounds of diverse chemical classes have been reported from three major groups
(brown, red, and green algae) of marine algae (Figures 1–4). Neuropharmacological properties of these
compounds reported in various in vitro models are compiled (Table 1) and discussed in the following
subsections. Besides bioactive compounds, macroalgae that have shown promising neuroactive
potentials, and thus demand further attention are also mentioned.

3.1. Antioxidant Activity

Marine algae-derived compounds have been reported to exhibit strong antioxidant property
(Table 1), and thus may protect against oxidative damage. For example, fucoxanthin, a carotenoid
from Sargassum siliquastrum, attenuated OS-induced DNA damage [69]. Fucoxanthin also
prevented H2O2-induced DNA damage, which was associated with increased production of GSH,
and expression of SOD [36]. Moreover, fucoxanthin promoted antioxidant defense in lipopolysaccharide
(LPS)-activated BV-2 microglia by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme
oxygenase-1 (HO-1) pathway and cell survival through activating cAMP-dependent protein kinase
(PKA)/cAMP response element-binding (CREB) pathway and increasing BDNF secretion [70].
Fucosterol raised cellular antioxidant enzymes, such as SOD, GPx, and CAT in experimental
rats [71]. Jung and colleagues demonstrated that fucosterol prevented ROS production in tert-butyl
hydroperoxide (t-BHP)-induced RAW264.7 macrophages [72]. In addition, fucosterol conferred
protection from oxidative damage in HepG2 cells by raising the GSH level [73] and in lung epithelial
cells by increasing the expression of SOD, CAT, and HO-1, and nuclear translocation of Nrf2 [74].
Glycoprotein of U. pinnatifida improved SOD activity (53.45%) and inhibited xanthine oxidase (Xox)
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activity (82.05%) [75]. Diphlorethohydroxycarmalol and 6,6′-bieckol from Ishige okamurae exhibited
antioxidant activity and reduced intracellular ROS level in RAW264.7 cells [76]. Sulfated polysaccharide
fractions from Porphyra haitanesis showed antioxidant activity and inhibited Lipid peroxidation in rat
liver microsome [77]. Porphyran from Porphyra yezoensis showed superoxide anion and hydroxyl
radical scavenging activity [78].
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In addition, a great number of marine algae have shown antioxidant activity, including Sargassum
polycystum and Laurencia obtusa [79], Gelidium foliaceum, and Codium duthieae [80], to mention a few.

3.2. Anti-Inflammatory Activity

An appreciable number of algal compounds have been reported for anti-inflammatory activity
(Table 1). Fucoxanthin, a common carotenoid of brown algae, attenuated inflammation, and OS in glial
cells [36,70]. In Aβ42-induced BV2 cells, fucoxanthin attenuated inflammatory response, which was
manifested by decreased secretion of proinflammatory mediators, such as tumor necrosis factor-alpha
(TNF-α), interleukin (IL)-6, IL-1β and prostaglandin E2 (PGE2) and reduced expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and by lowering the phosphorylation of
mitogen-activated protein kinase (MAPK) pathway [36]. In LPS-activated BV-2 microglia, fucoxanthin
protected against neuroinflammation by lowering the expression of iNOS and COX-2 and reducing
the secretion of inflammatory factors such as TNF-α, IL-6, PGE2, and nitric oxide (NO) that involved
inhibition of protein kinase B (Akt)/NF-κB and MAPKs/ activating protein-1 (AP-1) pathways [70].

The anti-inflammatory activity of fucosterol has recently been reviewed [81]. In brief,
fucosterol exhibited anti-inflammatory action [82] and attenuated LPS-induced inflammation in
RAW 264.7 macrophage [72]; [83] and alveolar macrophage [84]. Fucosterol also protected against
LPS- or Aβ-mediated neuroinflammation in activated microglial cells [85]. Several phlorotannins,
such as dieckol [86], phlorofucofuroeckol A [87] and phlorofucofuroeckol B [88], 6,6’-bieckol [89],
and 8,8’-bieckol [90] isolated from Ecklonia spp have been reported for their anti-inflammatory activities
that involved suppression of NF-κB and MAPK pathways.

Algal polysaccharides are known to act as anti-inflammatory agents [91]. Fucoidan, a sulfated
polysaccharide attenuated inflammatory response in LPS-stimulated BV2 microglia by suppressing
NF-κB and extracellular signal-regulated kinases (ERK)/MAPK/Akt pathways [92]. In another
study, fucoidan decreased the generation ROS and TNF-α in LPS-induced primary microglia [93].
κ-Carrageenan oligosaccharides and its desulfated derivatives from red algae attenuated TNF-α
production and showed anti-inflammatory activity in LPS-activated microglia [94]. Porphyran from
Porphyra yezoensis attenuated nitric oxide (NO) generation in LPS-stimulated RAW264.7 cells by
suppressing iNOS expression [78,95]. Treatment with sulfated oligosaccharides of Ulva lactuca and
Enteromorpha prolifera reduced inflammatory factors and downregulated the expression of p53 and
fork-head box protein O1 (FOXO1) genes and upregulated the expression of Sirt1 gene in SAMP8
mice [96]. Alginate-derived oligosaccharide inhibited the expression of inflammatory enzymes and
secretion of proinflammatory cytokines in LPS/Aβ-induced BV2 microglia. This oligosaccharide also
reduced the expression of toll-like receptor 4 (TLR4) and NF-κB [97]. Priming of LPS-stimulated
primary microglia and astrocytes with seleno-polymannuronate (Se-PM) reduced the expression
of inflammatory enzymes and the production of inflammatory mediators by suppressing NF-κB
and MAPK signaling [98]. Sargachromenol isolated from Sargassum micracanthum attenuated
inflammatory response in LPS-induced RAW 264.7 macrophages [99]. Kang and colleagues reported
that sargaquinoic acid of Sargassum siliquastrum suppressed inflammatory response in LPS-stimulated
RAW 264.7 macrophages by downregulating NF-κB and c-JNK pathways [100]. Pretreatment of
LPS-stimulated BV-2 microglial cells with floridoside inhibited inflammation by blocking p38/ERK
phosphorylation [101]. Glycoprotein from U. pinnatifida (UPGP) reduced the expression of inflammatory
enzymes and NO synthesis in LPS-stimulated RAW 264.7 macrophage [75]. Moreover, several algal
alkaloids such as caulerpin, racemosin A-C, and caulersin were shown to have anti-inflammatory
activity [102].
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In addition, several marine algae have been reported to show anti-inflammatory properties in
various experimental models, for instance, Ecklonia cava [103], Myagropsis myagroides [104,105], Sargassum
serratifolium [106], and three Malaysian seaweeds (Padina australis, Sargassum polycystum, and Caulerpa
racemosa) [107] in LPS-stimulated murine BV2 microglia; Ulva conglobata in interferon gamma-induced
BV2 cells [108]; Sargassum fulvellum [109], Sargassum horneri [110], Myagropsis myagroides [111,112] in
LPS-stimulated RAW 264.7 macrophage cells and Sargassum serratifolium in LPS-stimulated mouse
peritoneal macrophages [113]. Owing to their capacity to modulate various inflammatory pathways,
these algae and their respective compounds have shown encouraging effects in protecting various cell
types from the inflammatory response.

3.3. Anticholinesterase Activity

Currently prescribed anti-AD drugs are mostly based on the inhibition of cholinesterase activity.
Several algal metabolites have been reported to inhibit cholinesterase activity (Table 1). For example,
fucosterol and 24-hydroperoxy 24-vinylcholesterol isolated from E. stolonifera showed inhibitory activity
against butyrylcholinesterase (BChE) [114]. Another study also demonstrated anticholinesterase activity
of fucosterol [85]. Enzyme kinetics and computational analysis indicated a non-competitive mode of
acetylcholinesterase (AChE) inhibition of fucosterol [115].

Fucoxanthin exhibited anti-BChE activity which was of mixed inhibition type [116], whereas
Lin and colleagues demonstrated that fucoxanthin showed non-competitive inhibition against
AChE [117]. α-Bisabolol from Padina gymnospora showed inhibition against cholinesterase activity [118].
U. pinnatifida-derived glycoprotein showed AChE and BChE inhibitory activities [75].

The IC50 values for phloroglucinol, dibenzo [1,4] dioxine-2,4,7,9-tetraol and eckol from Ecklonia
maxima range from 76.70 to 579.32 µM, with later two compounds possessing the highest AChE
inhibitory activity [119]. Dieckol and phlorofucofuroeckol exhibited a similar anti-AChE activity [120].
Sargaquinoic acid and sargachromenol from Sargassum sagamianum have shown reasonable AChE
inhibitory activity while the BChE inhibitory activity of sargaquinoic acid is 1000-fold higher than for
AChE [121]. Tyrosol and its derivative, 4-(1,2-dihydroxyethyl) phenol from Macrocystis angustifolia
showed anti-AChE activity [122]. Meroterpenoids, such as sargahydroquinoic acid, sargachromenol,
and sargaquinoic acid of S. serratifolium exhibited potent anti-AChE activity [123]. Among the
phlorotannins tested 8,8′-bieckol showed potent anti-AChE activity [124].

In addition, the extracts from some marine algae have shown anti-cholinesterase properties.
These include Halimeda cuneata [80], Padina australis [125], Botryococcus braunii and Nannochloropsis
oculata [126], Cystoseira tamariscifolia and Cystoseira nodicaulis [127], Ishige foliacea [128], and Asparagopsis
taxiformis [129].
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Table 1. Summary on pharmacological effects, occurrence, effective dose, experimental model, cellular effects, potential pharmacological mechanism of algal metabolites.

Pharmacological
Effects Compound (Class) Algal Source If

Any)
Effective

Concentration
Experimental Model (In

Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological
Markers Reference

Antioxidant
activity

Fucoxanthin
(carotenoids)

Sargassum
siliquastrum 50 and 100 µM

H2O2-induced cell
damage in kidney

fibroblast cells

Attenuates oxidative
stress n.d. ↓ROS level [69]

Fucoxanthin 5, 10, and 50 µM H2O2 induced BV2
microglial cells Antioxidation Antioxidant

pathway
↓ROS

↑SOD and GSH [36]

Fucosterol,
3,6,17-trihydroxy-
stigmasta-4,7,24

(28)-triene and 14,15,
18,20-diepoxyturbinarin

(sterols)

Pelvetia siliquosa

A seven day-dose
regimen at

30 mg/kg/day before
carbon tetrachloride

(CCl4) administration

Rat model Antioxidation n.d. ↑SOD, CAT, and
GPx [71]

Fucosterol Eisenia bicyclis,
brown alga

25, 50, 100, 200, and
400 µM

RAW 264.7 murine
macrophages

(t-BHP stimulated)

Protects against
oxidative stress n.d. ↓ROS generation [72]

Fucosterol

Ecklonia
stolonifera and
Eisenia bicyclis;
Brown algae

25, 50, and 100 µM
tert-Butyl hydroperoxide-

and tacrine-induced
HepG2cell injury model

Antioxidation n.d. ↓ROS generation
↑GSH level [73]

Fucosterol
Sargassum

Binderi;
brown alga

3.125, 6.25, 12.5, 25, 50,
and 100 µg /mL

Particulate
matter-induced injury
and inflammation in

A549 human lung
epithelial cells

Attenuates oxidative
stress

↓ROS level
↑SOD, CAT, and

HO-1 in the cytosol,
and NRF2 in the

nucleus

[74].

Glycoprotein U. pinnatifida

SOD activity and Xox
activity at a

concentration of
5 mg/mL and 1 mg/mL,

respectively

In vitro enzyme assay ↑SOD and↓Xox [75]

Sulfated oligosaccharides

Ulva lactuca and
Enteromorpha

prolifera;
green algae

150 mg/kg·day

Aging model (male
senescence-accelerated

prone (SAMP8) and male
senescence resistant

(SAMR1) mice)

Antioxidantion n.d.

↑GSH, SOD, CAT,
telomerase levels,
↑Total antioxidant

capacity,
↓MDA and AGEPs

[96]
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Table 1. Cont.

Pharmacological
Effects Compound (Class) Algal Source If

Any)
Effective

Concentration
Experimental Model (In

Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological
Markers Reference

Anti-
inflammatory

activity

Fucoxanthin 5, 10, and 50 µM Aβ42-induced BV2
microglia cells Anti-inflammation MAPK pathway

↓iNOS, COX-2
↓TNF-α, IL-6, IL-1β,

PGE2
↓JNK, ERK, and p38

MAPK
phosphorylation

[36]

Fucoxanthin - LPS-activated BV-2
microglia

Anti-inflammation
and antioxidation

Akt/NF-κB and
MAPKs/AP-1

pathways;
PKA/CREB

pathway

↓iNOS, COX-2,
↓TNF-α, IL-6, PGE2,

NO, ROS
↓IL-6, TNF-α, iNOS,
and COX-2 mRNA

expression
↓Akt, NF-κB, ERK,

p38 MAPK and
AP-1

phosphorylation
↑Nrf2, HO-1
↑PKA, CREB
↑BDNF

[70]

Fucosterol E. bicyclis;
brown alga 5–20 µM for NO

RAW 264.7 murine
macrophages

(t-BHP 200 µM, LPS-1µM
stimulated)

↓Inflammatory
response

↓NF-κB
pathway

↓NO production
↓iNOS and COX-2 [72]

Fucosterol U. pinnatifida 10, 25, or 50 µM
LPS-induced RAW 264.7
macrophages and THP-1
human monocyte cell line

↓Inflammatory
response

↓NF-κB
pathway

↓iNOS, TNF-α, and
IL-6

↓DNA binding
↓phosphorylation
of NF-κB, MKK3/6

and MK2

[83]

Fucosterol Hizikia fusiformis 1–10 µM CoCl2 induced hypoxia
in keratinocytes

↓Inflammatory
response n.d.

↓IL-6, IL-1β and
TNF-α

↓pPI3K and pAkt
and HIF1-α

accumulation

[82]

Fucosterol Panida. australis 0.004,0.2, and 10 µM LPS or Aβ-induced BV2
(microglial) cells

Protects against LPS
or Aβ-mediated

neuroinflammation
n.d. ↓IL-6, IL-1β, TNF-α,

NO, and PGE2 [85]
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Table 1. Cont.

Pharmacological
Effects Compound (Class) Algal Source If

Any)
Effective

Concentration
Experimental Model (In

Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological
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Fucosterol S. Binderi;
brown alga

3.125, 6.25, 12.5, 25, 50,
100 µg/mL

Particulate
matter-induced injury
and inflammation in

A549
human lung epithelial

cells

↓Inflammatory
response n.d. ↓COX-2, PGE2,

TNF-α and IL-6 [74]

Dieckol (phlorotannin) E. cava 50–300 µg/mL LPS-stimulated murine
BV2 microglia

Anti-inflammation
and antioxidation

p-38 MAPK/
NF-κB pathway

↓NO and PGE2;
↓iNOS and COX-2;
↓IL-1β and TNF-α;

↓ROS

[86]

Phloroglucinol, eckol,
dieckol, 7-phloroeckol,
phlorofucofuroeckol A

and dioxinodehydroeckol
(phlorotannin)

E. bicyclis;
brown alga 5–20 µM for NO

LPS-stimulated RAW
264.7 murine
macrophages

↓Inflammatory
response

↓NF-κB
pathway ↓NO production [72]

Phlorofucofuroeckol A E. stolonifera 20 µM LPS-activated BV2 and
primary microglial cells Anti-inflammation

NF-κB, JNKs,
p38 MAPK, and
Akt pathways

↓NO and PGE2;
↓iNOS and COX-2;
↓IL-1β, IL-6 and

TNF-α;
↓NF-κB activation

and IκB-α
degradation

↓JNK, p38, and Akt

[87]

Phlorofucofuroeckol B
(phlorotannin) E. stolonifera 10–40 µM LPS-stimulated murine

BV2 microglia Anti-inflammation

IκB-α/NF-κB
and

Akt/ERK/JNK
pathways

↓TNF-α, IL-1β and
IL-6;

↓COX-2 and iNOS
↓NF-κB activation

and IκB-α
degradation

↓Akt, ERK, and JNK
phosphorylation

[88]

8,8’-bieckol
(phlorotannin) E. cava

LPS-stimulated primary
macrophages and RAW

264.7 macrophages
&

LPS-induced septic mice

Anti-inflammation;
Protects mice from
endotoxin shock

NF-κB pathway

↓NO and PGE2;
↓iNOS mRNA and
protein expression;

↓IL-6;
↓Transactivation of
NF-κB and nuclear
translocation of the
NF-κB p65 subunit

↓ROS

[90]
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6,6′-bieckol
(phlorotannin) E.stolonifera

LPS-stimulated BV2 and
murine primary
microglial cells

Anti-inflammation

IκB-α/NF-κB
and JNK/p38
MAPK/Akt
pathways

↓COX-2 and iNOS;
↓NO and PGE2,

↓IL-6
↓Transactivation of
NF-κB and nuclear
translocation of the
NF-κB p65 subunit
↓Akt, JNK and p38

MAPK
phosphorylation

[89]

Fucoidan (sulfated
polysaccharide) Brown seaweed 25, 50, and 100 µg/mL LPS-stimulated murine

BV2 microglia Anti-inflammation

NF-κB and
JNK/p38

MAPK/Akt
pathways

↓NO and PGE2;
↓COX-2, iNOS and

MCP-1;
↓TNF-α and IL-1β;
↓NF-κB activation;
↓Akt, ERK, p38
MAPK and JNK
phosphorylation

[92]

Fucoidan - 125 µg/mL LPS-activated primary
microglia Anti-inflammation n.d. ↓TNF-α and ROS [93]

κ-carrageenan
oligosaccharides and

desulfated derivatives
Red algae LPS-activated microglia Anti-inflammation n.d. ↓TNF-α [94]

Sulfated oligosaccharides
U. lactuca and E.

prolifera;
green algae

150 mg/kg·day

Aging model (male
senescence-accelerated

prone (SAMP8) and male
senescence resistant

(SAMR1) mice)

↓Inflammatory
response n.d. ↓IFN-γ, TNF-α, and

IL-6 [96]

Alginate-derived
oligosaccharide Brown algae 50–500 µg/mL LPS/Aβ-stimulated BV2

microglia Anti-inflammation
TLR4/NF-κB

signaling
pathway

↓NO and PGE2;
↓COX-2 and iNOS;
↓TNF-α, IL-6 and

IL-12;
↓TLR4;

↑NF-κB/p65 subunit
translocation

[97]
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Seleno-polymannuronate Brown algae 0.8 mg/mL

LPS-activated primary
microglia and astrocytes;

mouse model of acute
inflammation

Anti-inflammation NF-κB and
MAPK signaling

↓NO and PGE2;
↓COX-2 and iNOS;
↓TNF-α, IL-1β and

IL-6;
↑IκB-α, p65, p38,

ERK and JNK
phosphorylation

[98]

Sargachromenol
(plastoquinone)

Sargassum
micracanthum 30.2µM (IC50) LPS-stimulated RAW

264.7 macrophages Anti-inflammation NF-κB signaling
↓NO and PGE2;
↓COX-2 and iNOS;

↑IκB-α
[99]

Sargaquinoic acid
(plastoquinone)

Sargassum
siliquastrum

LPS-stimulated RAW
264.7 macrophages Anti-inflammation NF-κB signaling

↓NO; ↓iNOS;
↑IκB-α; ↓nuclear
translocation of

NF-κB;
↓JNK1/2 MAPK

[100]

Floridoside (glycerol
glycosides)

Laurencia
undulate;
red alga

50 µM LPS-stimulated murine
BV2 microglia Anti-inflammation MAPK

Signaling

↓NO, ROS;
↓iNOS and COX-2;
↓p38 MAPK and

ERK
phosphorylation

[101]

Glycoprotein U. pinnatifida

COX-1 and COX-2
inhibition with IC50

values of
53.03 ± 1.03 µg/mL and

193.35 ± 3.08 µg/mL,
respectively

LPS-stimulated RAW
264.7 macrophages Anti-inflammation n.d. ↓COX-1 and COX-2

↓NO [75]

Caulerpin (bisindole
alkaloid)

Caulerpa
racemosa 100 µM/kg body wt

Capsaicin-induced ear
edema and

carrageenan-induced
peritonitis

Inhibition of
nociception n.d. n.d. [130]

Caulerpenyne
(sesquiterpene)

C. prolifera and
C. racemosa 5.1 µM Lipoxygenase (LOX)

enzyme activity assay
Inhibitory activity

against LOX - Un-competitive
type of inhibition [131]
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Aquamin (multi-mineral
complex)

Lithothamnion
corallioides; red

alga

LPS-stimulated,
glial-enriched primary
cultures of rat cortex

Anti-inflammation n.d. ↓TNF-α and IL-1β [132]

Anticholinesterase
activity

Fucosterol and
24-hydroperoxy

24-vinylcholesterol
E. stolonifera

IC50 values of 421.72 ±
1.43, 176.46 ± 2.51 µM,

respectively
In vitro enzymatic assay ↓BChE activity - Selective inhibition

of BChE [114]

Fucosterol Panida australis

inhibition against
AChE (10.99–20.71%)

and BChE (4.53–17.53%)
with concentrations ≤

56 µM,

In vitro enzymatic assay ↓AChE and BChE
activities -

Nonselective
cholinesterase

inhibition
[85]

Fucosterol Sargassum
horridum - In vitro enzymatic assay ↓AChE activity - Non-competitive

inhibition [115]

Fucoxanthin - IC50 value 1.97 mM In vitro BChE activity
assay ↓BChE activity Mixed inhibition

type [116].

Fucoxanthin Brown seaweed IC50 value of 81.2 µM

In vitro AChE activity
assay;

Molecular docking
analysis

↓AChE activity

Fucoxanthin
likely interacts

with the
peripheral
anionic site

within AChE

Non-competitive
manner [117]

α-Bisabolol Padina
gymnospora IC50 value < 10 µg/mL In vitro enzymatic assay ↓AChE and BChE

activity - - [118]

Glycoprotein U. pinnatifida

AChE and BChE
inhibitory activities
with IC50 values of

63.56 ± 1.86 and 99.03 ±
4.64, respectively

In vitro enzymatic assay ↓AChE and BChE
activity - - [75]

Phloroglucinol,
dibenzo [1,4]

dioxine-2,4,7,9-tetraol
and eckol

Ecklonia maxima;
Brown alga

IC50 value: 76.70 to
579.32 µM

In vitro AChE activity
assay ↓AChE activity - - [119]

Dieckol and
phlorofucofuroeckol E. cava

Ethanol-intoxicated
memory impairment in

mice
↓AChE activity n.d. ↑Acetylcholine [120]
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Sargaquinoic acid and
sargachromenol
(plastoquinones)

Sargassum
sagamianum

IC50 value for
anti-AChE: 23.2 and

32.7 µM, respectively;
IC50 value for
anti-BChE of

sargaquinoic acid
26 nm

In vitro ChE activity
assay

Sargaquinoic acid
shows potent

inhibitory activity
against BuChE and
moderate inhibitory

activity against AChE

-. - [121]

(5E,10Z)-6,10,14-
trimethylpentadeca

-5,10-dien-2, 12-dione and
(5E,9E,13E)-6,

10,14-trimethylpentadeca
-5,9,13-trien-2,12-dione

(Sesquiterpenes)

S. sagamianum
IC50 values of 65.0 and

48.0, and 34.0 and
23.0 µM, respectively

In vitro ChE activity
assay

Moderate inhibitory
activity against AChE

and BuChE
- - [133]

Anti-
amyloidogenic

and aggregation
inhibition

activity

Fucoxanthin E. stolonifera and
U. pinnatifida

↓β-secretase activity;
Binding energy
(-7.0 kcal/mol)

- mixed-type
inhibition [134]

Fucoxanthin - 0.1–30 µM

Suppresses the
formation of Aβ1-42
fibrils and Aβ1–42

oligomers, and
inhibits Aβ
aggregation

- - [135]

Fucoxanthin - 2 µM ThT assay
Inhibits Aβ1-42 fibril

and aggregate
formation

- - [136]

Fucosterol E. stolonifera and
U. pinnatifida

10–100 µM (IC50 value
of 64.12 ± 1.0 µM)

In vitro enzyme assay;
In silico analysis

↓β-secretase activity;
Binding energy
(−10.1 kcal/mol)

- Noncompetitive
inhibition [134]

α-Bisabolol Padina
gymnospora 5 µg/mL

Thioflavin T (ThT),
Confocal laser scanning

microscopy (CLSM)
analysis, Transmission

electron microscopy
(TEM), Fourier transform

infrared (FTIR)
spectroscopic analysis

and molecular dynamics
simulation

Prevents oligomers
formation as well as

disaggregates the
matured fibrils

- - [137]
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Glycoprotein U. pinnatifida IC50 values of 73.35 ±
2.54 µg/mL In vitro enzymatic assay ↓BACE1 activity - - [75]

Cholesterol
homeostasis and

Aβ clearance
activity

Fucosterol -

100 and 200 µM
(HEK293 cell cultures);

100 or 200 µM
(macrophages and
HepG2, H4IIE, and

Caco2 cells)

HEK293 cell cultures
(Reporter system);

THP-1-derived
macrophages;
Caco-2 cells
HepG2 cells

Reverses cholesterol
transport.

No accumulation of
triglyceride in HepG2

n.d.

Dual-LXR agonist
(LXR-α and LXR-β)
↑ABCA1, ABCG1,

and ApoE;
↑Intestinal NPC1L1

and ABCA1;
↑Insig-2a, that
delays nuclear
translocation of

SREBP-1c

[138]

Saringosterol Sargassum
fusiforme 30 µM

Luciferase reporter
assay system;

HEK293T, THP-1
monocytes, HepG2,
RAW264.7, THP-1

macrophages and Caco-2
cells

n.d. n.d.

Selective LXRβ
agonist;

↑ABCA1, ABCG1,
and SREBP-1c

[139]

Alginate-derived
oligosaccharide

Marine brown
algae BV2 microglial cells Microglial

phagocytosis of Aβ

Toll-like
receptor
signaling

↑TLR4 [97].

Monoamine
oxidase inhibition

and affinity to
dopaminergic

receptors

Phlorofucofuroeckol-A
and dieckol

(phlorotannin)
-

In vitro enzyme assay
and functional assay for

GPCR screening; Docking
analysis

↓hMAO activity;
D3R and D4R
stimulation

- - [140].

Antiaging Sulfated oligosaccharides
U. lactuca and E.

prolifera;
green algae

150 mg/kg/day

Aging model (male
senescence-accelerated

prone (SAMP8) and male
senescence resistant

(SAMR1) mice)

Antioxidant and
anti-inflammation n.d.

↑GSH, SOD, CAT,
telomerase levels,
↑Total antioxidant

capacity,
↓MDA and AGEPs
↓IFN-γ, TNF-α, and

IL-6
↑BDNF and ChAT;
↑Sirt1, ↑p53 and

FOXO1

[96]

Fucosterol Hizikia fusiformis 50 µg/mL Culture model of C.
elegans Extends lifespan ↑Antioxidant

mechanism n.d. [141]

n.d.: not defined; -: information not available.
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3.4. Anti-Amyloidogenic and Aggregation Inhibition Activity

As amyloid-β deposition is one of the hallmarks of AD, compounds that interfere with the
generation of pathogenic Aβ and/or that inhibit its aggregation are of therapeutic importance.
Several metabolites of marine algae have shown anti-amyloidogenic potentials (Table 1). For example,
fucoxanthin at variant concentrations reduced the formation of Aβ1–42 fibril and Aβ1–42 oligomers,
when co-incubated with Aβ1–42 monomers [135,136]. Both studies also demonstrated that fucoxanthin
has been shown to inhibit Aβ aggregation [135,136]. Inhibition of β-site amyloid precursor protein
cleaving enzyme 1 (BACE1) with fucoxanthin was of a mixed-type [134]. In addition, molecular
docking analysis revealed a differential pattern of interaction [134]. Fucosterol showed a potential
anti-BACE1 activity, which was a noncompetitive type [134]. Supporting these findings, a recent
in silico study also explained the binding and interaction pattern of fucosterol with BACE1 [142].
α-Bisabolol from Padina gymnospora prevented oligomers formation as well as disaggregated the
matured fibrils [118]. Glycoprotein from U. pinnatifida exhibited anti-BACE1 activities with IC50

values of 73.35 ± 2.54 µg/mL [75]. Meroterpenoids, such as sargahydroquinoic acid, sargachromenol,
and sargaquinoic acid of S. serratifolium, exhibited potent anti-BACE1 activity [123]. Phlorotannins,
such as eckol, dieckol, and 8,8′-bieckol from Ecklonia cava showed anti-BACE1 activity [124].
Olasehinde et al. reported that four South African macroalgae such as Gracilaria gracilis, Ulva lactuca,
Ecklonia maxima, and Gelidium pristoides exhibited anti-cholinesterase, anti-BACE1, and Aβ aggregation
inhibitory activities, indicating that these types of seaweed could be potential sources of anti-AD
agents [35]. Ishige foliacea extract showed β-secretase inhibition property [128].

3.5. Cholesterol Homeostasis and Aβ Clearance Activity

Some algal metabolites are known to activate LXR-β (Table 1), and thus help regulate cholesterol
homeostasis and enhance Aβ clearance [56]. Fucosterol is a selective LXR-β agonist that upregulated
several LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1), ABCG1, and apolipoprotein
E (ApoE) [138,139], suggesting that fucosterol could play a significant role in brain cholesterol
homeostasis. Saringasterol, another selective LXR-β agonist isolated from S. fusiforme, activated the
expression of similar LXR target genes in multiple cell lines [139]. Alginate-derived oligosaccharide
isolated from marine brown algae promoted the microglial phagocytosis of Aβ, which is connected to the
activation of toll-like receptor signaling [97]. As cholesterol imbalance and impaired protein clearance
system significantly contribute to the pathogenesis of major neurological disorders, more efforts
should, therefore, be paid to explore similar compounds that may help regulate cholesterol homeostasis
and proteostasis.

3.6. Monoamine Oxidase Inhibition and Affinity to Dopaminergic Receptors

Inhibition of MAO-A (monoamine oxidase-A), an enzyme that catalyzes oxidative deamination of
neuroamines, such as dopamine, norepinephrine, and serotonin (5-HT), is a putative approach to raise
the brain 5-HT level, thus alleviating the symptoms of Parkinsonism [143]. Seong and team screened
the multi-target effects of three phlorotannins, i.e., phloroglucinol, phlorofucofuroeckol-A (PFF-A),
and dieckol against human MAO-A and -B and various neuronal G-protein-coupled receptors (GPCRs).
Of these, PFF-A exhibited a relatively higher inhibition against both hMAO isoforms, with greater
selectivity toward hMAO-B (Table 1). Enzyme kinetics and computational findings indicated that
PFF-A noncompetitively interacted with hMAOs and acted allosterically. In a functional assay for
GPCR screening, dieckol and PFF-A showed a multi-target combination of D3R/D4R agonism and
D1/5HT1A/NK1 antagonism [140].
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3.7. Anti-Aging

Algal compounds that exhibited anti-aging effects (Table 1) could have therapeutic value for
physiological as well as pathological brain aging. Sulfated oligosaccharides of Ulva lactuca and
Enteromorpha prolifera, when treated in SAMP8 mice, increased the serum level of antioxidant molecules
and total antioxidant capacity, and decreased the levels of malondialdehyde (MDA) and advanced
glycation end products in the serum of experimental mice [96]. It has also been observed that these
oligosaccharides decreased inflammatory factors, increased BDNF and choline acetyltransferase (ChAT)
levels, and promoted the survival of hippocampal neurons. The underlying mechanisms involved the
downregulation of p53 and FOXO1 genes and the upregulation of Sirt1 gene [96]. Caenorhabditis elegans,
when treated with fucosterol (at 50 µg/mL), survived longer compared to control, indicating that this
algal compound might help extend life-span and thus might protect against premature aging [141].
Antioxidant, anti-inflammatory, and immunostimulatory properties of fucosterol were supposed to be
involved in its pro-survival effect [144].

3.8. Neurotrophic Activity

Compounds with neuritogenic potentials are promising to reconstruct a damaged neuronal
network, which is a characteristic feature of neurodegeneration. Several algal metabolites have shown a
promising neurite outgrowth promoting potentials in cell culture conditions (Table 2). Sargachromenol
from Sargassum macrocarpum promoted nerve growth factor (NGF)-dependent neuronal differentiation
of PC12D cells by activating cyclic AMP-mediated protein kinase and MAPK1/2 and supported
their survival by activating phosphatidylinositol-3 kinase (PI3K) [145]. Sargaquinoic acid, another
metabolite from S. macrocarpum, promoted neuritogenesis in PC12D cells, which involved cooperation
between two independent pathways, i.e., the TrkA-MAPK pathway and adenylate cyclase-PKA
pathway [146]. Ina and colleagues demonstrated that the neurodifferentiation of PC12 cells by
pheophytin a of Sargassum fulvellum required the presence of NGF and involved the activation of
an MAPK signaling pathway [147]. Vitamin B12, a chlorophyll-related analog to pheophytin a,
also stimulated NGF-dependent PC12 cell differentiation by an MAPK signaling pathway [148].

Dimethylsulfoniopropionate (DMSP) promoted neurite outgrowth and protected against
TDA-induced cytotoxicity, involving the upregulation of Hsp32 and activation of the extracellular
signal-regulated kinases 1/2 (ERK1/2) [149]. Fucoxanthin has shown to exhibit neurite outgrowth
activity (15.7–31% of cells to develop neurite outgrowth) at much lower concentrations (0.1–2 µM),
in the absence of NGF support, indicating that this marine carotenoid could a potential neurotrophic
molecule [136]. Gracilariopsis chorda and its active compound arachidonic acid modulated spine
dynamics, and potentiated functional synaptic plasticity of hippocampal neurons [150].

In addition, several marine algae have shown to promote neurite outgrowth. For example,
Sargassum macrocarpum and Jania adharens showed neuritogenic potentials and promoted neuron-specific
dendrites and axons from PC12D cells [151]. Two compounds, namely sargachromenol [145] and
sargaquinoic acid [148], having neurite outgrowth potential were already isolated. Porphyra yezoensis
and its compound taurine facilitated neuronal development and maturation of primary hippocampal
neurons [152]. Gelidium amansii [153–156], Sargassum fulvellum [157], Undaria pinnatifida and Saccharina
japonica [158], Gracilariopsis chorda [150,159], and carrageenophyte Kappaphycus alvarezii [160–163]
promoted neuronal morphology and functions. Of these, G. amansii that exhibited neuromodulatory
potentials in several studies [153–156] could be the most promising candidate for further isolation of
neurotrophic agents and thus expects special attention of natural product chemists.
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Table 2. Neurotrophic activity of algal phytochemicals in vitro.

Compound Algal Origin (If Any) Dosage Experimental Model
(In Vivo/In Vitro)

Cellular Effects/Significant
Findings

Pharmacological
Markers References

Sargachromenol
Sargassum

macrocarpum
(Brown alga, Japan)

ED50 9 µM (with
10 ng/mL NGF) PC12D cells NGF-dependent neurite

outgrowth and survival
↑PKA and MAPK1/2

↑PI3K [145]

Sargaquinoic acid S. macrocarpum
(Brown alga, Japan)

3 µg/mL (with
10 ng/mL NGF) Cell differentiation

Protein Kinase A and
MAP

Kinases-Mediated
Signaling Pathways

[146]

Vitamin B12
(chlorophyll-related analog to

pheophytin)

Sargassum fulvellum
(Brown alga, Japan) PC12 cells Cell differentiation MAPK signal

transduction pathway [148]

Pheophytin A S. fulvellum
(Brown alga, Japan) 3.9 µg/mL PC12 cells NGF-independent neurite

outgrowth
↑PKA and MAPK1/2

↑PI3K [147]

Dimethylsulfoniopropionate - 7.4 mM Neuronal N2a and
glial OLN-93 cells

Process outgrowth;
microtubule reorganization

and bundling

↑α-tubulin
acetylation [149]

Fucoxanthin - 0.1–2 µM PC-12 cells NGF-independent neurite
outgrowth n.d. [136]

n.d.: not defined; -: information not available.
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3.9. Neuroprotective Activity

Compounds that possess antioxidant, anti-inflammatory, anti-amyloidogenic,
and anti-aggregation, cholesterol homeostasis, and protein clearance activities are expected
to show potential neuroprotective effects. Congruently, the following metabolites isolated from marine
algae have been reported to confer neuroprotection against a range of toxic stimuli (Table 3).

Several studies reported the neuroprotective activity of fucoxanthin. For example, fucoxanthin
attenuated β-amyloid oligomer-induced [164] and H2O2-induced [165] apoptosis and OS in SH-SY5Y
cells through activating a pro-survival PI3K/Akt pathway and suppressing the proapoptotic ERK
pathway. Fucoxanthin-mediated protection against H2O2-induced apoptosis in primary cerebellar
granule neurons also involved a similar neuroprotective mechanism [165]. Co-incubation of fucoxanthin
with Aβ1–42 oligomers formed modified Aβ1–42 oligomers, which were relatively less toxic to
SH-SY5Y cells compared to Aβ1–42 oligomers, indicating that fucoxanthin-triggered structural
modification of Aβ1–42 oligomers reduced their neurotoxicity [135]. Fucoxanthin, isolated from Undaria
pinnatifida, also attenuated hypoxia/reoxygenation (H/R)-induced cellular injury in primary cortical [166]
and hippocampal neurons [167]. Likewise, fucoxanthin suppressed oxygen-glucose deprivation/

reperfusion (OGD/R)-induced neuronal apoptosis, via activating the Nrf2/HO-1 signaling [168]. In the
TBI model of mouse primary cortical neurons, fucoxanthin promoted neuronal survival against
secondary injury and enhanced antioxidant enzymes such as HO-1 and NAD(P)H dehydrogenase
[quinone] 1 (NQO-1) via activating Nrf2-ARE and Nrf2-autophagy pathways [169]. Fucoxanthin also
attenuated both Aβ1-42- and H2O2-induced toxicity in PC12 cells [136].

Zonarol (ZO), a para-hydroquinone-type molecule from Dictyopteris undulata protected against
OS in HT22 hippocampal and cerebrocortical neurons by activating the Nrf2/ARE pathway [170].
It induced the expression of NQO-1, HO-1, and peroxiredoxin 4 (PRDX4) and thus helps regulate
intracellular redox state [170]. α-Bisabolol, an active compound of Padina gymnospora, protected
against Aβ25-35-induced neurotoxicity in PC12 cells [137] and also in Neuro2a cells and transgenic
C. elegans [171]. In PC12 cells, the rescuing effects of α-bisabolol against Aβ induced neurotoxicity
were similar to donepezil, which is a currently prescribed anti-AD drug [137]. In Neuro2a cells,
α-bisabolol exhibited inhibition against cholinesterase and β-secretase activity. In addition, α-bisabolol
prevented apoptosis in Neuro2a cells by inhibiting the production of ROS and reactive nitrogen species
(RNS) and reducing the expression of bcl-2-like protein (Bax) and caspase-3 [171]. In a transgenic
C. elegans Alzheimer’s model, α-bisabolol attenuated Aβ-induced proteotoxicity by decreasing the
expression of angiotensin-converting enzyme 1 (ace-1), hsp-4, and Aβ [171]. The neuroprotective
roles of fucosterol have been reviewed in our recent article [81]. In brief, fucosterol attenuated
Aβ-induced neurotoxicity in hippocampal neurons [172] and SH-SY5Y cells [173]. In addition,
three isolated compounds including α-tocospirone, (23E)-3β-hydroxy-stigmasta-5,23-dien-28-one and
(22E)-3β-hydroxy-cholesta-5,22-dien-24-one from Caulerpa racemose attenuated Aβ25-35-induced
toxicity in SHSY5Y cells [174].

Phlorotannins, a specialized group of tannins, particularly rich in brown algae, have shown
significant neuroprotective effects in several neurotoxicity models. Liu and colleagues evaluated
three phlorotannins, including 8,8’-bieckol, dieckol, and eckol for their neuroprotection against
Aβ25-35-mediated cytotoxicity in PC12 cells [96]. Of these, dieckol showed maximum protection,
although all were shown to suppress inflammatory response by inactivating the NF-κB pathway [96].
A similar study by Ahn and teams demonstrated that six phlorotannins, such as phloroglucinol,
dioxinodehydroeckol, eckol, dieckol, phlorofucofuroeckol A, and 7-phloroeckol from Eisenia bicyclis
protected against Aβ-induced cytotoxicity by inhibiting ROS generation and Ca2+ release [175].
Dieckol attenuated glutamate-induced excitotoxicity in primary cortical neurons and HT22 neurons by
scavenging ROS and nuclear factor-like 2/heme oxygenase-1 pathway [176]. In addition, in another
study, phloroglucinol from E. cava suppressed Aβ1-42 -provoked ROS accumulation in an HT-22
hippocampal cell line [177].
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Table 3. Neuroprotective activity of algal compounds in vitro and in vivo.

Compound
(Class)

Algal Origin (If
Any)

Effective
Concentration

Experimental Model (In
Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological Markers References

In Vitro Experimental Models

Zonarol
(p-hydroquinone

sesquiterpene)

Dictyopteris
undulate

(Brown alga,
Japan)

ED50 0.22 µM
(therapeutic index,

defined as the ratio of
ED50 to LD50, is

14.2-fold)

HT22 hippocampal neuronal
cells (glutamate-induced

oxidative stress)
&

Cerebrocortical neurons
(glutamate or rotenone-induced

oxidative stress)

Neuronal survival
against oxidative stress

Nrf2/ARE
pathway ↑NQO-1, HO-1, and PRDX4 [170]

Fucoxanthin Undaria pinnatifida 0.15–1.5 µmol/L Hypoxia/reoxygenation-induced
neuronal injury

Neuronal survival
against oxidative stress n.d. n.d. [166]

Fucoxanthin - 20µM
In Vitro model of TBI (primary

culture of mouse cortical
neurons scratched manually)

Neuronal survival
against secondary injury

(oxidative stress)

Nrf2-ARE and
Nrf2-autophagy

pathways

↓ROS
↑Beclin-1 (Atg6), LC3 (Atg8)

and↓p62
↓Cleaved caspase-3

↑Nrf2 nuclear translocation
↑HO-1 and NQO-1

[169]

Fucoxanthin - 3µM β-Amyloid oligomer-induced
neurotoxicity in SH-SY5Y Cells

Neuronal survival
against oxidative stress

PI3K/Akt and ERK
Pathways

↓ROS
↑pSer473-Akt and

pSer9-GSK3β
↓pERK

[164]

Fucoxanthin - 1-3µM
H2O2-induced toxicity in

SH-SY5Y Cells and primary
cerebellar granule neurons

Neuronal survival
against oxidative stress

PI3K/Akt and ERK
Pathways

↓ROS
↑pSer473-Akt and

pSer9-GSK3β
↓pERK

[165]

Fucoxanthin - 0.3 µM
Fucoxanthin-modified Aβ1–42

oligomers-induced
neurotoxicity in SH-SY5Y Cells

Neuronal survival n.d. n.d. [135]

Fucoxanthin - 5 µM, 10 µM, and 20 µM
Oxygen-glucose deprivation
and reoxygenation (OGD/R)
model of cultured neurons

Neuronal survival
against oxidative stress

Nrf2/HO-1
signaling

↑Nrf2 nuclear translocation
↑HO-1 [168]

Fucoxanthin Undaria pinnatifida 0.075 µg/mL H/R-induced excitotoxicity in
primary hippocampal neurons

Neuronal survival
against oxidative stress n.d. n.d. [167]
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Table 3. Cont.

Compound
(Class)

Algal Origin (If
Any)

Effective
Concentration

Experimental Model (In
Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological Markers References

Fucoxanthin -

<2 µM (against
Aβ1-42-mediated

toxicity)
0.5–2 µM(H2O2-induced

cytotoxicity)

Aβ1-42-mediated toxicity in
PC12 cells

H2O2-induced cytotoxicity
Cell survival n.d. n.d. [136]

α-Bisabolol Padina gymnospora 5 µg/mL Aβ25-35-induced neurotoxicity
in PC-12 cells Antiapoptosis n.d. n.d. [137]

α-Bisabolol Padina gymnospora 5 and 10 µg/mL
Aβ25-35-induced neurotoxicity
in Neuro2a cells and transgenic

C. elegans

Antioxidation
Antiapoptosis;

Protection against Aβ
induced proteotoxicity

Aβmediated
pathway

↓ROS, NOS
↓Bax and caspase-3
↓ace-1, hsp-4 and Aβ

[171]

Fucosterol Ecklonia
stolonifera

1–10 µM at 24 h before
sAβ1-42 exposure

(effective fucosterol
conc. 5–10 µM)

sAβ1-42 (10 µM)-induced ER
stress model of primary

neurons

Attenuates
Aβ1-42-induced

neurotoxicity
n.d.

↑TrkB-mediated ERK1/2
signaling

↓GRP78 expression
↑BDNF expression

[172]

Fucosterol - 0.0032 to 20 µM Aβ-induced cytotoxicity in
SH-SY5Y cells

Reduces apoptosis in
Aβ-induced SH-SY5Y

cells
n.d.

↑Ngb mRNA
↓APP mRNA and

intracellular Aβ levels
[173]

Eckol, dieckol and
8,8′-bieckol Ecklonia cava 1–50 µM Aβ25-35-stimulated PC12 cells

Antioxidation,
anti-inflammation,

anti-apoptotic
properties

NF-κB pathway

↓COX-2, iNOS;
↓TNF-α, IL-1β and PGE2

production;
↓p38, ERK and JNK

[96]

Phloroglucinol,
eckol,

triphloroethol A,
eckstolonol, and

dieckol

Ecklonia cava 50 µM
H2O2-induced oxidative stress
in murine hippocampal HT22

cells

↓Lipid peroxidation;
↓apoptosis n.d. ↓ROS

↓Ca2+ release [178]

Diphlorethohydro
xycarmalol Ishige okamurae 50 µM

H2O2-induced oxidative stress
in murine hippocampal HT22

cells

Antioxidation;
↓Lipid peroxidation;
↓Apoptosis

n.d.

↓Bax
↑Bcl-xL

↓Poly (ADP-ribose)
polymerase-1 (PARP)

cleavage
↓ROS

↓Ca2+ release

[179]
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Table 3. Cont.

Compound
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Algal Origin (If
Any)

Effective
Concentration

Experimental Model (In
Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological Markers References

Phloroglucinol,
dioxinodehydroeckol,

eckol,
phlorofucofuroeckol

A, dieckol, and
7-phloroeckol

Eisenia bicyclis 2.5, 5, 10 and 20 µg/mL Aβ peptide-induced toxicity in
PC12 cells Antioxidation n.d. ↓ROS

↓Ca2+ release [175]

Phlorofucofuroeckol Brown algae 10 µm Glutamate-induced cytotoxicity
in PC12 Antioxidation n.d. ↓Caspase-3, -8, and PARP [180]

Eckmaxol
(phlorotannin) Ecklonia maxima 20 µm

β-amyloid oligomer -induced
neuronal apoptosis in SH-SY5Y

cells
↓Apoptosis GSK-3β and ERK

pathways

↑pGSK-3β
↓pERK
↑HO-1

[181]

Fucoidan - 0.1–1.0 µm
Aβ1−42-induced neurotoxicity

in rat cholinergic basal
forebrain neurons

Restores Aβ-induced
reduction in whole-cell

currents
n.d.

↑pPKC
↓ROS

↓caspases 9 and 3
[182]

Fucoidan
(sulfated

polysaccharide)
- 0.1 and 1.0 mg/mL MPP(+)-induced injury in

MN9D cells
Antioxidation;

Protects cellular injury n.d. n.d. [183]

Fucoidan
(sulfated

polysaccharide)
- 60 and 30 µg/mL H2O2-induced apoptosis in

PC12 cells
↑Cell viability;
antioxidation PI3K/Akt signaling

↓ROS;
↑SOD and GPx activities;

↓MDA;
↑Bcl-2/Bax ratio;
↓caspase-3;
↑p-Akt

[184]

Fucoidan
(sulfated

polysaccharide)
- 100, 200, 400 µg/mL Aβ25–35 and d-Gal-induced

neurotoxicity in PC12 cells ↓Apoptosis Caspase-dependent
apoptosis pathway

↓Cytochrome c release;
↓Caspase activation;
↑Livin and XIAP;

↑SOD
↑GSH

[185]

Fucoidan
(sulfated

polysaccharide)
- 100 µM

MPP(+)-induced injury in
dopaminergic precursor cell

line(MN9D) cells

↓Apoptosis;
Antioxidation;

CatD-Bax
signaling axis

↓LC3-II and CatD;
↓Bax;
↑SOD
↑GSH

[186]
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Table 3. Cont.

Compound
(Class)

Algal Origin (If
Any)

Effective
Concentration

Experimental Model (In
Vivo/In Vitro)

Cellular
Effects/Significant

Findings

Signaling
Pathways
Involved

Pharmacological Markers References

Fucoidan
(sulfated

polysaccharide)

Fucus vesiculosus
Linn., brown alga 0.5 mg/mL or 1.5 mg/mL NMDA-induced Ca2+

responses in culture rat neurons

Suppresses the
intracellular Ca2+

responses by selectively
inhibiting NMDA

receptors in cortical
neurons and l-type Ca2+

channels in
hippocampal neurons.

n.d.
↓GluNR1 mRNA and
l-type Ca2+ channels,

PR1/PR2
[187]

Oligo-porphyran

Synthesized from
porphyran

(isolated from
Pyropia yezoensis)

through acidolysis
reaction

200 µg/mL 6-OHDA-induced cytotoxicity
in PC12 cells

↓Apoptosis;
Antioxidation;

Anti-inflammation

PI3K/ Akt/PKC
pathway

↓ROS; ↑MMP
↑SOD and GSH;
↑Bcl-2/Bax ratio;
↓caspase-3 and -9
↑p-Akt, p-PI3K, PKC
↑DAT and TH

↓TNF-α, IL-1β, and IL-6

[188]

Acidic
oligosaccharide

sugar chain

Echlonia kurome
Okam 50, 75, 100 µg/mL

Inflammatory responses and
cytotoxicity in SH-SY5Y cell

line induced by Aβ-stimulated
astrocytes conditioned medium

Oxidative stress n.d. ↓TNF-α and IL-6;
↓Ca2+ influx [189]

Racemosins A
(bisindole
alkaloid)

Caulerpa racemosa,
green alga 10µM Aβ25–35-induced SH-SY5Y cell

damage
↑Cell viability;
↓apoptosis n.d. [190]

Tramiprosate
(small

aminosulphonate
compound)

Red marine algae 50 mg/kg

OGD- or NMDA-induced
injury in NGF-differentiated

PC12 cells and primary cortical
neurons

Protects against
neuronal injury n.d. [191]

Dimethylsulfonio
propionate - 1 mg/mL

Tropodithietic acid -induced
cytotoxicity in OLN-93 and N2a

cells

Protects against
neurotoxicity;

Attenuates stress
responses and

mitochondrial damage

n.d. ↓ERK1/2 activation and
HSP32 induction [149]

κ- Carrageenan-
derived

pentasaccharide
marine red algae 25, 50, or 100 µM Aβ25-35-induced neurotoxicity

in SH-SY5Y cells
↑Cell viability;
↓Apoptosis

JNK signaling
pathway

↓Cleaved caspase 3
↓p-JNK [192]

In vivo experimental models
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Vivo/In Vitro)

Cellular
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Fucoidan
(sulfated

polysaccharide)
- 25 mg/kg

MPTP-induced animal model of
Parkinsonism in C57/BL mice

in vivo

↓Behavioral deficits;
↓TH-positive neuronal

loss
n.d.

↑Dopamine, DOPAC and
HVA;

↑Tyrosine hydroxylase;
↑GSH;

↑SOD, GPx, and catalase
activity and total

antioxidant capacity;

[183]

Fucoidan
(sulfated

polysaccharide)
- 7.5 and 15 mg/kg body

wt (intranigral injection)
LPS-induced neurotoxicity in

rat

Ameliorates behavioral
deficits, prevents the
loss of dopaminergic

neurons and inhibits the
deleterious activation of

microglia in the
substantia nigra pars

compacta

n.d. ↓CD11b [93]

Fucoidan
(sulfated

polysaccharide)
- 50, 100, 200 mg kg−1 Aβ1-40-induced learning and

memory impairment in rats

Ameliorates learning
and memory
impairment;

↓oxidative stress;
↓apoptosis

Antioxidation

↑ChAT, SOD and GPx
activity;
↑Ach;

↓AchE activity;
↓MDA;

↑Bcl-2/Bax ratio;
↓caspase-3 activity

[193]

Fucoidan
(sulfated

polysaccharide)
-

100 and 200 mg/kg on
day 2–6, 50 mg/kg on

day 4–6

d-Gal-induced cognitive
dysfunction in mice

↓Apoptosis;
ameliorate the learning

and memory
impairment

Caspase-dependent
apoptosis pathway

↑Ach level and ChAT
activity;

↓AChE activity;
↑SOD;
↑GSH

[185]

Fucoidan
(sulfated

polysaccharide)
- 100–500 ng/mL Transgenic C. elegans AD model

Alleviates the paralyzed
phenotype;
↓Aβ deposits

n.d.
↑Proteasomal activity

(proteolysis);
↓ROS

[194]

Fucoidan-rich
substances E. cava Polyphenol/fucoidan

extract and mixture (4:6)
Trimethyltin-induced cognitive

dysfunction model

Ameliorates learning
and memory
impairment

n.d.

↓ROS; ↑MMP;
↓BAX and cytochrome C

release;
↓Amyloid β production;
↓Tau hyperphosphorylation

[195]

Fucoidan - 50 mg/kg
Transient global cerebral
ischemia (tGCI) model of

gerbils

↓Oxidative stress and
glial activation n.d. ↑SOD1 and SOD2 [196]
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Laminarin
(polysaccharide) -

50 or 100 mg/kg (i.p)
for seven days before IR

(5-min transient
ischemia) surgery

Forebrain I/R injury in young
gerbils (6 months)

↓Reactive gliosis (M1
microglia) and

neuroinflammation
n.d. ↓IL-2 [197]

Laminarin
(polysaccharide) Brown algae

50 mg/kg/day (i.p)
for seven days before IR

(5-min transient
ischemia) surgery

Forebrain I/R injury in aged
gerbils (22–24 months)

↓Oxidative stress and
neuroinflammation n.d.

↓Superoxide anions and
4-hydroxy-2-nonenal (HNE)

↓IL-1β and TNF-α
↑SOD1 and SOD2
↑IL-4 and IL-13

[198]

Oligo-porphyran

Synthesized From
porphyran

(isolated from
Pyropia yezoensis)

through acidolysis
reaction

25 and 50 mg/kg 6-OHDA-induced Parkinsonian
mice model

↓Apoptosis;
Ameliorates behavioral

deficits

PI3K/Akt/Bcl-2
pathway

↑DAT and TH;
↓caspase-3 and -9

↑DA, NE, 5-HT, DOPAC
↑p-ERK1/2, DRD2

↑p-Akt, p-PI3K, GSK-3β
↑Bcl-2/Bax ratio;
↓PARP and cytC
↑p-TrkA and NGF

[199]

Porphyran
(polysaccharide)

Degraded
polysaccharide

from Pyropia
haitanensis

75, 150, 300 mg/kg Aβ1-40-induced mice AD
model

Improved learning and
memory deficits n.d.

↑ChAT activity;
↓AChE activity;

↑Ach
[200]

Fucoxanthin Brown seaweed 50, 100, 200 mg/kg Scopolamine-induced cognitive
impairments in mice

Memory enhancement;
anticholinesterase n.d.

↓AChE and choline
acetyltransferase

↑BDNF
[117]

Fucoxanthin - 0.1−30 µM Aβ oligomer-induced cognitive
impairments in mice

Memory enhancement,
attenuation of oxidative

stress
n.d. ↑BDNF [135]

Fucoxanthin - 5µM, 10µM, and 20µM

Middle cerebral artery
occlusion (MCAO) rat model

(cerebral ischemic/reperfusion
(I/R) injury)

Improves the neurologic
deficit score and reduces

the infarct volume
n.d.

↑SOD activity
↓ROS, MDA

↓cleaved caspase-3
↑Bcl-2/Bax ratio

[168]
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Fucoxanthin 100 mg/kg and
0.05 mmol/L

Traumatic brain injury (TBI)
model

Anti-apoptosis,
attenuation of oxidative

stress, induction of
autophagy

Nrf2-ARE and
Nrf2-autophagy

pathways

↑GPx
↓MDA

↓Cleaved caspase-3, PARP,
cytosolic cytochrome c

↑Mitochondrial cytochrome
c

↑Beclin-1 (Atg6), LC3 (Atg8)
and↓p62

↑Nrf2 nuclear translocation
↑HO-1 and NQO-1

[169]

Fucosterol Ecklonia stolonifera 1–10 µM sAβ1-42-induced memory
dysfunction in aging rats

Ameliorates
Aβ1-42-induced

memory impairment
n.d.

↑TrkB-mediated ERK1/2
signaling

↓GRP78 expression
↑BDNF expression

[172]

Dieckol and
phlorofucofuroeckol Ecklonia cava

PFF (0.2 and 2 mg/kg)
and dieckol (1 and

10 mg/kg)

Ethanol-intoxicated
memory-impaired mice

↓AChE activity;
reduces the inhibition of

latency
n.d. ↑ACh [120]

C-Phycocyanin 200 mg/kg
Global cerebral

ischemia/reperfusion (I/R)
injury in gerbils

Reduces the infarct
volume and improves
the neurologic deficit

score;
protects neurons,

improves the functional
outcome (locomotor

behavior) and promotes
survival

n.d. ↓MDA [201]

Tramiprosate
(small

aminosulphonate
compound)

Red marine algae 50 mg/kg Intraluminal filament model of
MCAO Reduces infarct volume PSD95/nNOS

signaling

Disruption of the interaction
between PSD95 and nNOS;
↓nNOS translocation

[191]

Sulfated agaran Gracilaria cornea,
red alga

60 µg, single
intrastriatal injection

Rat 6-hydroxydopamine
Parkinson’s disease model

↓Oxidative/
nitrosative stress;

restores behavioral
deficits and locomotor
performance; improves

weight

n.d.

↑DA, DOPAC and HVA;
↓5-HT;

↓NO2/NO3 and TBARS;
↑GSH;

↓p65, IL-1β and iNOS;
↑BDNF

[202]

n.d.: not defined; -: information not available.
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Phloroglucinol also rescued the Aβ1-42-induced reduction of dendritic spine density and synaptic
protein (synaptophysin and postsynaptic density) levels in primary cultures of rat hippocampal
neuronal [177]. Kang and co-investigators isolated five phlorotannins, such as phloroglucinol, eckol,
triphloroethol A, eckstolonol, and dieckol from E. cava that attenuated H2O2-induced oxidative
damage in HT22 hippocampus neurons by lowering ROS production, lipid peroxidation and
Ca2+ release [178]. Phlorofucofuroeckol attenuated glutamate-induced cytotoxicity and improved
mitochondrial dysfunction in PC12 cells [180]. Preconditioned HT22 hippocampal neurons
with diphlorethohydroxycarmalol (DPHC), a phlorotannin of Ishige okamurae, was able to escape
H2O2-induced oxidative damage due to antiapoptotic, pro-survival, and antioxidant potentials of
DPHC [179]. Eckmaxol, a phlorotannin of Ecklonia maxima, reduced Aβ-oligomer-induced neuronal
apoptosis in SH-SY5Y cells by inhibiting GSK-3β and ERK pathways [181,203].

Several studies have confirmed the neuroprotective capacity of algal polysaccharides, including
fucoidan [204] and carrageenan. Fucoidan, a sulfated polysaccharide, attenuated Aβ1−42-induced
neurotoxicity in rat cholinergic basal forebrain neurons [182]. It restored Aβ-induced decline in
whole-cell currents, increased phosphorylation of protein kinase C (PKC), and showed antioxidant
and anti-apoptotic effects [182]. Fucoidan protected H2O2-induced cell death in PC-12 cells by
activating the PI3K/Akt signaling pathway. The antioxidant, antiapoptotic, and prosurvival effects
of fucoidan could explain its neuroprotection capacity [184]. Fucoidan protected against Aβ25-35
and d-Gal-induced neurotoxicity in PC12 cells by reducing OS, suppressing apoptosis pathway,
and promoting antioxidant defense [185]. Wu and colleagues reported that fucoidan suppressed
intracellular Ca2+ responses by selective inhibition of N-methyl-D-aspartate (NMDA) receptors in
cortical neurons and L-type Ca2+ channels in hippocampal neurons [187]. Three fucoidan extracts
from Sargassum crassifolium attenuated H2O2-induced cytotoxicity in rat pheochromocytoma PC-12
cells [205]. In the MPP+ PD model, fucoidan attenuated cytotoxicity in a dopaminergic neuronal
precursor cell line (MN9D) [183,186] by protecting lysosomes, reducing the expression of light
chain 3-II (LC3-II), inhibiting the expression of cathepsin D (CatD)-Bax and the OS response [186].
Fucoidan of Sargassum hemiphyllum attenuated 6-hydroxydopamine-induced apoptosis in SH-SY5Y
cells [206]. The acidic oligosaccharide sugar chain attenuated Aβ-stimulated astrocytes conditioned
medium-induced cytotoxicity in SH-SY5Y cells by mitigating oxidative damage, reducing inflammatory
response, and preventing Ca2+ influx [189]. In addition, κ-carrageenan-derived pentasaccharide (KCP)
protected against Aβ25-35-induced neurotoxicity in SH-SY5Y cells by regulating the c-Jun N-terminal
kinase (JNK) signaling pathway [192]. Moreover, κ-carrageenan from Hypnea musciformis attenuated
6-hydroxydopamine-induced neurotoxicity on SH-SY5Y cells by modulation of the mitochondria
transmembrane potential and reducing caspase 3 activity [207]. Oligo-porphyran (OP), an acid
hydrolytic product of porphyran (a polysaccharide of Pyropia yezoensis) attenuated 6-OHDA-induced
cytotoxicity in PC12 cells by activating PI3K/ Akt/PKC pathway that involved anti-apoptotic, antioxidant
and anti-inflammatory signals [188].

Sargaquinoic acid identified from Sargassum macrocarpum promoted cell survival and neurite
regeneration and attenuated H2O2-induced OS in PC12D cells [208]. Racemosin A, a bisindole alkaloid
from Caulerpa racemose, attenuated Aβ25-35-induced damage in SH-SY5Y cells [190]. Tramiprosate,
a small aminosulphonate compound of red marine algae, attenuated OGD- or NMDA-induced injury in
PC12 cells and primary cortical neurons [191] by disrupting the interaction between PSD95 and nNOS
and inhibition of nNOS translocation [191]. Potentials of tramiprosate against AD and PD have also
been reviewed elsewhere [28,209,210]. Dimethylsulfoniopropionate protected against tropodithietic
acid-induced cytotoxicity in OLN-93 and N2a cells by lowering the activation of ERK1/2 and induction
of HSP32 [149]. Phycoerythrin-derived peptide isolated from Pyropia yezoensis promoted survivability
of frontal cortical neuron by activating TrkB receptor-ERK1/2 signaling and attenuating ER stress in
rat prefrontal cortex [211] and attenuated glutamate-induced ER stress and senescence of rat primary
hippocampal neurons [212]. Stearic acid from Caulerpa racemosa protected against OGD-induced
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SH-SY5Y cell damage while (8E)-heptadec-8-en-7-one showed moderate neuroprotective activity
against Aβ25-35-induced SHSY5Y cell damage [213].

In addition, extracts from several marine algae have shown neuroprotective activity in
various in vitro models. The neuroprotective algae include Ulva conglobata that protected against
glutamate-induced neurotoxicity in murine hippocampal HT22 cell line [108], Botryococcus braunii,
and Nannochloropsis oculata against H2O2-induced cytotoxicity in dopaminergic SH-SY5Y cells [126],
Padina pavonica, Sargassum muticum, Saccorhiza polyschides, Codium tomentosum, and Ulva compressa [214],
and Bifurcaria bifurcata [215] against 6-hydroxidopamine-induced cytotoxicity in neuroblastoma
cells, Cystoseira tamariscifolia and Cystoseira nodicaulis against H2O2-induced cytotoxicity in SH-SY5Y
cells [127], Gracilaria corticata against aluminium-induced neurotoxicity in the hippocampus,
and cerebral cortexes of rat brains [216], Australian macroalgae against Aβ 1-42-induced neurotoxicity
in PC-12 cells [217], Ishige foliacea against H2O2- or Aβ-induced cell death in human neuroblastoma
SH-SY5Y cells [128], Undaria pinnatifida against endoplasmic reticulum stress in hypothalamic
neurons [218] and Gracilariopsis corda [219] and Gelidium amansii [153] against H/R-induced oxidative
damage in primary hippocampal neurons, indicating that these algae could offer some potential
compounds with encouraging neuroprotective activity, and, therefore, demand further investigation.

4. Neuropharmacological Potentials of Marine Algae and Their Metabolites: Evidence from In
Vivo Studies

The neuroprotective effects of some potential algal compounds that were reported in the in vitro
conditions have successfully been translated into animal models (Table 3), suggesting that these
compounds could be potential candidates for further evaluation in the clinical trials.

Fucoidan is one of the algal compounds that has shown strong neuroprotection in several
animal models. In the PD model of C57 / BL mice, fucoidan ameliorated MPTP-induced behavioral
deficits, probably by elevating dopamine and its metabolite levels and increasing tyrosine hydroxylase
expression [183]. In addition, fucoidan inhibited MPTP-induced lipid peroxidation and restored
antioxidant capacity [183]. Similarly, fucoidan also improved behavioral capacity, by attenuating the
loss of dopaminergic neurons and inhibited the deleterious activation of microglia in the substantia
nigra pars compacta in LPS-induced neurotoxicity [93]. In an Aβ-induced rodent AD model, fucoidan
ameliorated impaired memory, by reversing the decreased activity of ChAT, SOD, and GPx, increased
activity of AChE, and rectifying the imbalance between apoptosis and pro-survival signals [193].
Fucoidan improved d-Gal-induced cognitive impairment in mice by mitigating OS and attenuating
the caspase-dependent apoptosis pathway [185]. Wang and colleagues demonstrated that the
supplementation of fucoidan alleviated Aβ-induced paralyzed phenotype in a transgenic C. elegans AD
model [194]. Fucoidan reduced Aβ accumulation, probably by promoting proteasomal activity [194].
In another study, fucoidan-rich substances from Ecklonia cava improved trimethyltin-induced cognitive
dysfunction by inhibiting Aβ production and Tau hyperphosphorylation [195]. Fucoidan also
attenuated transient global cerebral ischemic injury in the gerbil hippocampal CA1 area through
mitigating glial activation and oxidative stress [196].

Laminarin, another polysaccharide of brown algae, has shown to protect I/R injury in
gerbil models. Intraperitoneal injection of laminarin (50 mg/kg) following 5 min I/R attenuated
reactive gliosis (anti-inflammatory) in the hippocampal CA1 of young gerbils [197]. A similar
study following the same experimental protocol, but with aged gerbils, showed that laminarin
(50 mg/kg) attenuated ischemia-induced death of pyramidal neurons in the hippocampal CA1 of
aged gerbils [198]. This neuroprotective effect of laminarin is attributed to its antioxidant and
anti-inflammatory properties [198]. Oligo-porphyran, a synthetic product of porphyran (Pyropia
yezoensis) ameliorated behavioral deficits in 6-OHDA-induced Parkinsonian mice model by protecting
dopaminergic loss and activating the PI3K/Akt/Bcl-2 pathway that involved cellular signaling of
anti-apoptosis and antioxidation [199]. Zhang and colleagues demonstrated that porphyran from
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Pyropia haitanensis improved the Aβ1-40-induced learning and memory deficits probably by elevating
cerebral acetylcholine level [200].

Fucoxanthin is another significant algal metabolite that was found to be effective in a wide
range of brain dysfunction (such as AD, ischemic stroke, and traumatic brain injury). Fucoxanthin
ameliorated scopolamine-induced [135] and Aβ oligomer-induced [117] cognitive impairments in
mice, possibly by inhibiting AChE activity and OS, modulating ChAT activity, and increasing BDNF
expression. Fucoxanthin alleviated cerebral ischemic/reperfusion (I/R) injury, improved the neurologic
deficit score, and downregulated the expression of apoptosis-linked proteins in brain samples [168].
Fucoxanthin also attenuated traumatic brain injury that involved the Nrf2-ARE and Nrf2-autophagy
pathways-dependent neuroprotective mechanism [169].

Fucosterol co-infusion ameliorated sAβ1-42-induced cognitive deficits in aging rats by modulating
BDNF signaling [172]. Dieckol and phlorofucofuroeckol raised the brain level of acetylcholine by
inhibiting AChE and reduced the inhibition of latency in ethanol-intoxicated memory-impaired
mice [120]. Yang and co-investigators demonstrated that stereotaxic injection of phloroglucinol
promoted synaptic plasticity and improved memory impairment in 5XFAD (Tg6799) mice [177]. In a
later study, the same group reported phloroglucinol (orally administered)-mediated amelioration of
cognitive dysfunction that involved a reduction in the amyloid β peptide burden and pro-inflammatory
mediators and restoration of reduction in the dendritic spine density in the hippocampus of 5XFAD
mice [220]. Phlorofucofuroeckol improved ischemic brain damage in the rat MCAO model [180].
C-Phycocyanin improved the functional outcome and survival of gerbils on global cerebral I/R
injury [201]. The in vitro neuroprotective effect of tramiprosate has been translated into in MCAO
rat model in which it improved functional recovery following ischemic stroke [191]. Sulfated agaran,
a sulfated polysaccharide from Gracilaria cornea, attenuated oxidative/nitrosative stress and ameliorates
behavioral deficits in rat 6-hydroxydopamine Parkinson’s disease model [202]. It raised levels of
dopamine, 3,4-Dihydroxyphenylacetic acid (DOPAC), GSH, and BDNF, decreased serotonin (5-HT)
and thiobarbituric acid reactive substances (TBARS) levels, and decreased the expression of p65, IL-1β,
and iNOS [202]. Glycoproteins isolated from Capsosiphon fulvescens ameliorated aging-induced spatial
memory deficits by attenuating GSK-3β-mediated ER stress in rat dorsal hippocampus [221] and
promoted probiotics-induced cognitive improvement in aged rat model [222]. Gracilariopsis chorda and
its active compound arachidonic acid, given independently through oral route for 10 days, improved
scopolamine-induced memory impairment in mice [150].

In addition, extracts from several marine algae have shown to either ameliorate memory
impairment or enhance cognition in various in vivo models. For instance, Gelidiella acerosa attenuated
Aβ25-35-induced cytotoxicity and memory deficits in mice [223], Sargassum swartzii improved memory
functions in rats [224], Ishige foliacea [128], Undaria pinnatifida [225] ameliorated scopolamine-induced
memory deficits in mice, Haematococcus pluvialis recovered Alzheimer’s disease in rats [226],
and fermented Spirulina maxima prevented memory impairment in mice [227]. In addition, some marine
algae have shown to attenuate ischemic injury in stroke models. For example, Ecklonia cava ameliorated
transient focal ischemia in the rat MCAO model [228].

5. Recent Progress on the Development of Marine Algae-Based Neurotherapeutics

An algal oligosaccharide, sodium oligomannate, recently received conditional approval in China for
improving cognitive function in patients with mild to moderate AD [32]. In preclinical studies, sodium
oligomannate conferred neuroprotection against Aβ-induced neurotoxicity in human neuroblastoma
cells [229] and ameliorated memory dysfunction in the 5XFAD transgenic mouse model [230]. Sodium
oligomannate can cross the blood–brain barrier through glucose transporter (GLUT1) and inhibits Aβ
fibril formation and destabilizes the preformed fibrils into nontoxic monomers [230]. Although the
complete mechanism of pharmacological actions remains unclear, sodium oligomannate harnessed
neuroinflammation and thus ameliorated memory impairment by suppressing gut dysbiosis and
the associated phenylalanine/isoleucine accumulation [230]. In a phase IIa pilot study in patients
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with AD, there was an elevation of Aβ1–42 levels in the cerebrospinal fluid (CSF) following sodium
oligomannate treatment, suggesting a significant role in Aβ clearance into CSF [231]. There was a
differential reduction in the cerebral glucose metabolic rate (CMRglu) in various brain regions following
sodium oligomannate in clinical trials [231]. While in a phase IIa trial, the CMRglu in left orbitofrontal
gyrus, left precuneus, right posterior cingulate gyrus, and right hippocampus were found to be low,
in a phase III trial, the lower rate was reported in superior parietal gyrus, inferior parietal gyrus,
angular gyrus, and anterior wedge [232]. However, this newly approved drug lacks some advanced
information like global data of effectivity and thus requires a large-scale global trial before it receives
approval from the Food and Drug Administration (FDA).

6. Algal Metabolites-Based Drug Discovery and Design

While a significant quantity of active compounds has been isolated from marine algae and added
to the compound databases [233–238] every year, it is disappointing that very few of them have access
to clinical trial and the success rate is also not very satisfactory. In this context, the current strategy
of drug development requires a reformation with the inclusion of some modern approaches, such as
virtual screening and network pharmacology. The system biology approach along with an in silico
study constitutes a potential computation tool that can better explain how a biologically effective
compound interacts with the signal molecules of various cellular pathways.

Recent multitarget drugs have been designed by analyzing the 3D structure of already characterized
compounds and crystal structure of target protein molecules. This information is focused on the virtual
design of new chemical entities that include more than one biological function in a single molecule [239].
This approach is also known as target fishing, which identifies not only interacting proteins but also
potential off-targets, and thus helps to understand polypharmacology, pharmacokinetics, and toxicity
in the early stages of drug discovery [240]. For example, using in silico target fishing approach, Hannan
and colleagues elucidated pharmacological mechanism of fucosterol-mediated neuroprotection and
demonstrated that fucosterol showed interaction with potential targets, including LXR, TrkB, GR,
Toll-like receptor (TLR) 2/4, and BACE1 [142]. Computational methods involving target screening are
classified based on their principle including pharmacophore screening, shape screening, and reverse
docking. When the target is available in the crystal structure, target fishing can be accomplished
by a reverse docking approach, while, in the target’s absence, pharmacophore or shape screening
can be used to find the relevant target by comparing pharmacophoric feature or shape of the
compound, taking information from protein–ligand binding databases [241]. In this effort, several
natural product databases containing compound target interactomes are available nowadays including,
SuperNatural [242], TCMID [243], TCMSP [244], and many others [245,246]; however, not many
are dedicated to marine algae [233–235]. Although algal metabolites show structural diversity and
redundancy, the mentioned databases could still be available for network pharmacology to get insight
into the disease-modifying mechanisms. Following this in silico approach, Vitale et al. identified
caulerpin as a PPAR agonist which was confirmed by both in vitro and in vivo assays [247]. In a
reverse way, virtual screening through molecular docking analysis could be an alternative to find out
potent hits from a large chemical library for a single target.

Compared to experimental high throughput screening, virtual screening, either by ligand or
structure-based approach, can deliver the shorten cycle of hit discovery, with higher success hit
rates. Furthermore, a structure-based approach consisting of molecular docking, receptor-based
pharmacophore modeling together with molecular dynamics simulations and MM/PB(GB)SA
approaches not only predict protein–ligand interaction but also provide a detailed binding mechanism,
protein dynamics, and also highlight structure–activity relationship (SAR) for future drug design [248].
Several recent studies have been adopting molecular docking techniques to analyze detailed
protein–ligand interaction for marine bioactive compounds. For example, Jung et al. employed
molecular docking studies to predict comparative binding interaction of monoamine oxidase (MAO)
with fucoxanthin, a carotenoid from Eisenia bicyclis, where they revealed fucoxanthin as a reversible
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competitive hMAO inhibitor, binding strongly to the enzyme, following hydrogen bonding and
hydrophobic interactions [249]. A similar approach has been applied to elucidate the interaction of
fucosterol and fucoxanthin with BACE1 while analyzing BACE1 enzyme inhibition by fucosterol and
fucoxanthin. Here, binding interaction analysis by molecular docking identified that the presence
of hydroxyl group in fucosterol and fucoxanthin is important for BACE1 inhibition, by which both
compounds interacted with Lys224 residue, Gly11, and Ala127 of the active site, respectively [134].
Interestingly, fucoxanthin was also identified as a dopamine agonist, where a molecular docking study
suggested that it formed H-bonding with Ser196 and Asp115 of the D4 receptor, and Ser196 and Thr115
residues of D3 receptors [250]. The same group also identified some bromophenols derivatives as D3R
and hD4R antagonists and studied the interaction and binding pattern by molecular docking [251].

In addition, several studies employed virtual screening to identify potent lead molecules from
the database of seaweed metabolites. For instance, Florest et al. identified sigma-2 (σ2) receptor
binding ligand by using both structure and ligand-based screening [252]. However, less effort has
been deployed to develop marine natural product libraries, although significant studies so far have
reported many compounds isolated from marine sources by large populations in the world. In this
exertion, Davis et al. developed a chemical library of the natural compounds from marine algae,
SWMD, comprised of 1110 metabolites, isolated from brown algae (266), green algae (33), and red algae
(811) along with their physical and chemical properties [233]. Nevertheless, the information including
experimentally-determined quantitative activity data and source information for more marine algal
metabolites is still needed to facilitate computational based approaches in the exploration of marine
compounds for future drug discovery.

7. Safety Issues on Marine Algae-Derived Compounds

As a popular food material in East Asian countries, including Japan, Korea and China, seaweed is
consumed without reported toxicity. However, the concern is that seaweed may sometimes accumulate
a considerable amount of heavy metals, such as cadmium, arsenic, mercury, and lead, and even
some essential microelements such as iodine and iron [253]. It is, therefore, essential to conduct
appropriate safety evaluations for seaweed. More importantly, while there are safety concerns
during therapeutic development, the toxicity profile of seaweed-derived compounds needs to be
thoroughly investigated. Safety information on algal metabolites is limited. However, toxicity profiles
of algal polysaccharides have been reported by several studies. Observations from both in vitro
and in vivo studies satisfied the non-toxic behavior of fucoidan irrespective of algal sources [254].
Fucoidan isolated from Undaria pinnatifida and Laminaria japonica was found to be safe in animal
models given at very high oral doses [255–258]. Clinical studies also demonstrated the non-toxic
health benefits of fucoidan in humans [259,260]. Safety evaluation studies on carrageenan suggest that
sub-chronic or chronic feeding of this food-grade polysaccharide did not induce any toxic effects [261].
Moreover, dietary supplementation of carrageenan was not associated with carcinogenicity, genotoxicity,
or reproductive defects [261]. Another study reported that no toxicological response was induced
when iota-carrageenan was administered through the intranasal route [262]. Several studies also
investigated toxicity of fucoxanthin and suggested that this carotenoid was safe and caused no visible
toxicity in experimental subjects [263–265]. The toxicity profiles of some other marine metabolites
have recently been reviewed [25]. As sufficient toxicological profiles of other potentially bioactive
metabolites are lacking, they should be investigated with appropriate experimental models.
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8. Conclusions and Future Perspectives

The current review highlights several neuropharmacological attributes, such as antioxidant,
anti-inflammatory, anti-cholinesterase, anti-amyloidogenic, antiaging, protein clearance, cholesterol
homeostasis, and neuritogenic capacity of algae-derived metabolites that underlie their neuroprotective
functions against a wide range of neurotoxic stimuli (Figure 5). The neuroprotective effects of marine
algae and their metabolites do not necessarily depend on a single attribute, rather on the synergism
of multiple of these pharmacological properties. As neurodegenerative disorders involve complex
pathogenic mechanisms, they could be better managed with a single compound targeting two or
more of the pathogenic mechanisms or multiple compounds with the complementary mechanism
of action. In this context, algal compounds, such as fucoxanthin, fucosterol, and fucoidan that are
known to target multiple pathogenic mechanisms could be potential candidates for future drug
development. In addition, several metabolites, including laminarin, porphyran, saringasterol,
α-bisabolol, and phlorotannins that exhibited encouraging neuroprotective roles, also deserve
further attention.

Although neuroactive compounds were isolated from a range of algae, seaweed species under
Phaeophyceae yield the highest number of compounds. However, species from other groups,
for example, Gelidium amansii under Rhodophyceae that exhibited significant neuromodulatory
effects, also could offer some promising metabolites. Moreover, a large number of species remain
unexplored. While degenerating brains experience disruption of synaptic connectivity, compounds
with neuritogenic capacity may potentially enhance the regeneration of damaged processes. Therefore,
compounds, both neuroprotective and neurotrophic, are equally important. However, in contrast to
neuroprotective compounds that potentially support neuronal survival, a few compounds showing
neurite outgrowth potential have been discovered in marine algae. Compounds, including those that
have already shown neuroprotective ability as well as those that have not yet been explored, therefore,
need to be screened for their ability to promote neurite extension.

Despite a sizable collection of algae-based natural products with distinct neuroprotective functions,
only sodium oligomannate has emerged as a successful drug for AD. This review, therefore, calls for
intensive research on other potential compounds to translate the preclinical findings into clinical
models. In addition, the factors that are responsible for the failure of a clinical trial need to be
carefully reviewed. For example, the bioavailability of a candidate drug in the brain, including its
ability to cross BBB, remains one of the barriers to therapeutic success. If the ADME (absorption,
distribution, metabolism, and excretion) properties of a preclinically effective compound sufficiently
guarantee its drug-likeliness, it is highly likely that the compound may succeed in clinical trials.
This is why the ongoing strategy requires a rational reformation incorporating modern approaches,
such as virtual screening and system biology, to strengthen the algae-based drug development process.
The computational study will provide some crucial information on the ADME properties of potential
leads and its interaction and binding affinity to molecular targets while system biology knowledge will
identify the potential interaction of target molecules and cellular signaling pathways at the systemic
level. With the constant discovery of new compounds, all these strategies will accelerate the designing
and development of algae-based future drugs.
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Figure 5. A scheme highlighting the pathophysiology of neurodegenerative disorders and post-ischemic
consequences along with indicating the underlying mechanism of neuroprotective action of algal
compounds. The numeric symbols indicate the points of pharmacological action that include
(1) inhibition of cytokine secretion from activated microglia by fucoxanthin, fucosterol, fucoidan, dieckol,
phlorofucofuroeckol and bieckol, κ-carrageenan, floridoside and seleno-polymannarate, (2) attenuation
of inflammatory response via inhibition of NF-κB pathway by eckol, dieckol and 8,8-bieckol,
(3) priming of antioxidant defense system via activation of Nrf2/ARE pathway (blocking interaction
between Nrf2 and Keap1) by fucoxanthin, fucoidan and zonarol, (4) Reduction of apoptosis via
inhibiting pro-apoptotic JNK/Erk pathway by dimethylsulfoniopropionate and κ-carrageenan-derived
pentasaccharide, (5) Inhibition of glutamate-induced Ca2+ influx via blocking extrasynaptic GluN2B
by fucoidan and tramiprosate, (6) Activation of BDNF-dependent pro-survival pathway via inducing
PI3K/Akt or TrkB/ERK signaling by fucoxanthin and fucosterol, (7) Attenuation of I/R-injury via
preventing excitotoxic depolarization by C-phycocyanin, (8) Inhibition of nNOS sequestration by
tramiprosate, (9) proteasomal degradation by fucoidan, (10) Induction of autophagy/mitophagy by
fucoxanthin, (11) anticholinesterase activity by fucoidan, fucoxanthin, dieckol and phlorofucofuroeckol,
(12) anti-amyloidogenesis via blocking β-secretase activity by fucoxanthin, fucosterol and glycoprotein,
and (13) Aβ-clearance via enhancing the transcription of ApoE and ABC transporters genes by
fucosterol, saringasterol, and alginate-derived oligosaccharide. NF-κB/p50-pp65, nuclear factor
kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor 2;
ARE, antioxidant response element; IkB, inhibitor of NF-κB; Keap1, Kelch-like ECH-associated
protein 1; JNK, c-Jun N-terminal kinases; GluN2B, N-methyl D-aspartate receptor subtype 2B; PI3K,
phosphoinositide 3-kinases; Akt, protein kinase B; MEK1/2, mitogen-activated protein kinase kinase;
ERK, extracellular signal-regulated kinases; TrkB, tropomyosin receptor kinase B; CREB, cAMP-response
element binding protein; CRE, cAMP response elements; BDNF, Brain-derived neurotrophic factor;
AChE, acetylcholinesterase; Ach, acetylcholine; ABCA1, ATP-binding cassette transporter A1; nNOS,
neuronal nitric oxide synthase; ROS, reactive oxygen species; ψ, mitochondrial membrane potential.
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