
ORIGINAL RESEARCH
published: 15 October 2019

doi: 10.3389/fonc.2019.01011

Frontiers in Oncology | www.frontiersin.org 1 October 2019 | Volume 9 | Article 1011

Edited by:

Umberto Malapelle,

University of Naples Federico II, Italy

Reviewed by:

Francesco Pepe,

University of Naples Federico II, Italy

Francesco Passiglia,

Palermo University Hospital, Italy

*Correspondence:

Firoz Ahmed

fahmed1@uj.edu.sa

Specialty section:

This article was submitted to

Thoracic Oncology,

a section of the journal

Frontiers in Oncology

Received: 26 June 2019

Accepted: 20 September 2019

Published: 15 October 2019

Citation:

Ahmed F (2019) Integrated Network

Analysis Reveals FOXM1 and MYBL2

as Key Regulators of Cell Proliferation

in Non-small Cell Lung Cancer.

Front. Oncol. 9:1011.

doi: 10.3389/fonc.2019.01011

Integrated Network Analysis Reveals
FOXM1 and MYBL2 as Key
Regulators of Cell Proliferation in
Non-small Cell Lung Cancer

Firoz Ahmed 1,2*

1Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia, 2University of Jeddah Center for Scientific and

Medical Research, University of Jeddah, Jeddah, Saudi Arabia

Background: Loss of control on cell division is an important factor for the development

of non-small cell lung cancer (NSCLC), however, its molecular mechanism and

gene regulatory network are not clearly understood. This study utilized the systems

bioinformatics approach to reveal the “driver-network” involve in tumorigenic processes

in NSCLC.

Methods: A meta-analysis of gene expression data of NSCLC was integrated with

protein-protein interaction (PPI) data to construct an NSCLC network. MCODE and

iRegulone were used to identify the local clusters and its upstream transcription

regulators involve in NSCLC. Pair-wise gene expression correlation was performed using

GEPIA. The survival analysis was performed by the Kaplan-Meier plot.

Results: This study identified a local “driver-network” with highest MCODE score having

26 up-regulated genes involved in the process of cell proliferation in NSCLC. Interestingly,

the “driver-network” is under the regulation of TFs FOXM1 andMYBL2 aswell asmiRNAs.

Furthermore, the overexpression of member genes in “driver-network” and the TFs are

associated with poor overall survival (OS) in NSCLC patients.

Conclusion: This study identified a local “driver-network” and its upstream regulators

responsible for the cell proliferation in NSCLC, which could be promising biomarkers and

therapeutic targets for NSCLC treatment.

Keywords: non-small cell lung cancer, gene expression, meta-analysis, systems bioinformatics, gene network

INTRODUCTION

Lung cancer is one of the most commonly diagnosed cancer with high mortality around the
world (1). The global prevalence of lung cancer and mortality rate is rising at an alarming
pace with an estimated number of newly diagnosed lung cancer was 2.1 million while the
number of deaths was 1.8 million in 2018 (https://gco.iarc.fr). Based upon histology, lung
cancer is divided into two classes: (i) Non-small cell lung cancer (NSCLC) which represents
approximately 85–90% of all lung cancer, and (ii) Small-cell lung cancer (SCLC) which
represents approximately 10–15% of the lung cancer (1). NSCLC has three major sub-classes
including (a) lung squamous cell carcinoma (LUSC), (b) lung adenocarcinoma (LUAD), and
(c) large cell carcinoma. However, due to lack of clinical symptom and effective diagnostic
screening, the NSCLC is generally diagnosed at an advanced stage. The 5-year overall
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survival rate of metastatic NSCLC is 6% and has not been
significantly improved in spite of having advancement in surgery,
chemotherapy, and radiation (https://www.cancer.org).

Molecular profiling of NSCLC identified mutations in the
tumor suppressor genes (TP53, RB1), oncogenes (EGFR, KRAS,
AKT,MAPK) and translocations in oncogenes (ALK, RET, ROS1,
NTRK1, NRG1), which alter the important signal-transduction
pathways (2, 3). EGFR mutants have been reported more
frequently in NSCLC in nonsmokers Asians patients and showed
highly sensitive to therapy with EGFR tyrosine kinase inhibitors
such as gefitinib and erlotinib (4, 5). Similarly, ALK rearranged
gene fusion was also highly reported in NSCLC and has been
proven more effective treatment with ALK-targeted inhibitors
(crizotinib and alectinib) (1, 6). The genomic mutations not only
alter the protein structure but also affect the expression level of
genes involved in the cell division resulting in uncontrolled cell
proliferation, cell survival, and NSCLC. Previous studies mainly
focused on understanding the alteration in gene expression in
NSCLC tumors (7), and identified overexpressed genes including
CDC20 (8), CCNB1 (9), ASPM (10), and KIF4A (11), which
contributes to the proliferation of tumor cells and also associated
with poor prognosis. Furthermore, the role of transcription
factors (TFs) including MYBL2 (12), FOXM1 (13–15), and
E2F4 (16) in cell proliferation and cell survival in NSCLC
has been reported. The miRNAs, a class of small non-coding
RNAs which regulate gene expression at the post-transcriptional
level through binding to 3′UTR of mRNA (17, 18), are also
emerging as promising biomarkers for detecting NSCLC (19).
However, the molecular mechanism and regulatory network of
the mRNAs, TFs, miRNAs, and proteins underlying dysregulated
cell division and cell proliferation in NSCLC are still largely
remain unclear. Addressing these challenges are most pivotal
for developing anticancer drugs and diagnostic and prognostic
biomarkers for better management and personalized treatment
of NSCLC.

The emergence of high-throughput genomics,
transcriptomics, proteomics, and interactome data and
their integrative analysis opens a new avenue for a deep
understanding of etiology of cancer (20, 21). This work is
focused on applying a systems bioinformatics approach to
uncover interaction and regulatory mechanism of mRNAs,
TFs, miRNAs, and proteins underlying cell proliferation and
progression of NSCLC. Gene expression profiles have been
integrated to identify the high confidence up- and down-
regulated genes in the NSCLC compared to adjacent non-tumor
tissues. Moreover, using the transcriptome-interactome data,
NSCLC network was constructed and analyzed to understand
the molecular mechanism underlying the development and
proliferation of NSCLC. Our analysis revealed one important
“driver-network” consists of 26 genes and its upstream regulators
TFs FOXM1 and MYBL2 whose overexpression are associated
with dysregulation of cell cycle and enhance cell proliferation
in NSCLC. Furthermore, NSCLC associated miRNAs regulating
the genes of “driver-network” were also identified. Combination
of genes in the “driver-network” and upstream regulators
could be potential biomarkers for diagnosis and prognosis; and
therapeutic targets for better treatment of NSCLC.

MATERIALS AND METHODS

Gene Expression Data Collection
In February 2019, microarray gene expression data were searched
inGene ExpressionOmnibus database (GEO: www.ncbi.nlm.nih.
gov/geo/) using following criteria: (a) Lung cancer; (b) Human;
and (c) Expression profiling by array; which gave 304 unique
GEO series (GSEs). Then, a careful manually selected the GSEs
data using following criteria: (d) Each GSE must have the profile
of NSCLC along with adjacent non-tumor tissues as a control; (e)
Each group (NSCLC/control) must have more than 20 samples;
(f) All GSEs are from same microarray platform. Based upon the
above criteria, three GSEs data [GSE27262 (22, 23), GSE18842
(7), and GSE19804 (24)] were selected and downloaded for
further study (Table S1).

Identification of Differentially Expressed
Genes (DEGs)
This study analyzed the gene expression data having 131 samples
from NSCLC and 130 samples from adjacent non-tumor tissues
as control (Normal). Preprocessing of each microarray raw
data including background correction, normalization and log2
transformation were performed separately with RMA of Oligo
package version 1.46 in Bioconductor/R version 3.5.2 (25). Each
normalized expression data was integrated into a single file and
batch effects were removed with ComBat of sva package version
3.30 in R (26). After that, differential expression analysis of genes
between NSCLC compared to control was calculated using the
linear modeling features of the limma package version 3.38 in
Bioconductor/R (27). Affymetrix probe set ids were mapped to
gene symbol using DAVID 6.8 (https://david.ncifcrf.gov/) (28).
The gene is considered as differentially expressed (DEGs) if
log2 Fold Change |log2FC| is >2 and adjusted P-value is <

0.001. If multiple probe id mapped with the same gene, probe
id with highest log2FC were selected. The expression data of
the significant DEGs were selected and transformed into Z-
score (row-wise of value), then a hierarchical clustering across
rows were performed to create a heatmap using Morpheus
tool (https://software.broadinstitute.org/morpheus/).

Functional Annotation and Pathway
Enrichment Analysis
In order to investigate the biological processes altered in
NSCLC, we performed the functional annotation including
Gene Ontology (GO) enrichment analysis for Biological
Process, Molecular Function, Cellular Component, and Kyoto
Encyclopedia of Genes and Genomes (KEGG: www.kegg.jp)
to the list of DEGs. All these functional annotations were
performed with clusterProfiler v3.10.1 in Bioconductor/R using
pvalueCutoff = 0.01, pAdjustMethod = “BH,” qvalueCutoff =

0.05, minGSSize= 5 (29).

Construction and Analysis of the NSCLC
Network
To construct the NSCLC network, DEGs were mapped to the
STRING version 11 application (30). The setting parameters
of STRING were: (a) meaning of network edges (confidence);
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(b) active interaction sources (selected all); (c) minimum
required interaction score (high confidence >0.900); (d) max
number of interactors to show (1st shell, none/query protein
only); (2nd shell, none). The PPI data was downloaded, and
the network was visualized in Cytoscape software version
(3.5.1), where each node represents a protein while the edge
represents an interaction between proteins (31). We also
integrated the information of differential gene expression level
into the network, where the red node indicates up-regulated,
while the green node indicates down-regulated expression
in NSCLC compared to control. The topological structure
of the NSCLC network was analyzed using Cytoscape plug-
in “NetworkAnalyzer.”

Intending to identify highly connected local sub-networks in
the NSCLC network, we applied the Cytoscape plug-in MCODE
clustering algorithm (32). Furthermore, the biological relevance
of these modules was analyzed with GO and KEGG pathway.

Identifying the Upstream Regulator of
Genes in Cluster
To identify the upstream transcription regulators of genes in
MCODE clusters, Cytoscape plug-in iRegulone (V 1.3) was used
at default parameters (33). Then, in house program was used
to generate a matrix table where each row indicates TF while
a column indicates a target gene. A Venn diagram was drawn
using (http://www.interactivenn.net/).

Expression Correlation Between Genes
and TFs
To establish the relationship between genes in a cluster and
its upstream regulators, pair-wise gene expression correlation
was performed with GEPIA (http://gepia.cancer-pku.cn/index.
html) (34). The web server integrated RNA-seq expression data
from 9,736 tumors and 8,587 normal samples of the Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) projects. The analysis was done on default parameters:
Pearson correlation coefficient; and selected LUAD and LUSC as
TCGA tumor and TCGA normal dataset.

Effect of Signature Genes on Survival in
NSCLC by Kaplan-Meier Plot
The potential effect of expression of relevant genes on the
overall survival (OS) was analyzed on the lung cancer patient.
An online KM plotter software (http://kmplot.com/analysis/)
was used to generate the Kaplan-Meier Plot on 1926 NSCLC
cancer patients (LUAD and LUSC) (35). The tool run on the
default parameters on hazard ratio (HR) with 95% confidence
intervals and log-rank P-value which is considered as significant
P-value < 0.05. The biased arrays (n = 2,435) were excluded for
quality control.

Extension of Cluster 1 With miRNA
In order to understand the regulatory role of miRNAs in
NSCLC, the differentially expressed miRNAs (DEMs) in NSCLC
compared to normal was downloaded from miRCancer database
(http://mircancer.ecu.edu/) (36). After removing redundancy
and cleaning of the data, 56 miRNAs were appeared as

up-regulated, while 168 miRNAs were appeared as down-
regulated in NSCLC compared to control. The targets of
these DEMs were identified using miRNet tool (https://www.
mirnet.ca/). After that, only those miRNAs were selected
for further study which are targeting any of the 31 genes
(Cluster 1 and its associated TFs). Finally, an extended sub-
network of Cluster 1 was generated by integrating Cluster
1 with its upstream regulators of TFs and miRNAs in
Cytoscape. To make sparse visualization of network, interaction
within Cluster 1 as well as between Cluster 1 and TFs
were removed.

Mutational Signatures in NSCLC
The cBio Cancer Genomic Portal (http://cbioportal.org) is a
freely available tool to explore cancer genomic data in diverse
cancers. We selected the NSCLC from TCGA database and
submitted the list of 31 genes from Cluster 1 and its associated
TFs in cBioPortal.

RESULTS

Verification of Each Group of Samples
Using Principal Component Analysis
The Principal Component Analysis (PCA) was performed
on normalized data of gene expression, which revealed a
clear difference between NSCLC and normal samples in each
GSEs study (Figures S1A–C). The cumulative contribution
of PC1, PC2, and PC3 is 38.59, 33.64, and 36.47% for
GSE27262, GSE18842, and GSE19804 datasets, respectively.
In order to increase the statistical power to discover the
DEGs, the expression data of three GSEs was integrated

TABLE 1 | List of top 20 differentially expressed genes is NSCLC.

Up-regulated Down-regulated

Gene Log2FC Adj. p-value Gene Log2FC Adj. p-value

SPP1 4.70 4.49E-66 AGER −5.06 2.18E-89

COL11A1 4.27 3.81E-51 CLDN18 −5.05 4.65E-54

COL10A1 4.10 1.62E-67 SFTPC −4.53 9.44E-41

MMP12 3.95 3.41E-47 GPM6A −4.50 6.61E-89

MMP1 3.86 1.32E-35 ADH1B −4.34 5.76E-51

GREM1 3.71 3.70E-43 FABP4 −4.30 8.44E-65

HS6ST2 3.56 4.04E-54 TMEM100 −4.28 8.16E-57

GJB2 3.39 3.21E-46 CLIC5 −4.15 2.31E-69

CTHRC1 3.38 6.08E-62 CA4 −4.13 1.45E-85

TOP2A 3.36 4.37E-66 FAM107A −4.12 2.82E-77

ANLN 3.25 2.25E-59 WIF1 −4.03 1.35E-40

COL1A1 3.13 9.35E-49 FCN3 −4.02 2.07E-62

PSAT1 3.05 4.96E-59 GKN2 −3.90 1.01E-56

TMPRSS4 3.00 8.65E-52 STXBP6 −3.88 9.95E-66

SPINK1 2.93 1.21E-20 CD36 −3.88 2.41E-64

CDCA7 2.90 2.04E-56 Mt1m −3.87 2.33E-50

CST1 2.90 6.08E-42 AQP4 −3.76 2.70E-37

CXCL14 2.87 5.54E-31 SFTPA1 −3.70 2.40E-28

CEACAM5 2.83 2.54E-23 cpb2 −3.69 1.29E-48

RRM2 2.76 8.65E-52 TNNC1 −3.69 4.28E-84
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and technical variability and noise were removed using
batch effect correction. The PCA analysis clearly showed the
distinction between cancer and normal samples indicating
successful removal of the batch effects on the GSEs microarray
data (Figures S1D,E).

Identification of DEGs
To identify the genes contributing to the NSCLC, differential
expression analysis was conducted on gene expression data. A
total of 346 DEGs including 97 up-regulated and 249 down-
regulated genes were identified with |log2FC| > 2 and adjusted
P-value is < 0.001. Among DEGs, top 10 genes showing up-
regulated expression are SPP1, COL11A1, COL10A1, MMP12,
MMP1, GREM1, HS6ST2, GJB2, CTHRC1, and TOP2A; while
top 10 genes showing down-regulated expression are AGER,
CLDN18, SFTPC, GPM6A, ADH1B, FABP4, TMEM100, CLIC5,
CA4, and FAM107A (Table 1). Detail information and the
complete list of DEGs is provided in Table S2A for up-regulated
and Table S2B for down-regulated genes. A hierarchical
cluster heatmap of DEGs across biological samples reveals
distinct patterns of gene expressions in NSCLC compared to
normal (Figure S2).

Functional Annotation and Pathway
Enrichment Analysis
To understand the biological function and key pathways altered
inNSCLC, function annotation and pathway enrichment analysis
was performed for the list of up- and down-regulated genes.
Biological process (BP) and Molecular Function (MF) of Gene
Ontology analysis revealed that the up-regulated genes are
primarily associated with nuclear division, organelle fission,
chromosome segregation, regulation of mitotic nuclear division,
metaphase/anaphase transition of cell cycle, and mitotic spindle
assembly checkpoint, and microtubule binding (Figure 1A).
The cellular components (CC) of up-regulated genes were
significantly associated with spindle, chromosome region,
kinetochore, microtubule, and midbody, fibrillar collagen trimer,
and spindle microtubule (Figure 1A). The KEGG pathway
analysis showed the up-regulated genes were significantly
enriched in only Cell cycle-G2/M transition (Figure 1A).

Biological process (BP) andMolecular Function (MF) of Gene
Ontology analysis revealed that the down-regulated genes are
primarily associated with circulatory system process, leukocytes
migration, cell-substrate adhesion, regulation of angiogenesis,
receptor-mediated endocytosis, cell chemotaxis, regulation of
cell junction assembly, amide binding, peptide binding, and
cytokine binding (Figure 1B). The cellular components (CC)
of down-regulated genes were significantly associated with
the extracellular matrix, membrane raft, cell-cell junction,
and collagen-containing extracellular matrix (Figure 1B). The
KEGG pathway analysis showed the down-regulated genes
were significantly enriched in only BMP signaling (Figure 1B).
The complete results of GO and KEGG analyses could be
found in Table S3A for up-regulated and Table S3B for down-
regulated genes.

Construction and Analysis of NSCLC
Network
Mapping of DEGs on STRING gave PPI network with 151
nodes and 640 edges, which were visualized in Cytoscape
software, where each node represents a protein while an
edge represents an interaction between proteins. The gene
expression level of each protein was integrated into the PPI
network, where the red node indicates up-regulated, while the
blue node indicates down-regulated gene expression level in
NSCLC compared to normal and termed as NSCLC network
(Figure 2). Size of the node is based upon the degree of
connectivity of the node. Edges in the network represent
direct interactions between nodes. As shown in Figure 2,
there are 61 and 86 nodes in the network showing up-
regulation and down-regulation, respectively; while 4 nodes
are not having gene expression level (identified by PPI
interaction and not in the list of our DEGs). A highly
interconnected sub-network of overexpressed genes could be
seen in the NSCLC network. The structural topological of
NSCLC network including Betweenness Centrality, Closeness
Centrality, Clustering Coefficient, and Degree were analyzed and
presented in Table S4. Furthermore, highly inter-connected 15
sub-network clusters were extracted from NSCLC network using
Cytoscape plug-in MCODE (Figure S3; Table 2). Among them,
top five clusters with the highest MCODE score were considered
for further study. Topologically relevant information of a gene is
given as follows:

Hub genes: The highly connected gene in the network is
called hub gene. The node CDC20 has the highest degree of
connectivity [35] in the NSCLC network. Other top-five hub
nodes with their degree of connectivity are BUB1 [33], CDK1
[33], UBE2C [32], CCNB1 [31], and CCNB2 [31] (Table S4). It
is interesting to note that all 26 nodes of NSCLC network act
as intramodular hubs of Cluster 1. Therefore, we considered all
genes in Cluster 1 as hub genes as their degree of connectivity are
more than 21 (Figure S3; Table S4).

Betweenness centrality of Node: The node RHOJ has
the highest betweenness centrality of 1, which connects
DLC1, ARHGEF26, and ARHGAP6 (Figure 2; Table S4). Node
Interleukin-6 (IL6) has second-highest betweenness centrality of
0.611 in the NSCLC network, which connects 6 proteins across
three sub-networks: Cluster 1 (UBE2C); Cluster 2 (CXCL2); and
Cluster 5 (SPP1, CP, GOLM1, CHRDL1) (Figure 2; Table S4).

Top DEGs in Clusters: It was found that the highest up-
regulated gene are TOP2A (Cluster 1), CXCL13 (Cluster 2),
COL11A1 (Cluster 3), and SPP1 (Cluster 5); while highest down-
regulated genes are PPBP (Cluster 2), COL6A6 (Cluster 3),
EDNRB (Cluster 4), and IL6 (Cluster 5).

In order to understand the functional relevance, these clusters
were further analyzed using GO and pathways enrichments. The
Cluster 1 consist of 26 up-regulated gene in NSCLC network
(Table 2). Functional annotation indicates that: (a) Cluster
1 is significantly associated with nuclear division, spindle,
microtubule binding, and protein serine/threonine kinase
activity (Figure S4; Table S5); (b) Cluster 2 is significantly
associated with leukocyte migration, cell chemotaxis, G
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FIGURE 1 | Functional annotation of up-regulated genes in NSCLC (A); and down-regulated genes in NSCLC compared to control (B). GO, Gene Ontology; BP,

Biological Processes; MF, Molecular Function; CC, Cell Component; KEGG, Kyoto Encyclopedia of Genes and Genomes.

protein-coupled receptor binding, and chemokine activity; (c)
Cluster 3 is significantly associated with extracellular matrix
organization and collagen trimer; (d) Cluster 4 is significantly
associated with G protein-coupled receptor signaling pathway via
cyclic nucleotide second messenger; (e) Cluster 5 is significantly
associated with post-translational protein modification, cytokine
activity (Figure S4).

Upstream Regulator of Cluster
Transcription factors play crucial roles in initiation, progression,
and metastasis of cancer. However, the role of TFs and their
downstream target genes and their regulatory mechanisms in
the development of NSCLC remains largely unknown. Therefore,
each MCODE cluster was analyzed to identify the potential
upstream TF regulators using the iRegulone tool.

Cluster 1:Our analysis showed that almost all 26 up-regulated
genes are under the control of five TFs: FOXM1, MYBL2,
TFDP1, E2F4, and SIN3A (Figure 3A). However, only FOXM1
and MYBL2 are up-regulated gene showing log2FC >1, while,
TFDP1 and E2F4 show slight up-regulated while SIN3A show
slight down-regulated in our list of DEGs of NSCLC.

Cluster 2: The cluster 2 contains 10 genes, which is under the
regulation of 24 TFs, however, only four TFs showed |log2FC|
>1 (TFAP2A and TFAP2C up-regulated; GATA2 and FOS down-
regulated) in our list of DEGs (Figure 3B).

Cluster 3: The cluster 3 contains 7 genes, which is under the
regulation of 7 TFs, however, all of the TF showed |log2FC| < 1
in our list of DEGs (Figure 3C).

Cluster 4: The cluster 4 contains 10 genes, which are under
the regulation of 20 TFs, however, only GATA6, EBF1, and JUN
showed log2FC < −1 in our list of DEGs (Figure 3D). Cluster
5: Cluster 5 contains 5 genes, which is under the regulation of
22 TFs, however, only six TFs showed |log2FC| >1 (TFAP2A
and TFAP2C up-regulated; JUN, FOXA2, JUNB, and FOS down-
regulated) in our list of DEGs (Figure 3E). Cluster 1 contains all
up-regulated genes, and Cluster 4 contains all down-regulated
genes, however, the rest of the cluster contains both up-and
down-regulated genes. Venn diagram showing that few TFs are
commonly regulating more than one cluster (Figure 3F).

Validation of Upstream Regulator of
Cluster
A study found that the expression level of genes and their TFs are
highly correlated in spite of cell diversity; while the expression
level of randomly selected genes and TFs show very weak
correlation (37). Therefore, TFs interacting with its potential
target gene in clusters of NSCLC network were analyzed for their
expression correlation.

Cluster 1: Using Pearson correlation coefficients, all genes in
Cluster 1 are showing significantly highly positive correlation
with upstream TFs FOXM1, and MYBL2 in NSCLC (Figure 4A;
Figure S5). As revealed in the figures, their gene expression is
induced in NSCLC compared to the normal sample. Top five
highly correlated expressed genes with a FOXM1 are (a) CCNB2
(R= 0.74); (b) KIF4A (R= 0.73); (c) ASPM (R= 0.72); (d) KIF11
(R = 0.70); and (e) BUB1 (R = 0.69). Top five highly correlated
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FIGURE 2 | NSCLC network showing protein-protein integration network in NSCLC. Red node indicates up-regulated; while blue node indicates down-regulated

mRNAs in NSCLC compared to normal. Size of the node is based upon degree of connectivity of the node. Edges in the network represent direct interactions

between nodes.

expressed genes with TF MYBL2 are; (a) BUB1 (R = 0.72); (b)
KIF4A (R = 0.71); (c) KIF2C (R = 0.70); (d) KIF11 (R = 0.68);
and (e) NEK2 (R= 0.67).

Cluster 2: The highest correlation of R = 0.53 was observed
between FOS and CXCL2 (Figure S6). However, our data showed
these both genes are down-regulated in NSCLC.
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TABLE 2 | List of 15 highest score clusters identified from NSCLC Network by MCODE.

Cluster Score

(Density*#Nodes)

# Nodes # Edges Node IDs

1 25.2 26 315 CEP55, KIF20A, DLGAP5, KIF4A, RRM2, KIF11, NUF2, NUSAP1, UBE2C, CCNB1,

BUB1, NEK2, TPX2, BUB1B, TOP2A, MAD2L1, PBK, CCNB2, MELK, CDC20,

BIRC5, CDK1, CENPF, ASPM, KIF2C, TTK

2 10 10 45 GNG11, CXCL13, NMU, CXCL2, S1PR1, CX3CR1, CXCL3, PPBP, SSTR1, CXCR2

3 7 7 21 COL3A1, COL11A1, COL6A6, COL1A1, COL4A3, COL1A2, COL10A1

4 5.111 10 23 PROK2, VIPR1, ADRB2, ADRB1, EDNRB, EDN1, RAMP3, CALCRL, GRK5, AGTR1

5 5 5 10 GOLM1, SPP1, IL6, CHRDL1, CP

6 4 4 6 PTPRB, MCEMP1, CD36, OLR1

7 4 4 6 THBS2, ADAMTSL3, ADAMTS8, ADAMTS1

8 4 4 6 SFTPA1, SFTPC, SFTPB, SFTPD

9 3 3 3 ZWINT, CENPA, CENPU

10 3 3 3 ZBTB16, NEDD4L, LMO7

11 3 3 3 VWF, MMRN1, CFD

12 3 3 3 SCN7A, SPTBN1, SCN4B

13 3 3 3 SOX2, KLF4, EPAS1

14 3 3 3 ACVRL1, CAV1, SMAD9

15 2.8 6 7 CLDN18, CLDN5, CDH5, CLDN22, CDH3, JUP

Cluster 3: It showed the highest correlation of R = 0.36
between TCF12 and COL1A2 (Figure S7). However, our data
showed COL1A2 is up-regulated, while TCF12 is slightly down-
regulated in NSCLC.

Cluster 4: The highest correlation of R = 0.34 was observed
betweenGATA6 and RAMP3 (Figure S8). Our data showed these
two genes are down-regulated in NSCLC.

Cluster 5: Cluster 5 showed the highest correlation of R =

0.33 between FOXA2 and GOLM1 (Figure S9). However, our
data showed GOLM1 is up-regulated, while FOXA2 is down-
regulated in NSCLC.

Gene Expression-Based Survival Analysis
in NSCLC by Kaplan-Meier Plot
The topologically significant genes in the global NSCLC network,
genes in MCODE clusters, and upstream regulator TFs (showing
|log2FC|>1) were analyzed for association with OS in NSCLC
using Kaplan-Meier plots. Kaplan-Meier plots of each cluster
and their associated TFs are presented as follow: Cluster 1 in
Figure 4B and Figure S10; Cluster 2 in Figure S11; Cluster 3 in
Figure S12; Cluster 4 in Figure S13; and Cluster 5 in Figure S14.
Kaplan-Meier plots showed that high expression of all the up-
regulated genes of Cluster 1 make worse the OS [HR >1], while
high expression of down-regulated gene SIN3A makes better the
OS [HR <1] in NSCLC (Figure 4B; Figure S10). Kaplan-Meier
plots of the gene of other clusters showed very much similar
patterns that high expression of up-regulated genes make worse
the OS, while high expression of down-regulated genes make
better the OS in NSCLC (Figures S11–S14).

Extension of Cluster 1 With miRNA
Our analysis identified 30 up-regulated and 70 down-regulated
miRNAs targeting 25 genes of Cluster 1 and associated five TFs.
These data were used to generate miRNA network of Cluster
1 consisting of 130 nodes and 218 interactions (Figure 5). Our

analysis found none of the miRNA is targeting NUSAP1 gene
of Cluster 1. The top five genes targeted by highest number
of down-regulated miRNAs in NSCLC are: (a) RRM2 targeted
by 17 miRNAs; (b) BIRC5 targeted by 14 miRNAs; (c) CEP55
targeted by 12 miRNAs; (d) KIF2C targeted by 11 miRNAs;
(e) CDK1 targeted by 9 miRNAs (Table S6). Interestingly, it
was found that the expression of TFs, regulators of Cluster 1
genes, are also under the control of miRNAs as following: (a)
FOXM1 is targeted by 10 miRNA (9 down- and 1 up-regulated);
(b) MYBL2 is targeted by 6 miRNAs (5 down- and 1 up-
regulated); (c) TFDP1 is targeted by 7 miRNAs (6 down- and 1
up-regulated); (d) E2F4 is targeted by 5 miRNAs (4 down- and
1 up-regulated); (e) SIN3A is targeted by 6 miRNAs (4 down-
and 2 up-regulated). The complete list of gene and its associated
miRNAs are provided in Table S6.

The miRNA targeting highest number of genes are as
following: (a) hsa-miR-193b-3p is targeting 11 genes (ASPM,
BUB1, BUB1B, CDC20, CDK1, KIF11, MELK, RRM2, TOP2A,
TPX2, UBE2C); (b) hsa-miR-215-5p is targeting 10 genes (ASPM,
BUB1B, CDC20, CENPF, CEP55, DLGAP5, KIF20A, MAD2L1,
NUF2, TTK); (c) hsa-miR-186-5p is targeting 7 genes (BUB1,
DLGAP5, FOXM1, KIF11, NEK2, RRM2, TOP2A); (d) hsa-
miR-16-5p is targeting 7 genes (BIRC5, CDC20, CDK1, CENPF,
CEP55, KIF2C, UBE2C); and (e) hsa-miR-30a-5p is targeting 5
genes (CDC20, KIF11, MYBL2, RRM2, TFDP1). The complete
list of miRNAs and their targets are provided in the Table S7.
Interestingly, hsa-miR-193b-3p, hsa-miR-215-5p, hsa-miR-186-
5p, hsa-miR-16-5 and hsa-miR-30a-5p are down-regulated and
their targets are up-regulated in NSCLC compared to control
indicating their role in the development of NSCLC.

Mutational Signatures in NSCLC
Analysis of mutational signatures in 31 genes (Cluster 1 and
associated TFs) in NSCLC studies showed that queried genes are
altered in 1966 (37%) out of 5279 samples across TCGA datasets
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FIGURE 3 | Regulators of gene cluster 1–5. Each column indicates gene in a cluster, while each row indicates TF identified by iRegulone (A–E). Up-regulated DEGs in

the cluster is red with positive log2FC; while down-regulated DEGs is blue with negative log2FC. TF binding with the mRNA is in purple, while non-binding in cyan.

“NaN” If the log2FC is not available in our list of DEGs. (F) Venn diagram showing common TFs regulating different clusters.
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FIGURE 4 | (A) Correlation analysis of expression of genes in Cluster 1 and its TFs. Expression of gene is on Y-axis while TF is on X-axis. (B) Overall survival analysis

in NSCLC patients using Kaplan-Meier plots for genes of Cluster 1 and associated TFs.
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FIGURE 5 | miRNA network of Cluster 1 showing miRNAs targeting mRNAs and TFs of Cluster 1. Red node indicates up-regulated; while the blue node indicates

down-regulated expression in NSCLC compared to normal. Size of the node is based upon degree of connectivity of the node. Nodes shape with triangle, round, and

diamond represent TFs, mRNAs, and miRNAs, respectively.

(Figure 6). The top three highest altered genes are ASPM (10%),
NUF2 (6%) and CENPF (6%) (Figures 6A–D).

Our accumulating results indicate Cluster 1 is working
as a “driver-network” for the initiation of uncontrolled cell
proliferation and development of NSCLC.

DISCUSSION

The availability of huge and diverse genome-scale molecular
data provide great opportunity to integrate and analyze
them to discover new mechanisms and experimentally
testable models for initiation and proliferation of cancer
(20, 38). Furthermore, the pan-cancer studies utilized the
genomics and transcriptomics data and identified differences

and commonalities in dysregulation of biological process

across multiple cancer types (39, 40). NSCLC is a commonly

diagnosed cancer with a high mortality rate. Previous studies

identified numerous “driver-genes” as well as abnormally
expressed genes and their functional enrichment associated

with NSCLC (7, 22–24, 41). However, such studies lack

the information of the regulatory network of abnormally

expressed genes, which makes difficult to understand the
molecular mechanism of development of NSCLC as well

as to identify the potential therapeutic target genes. An

earlier study integrated the gene expression data, DNA
copy number alteration (CAN) and PPI data, and identified
“driver-networks” containing potential target genes in breast
cancer (20).
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FIGURE 6 | (A) OncoPrint of genes in Cluster 1 and associated TFs alteration in NSCLC. Lollipop plot with distribution of mutations in NSCLC across protein domains

of (B) ASPM; (C) NUF2; and (D) CENPF.
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In the current study, a meta-analysis of large gene expression
samples (131 NSCLC and 130 control) identified 346 DEGs
(97 up-regulated and 249 down-regulated) in NSCLC compared
to adjacent non-tumor lung tissues. After integrating the
PPI data into DEGs, the NSCLC network was created and
analyzed to understand the dysregulated sub-networks and
pathways in NSCLC. Furthermore, the sub-networks were
studied to identify a “driver-network” and its upstream
regulators by integrating the data of TFs and miRNAs. The
topologically important gene in NSCLC network, the “driver-
network,” and its upstream regulators could be candidate genes
for biomarkers and therapeutic target for NSCLC. However,
selecting candidate genes for biomarker and therapeutic target
requires their overexpression or underexpression have a deep
connection at the molecular level for the initiation and
progression of tumorigenesis. Therefore, the literature and
databases mining was performed on the selected candidate
genes and regulatory sub-network to understand their molecular
mechanism in NSCLC.

DEGs, Functional Annotation and Pathway
Enrichment
Our study found that SPP1 is the most up-regulated gene and
its high expression is associated with reducing OS (Table 1;
Figure S14) and thus, support the previous finding showed
enhanced expression of SPP1 in several types of tumors including
NSCLC (42). Network analysis showed SPP1 is the member
of Cluster 5 and under the regulation of TFs TFAP2A and
TFAP2C (Figure 3E). However, in spite of overexpression of
both TFs in NSCLC, our study found no positive correlation
between the expression of these TFs and SPP1 and therefore
need further investigation (Figure S9). SPP1 binds to CD44
and integrin receptor in the lung cancer cell and activates the
FAK/PI3K/AKT pathway which induces the secretion of vascular
endothelial growth factor (VEGF) resulting in increased cell
survival, cell proliferation and tumor metastasis (42). Silencing
the expression of SPP1 using siRNA decreased the NSCLC tumor
volume and weight in mice demonstrated it as a promising
therapeutic target (43). Furthermore, our analysis showed that
AGER is the highly down-regulated gene in NSCLC compared
to normal tissue. AGER is a multi-ligand receptor that binds
various ligands derived from a damaged cell and its up-
regulation at both mRNA and protein level is associated with
the majority of cancers including gastric, breast, hepatocellular,
colorectal carcinoma (44, 45). However, unlike other cancers,
AGER is down-regulated in NSCLC and also supported by
the previous finding suggested its role as a tumor suppressor
in lung cancer (46). S100A12 is a small protein express by
neutrophil granulocytes and binds with AGER receptor, which
induces the production of proinflammatory cytokines (47).
AGER and S100A12 are interacting in NSCLC network and
both are down-regulated suggested their role in reducing the
inflammation to escape from the immune response in NSCLC
(Figure 2) (47). A previous study also supports our finding
that SPP1 and AGER are highly up-regulated and down-
regulated, respectively, in NSCLC (48). A pan-cancer analysis

of pediatric leukemias and solid tumors identified 142 and 82
driver genes (40). Comparing with pan-cancer driver genes,
our study found that SIX1 was up-regulated, while TAL1 and
ID4 were down-regulated in NSCLC (40). The pan-cancer study
reported mutation in SIX1, TAL1, and ID4 were present in the
Wilms Tumors, T-lineage acute lymphoblastic leukemias, and B-
lineage acute lymphoblastic leukemias, respectively (40). Taken
together the functional annotation and pathway enrichment
analysis of DEGs indicated that up-regulated genes could lead
to enhance tumor cell proliferation, while down-regulated genes
decreased in immune cell migration in NSCLC, which are vital
for uncontrolled cell division and survival in cancer, and to
escape from the proper immune response (Figure 1).

Topology of NSCLC Network
Topological properties ofNSCLC network identified several other
key proteins. Hub gene plays a key role in the proper maintaining
the architecture of the biological network (49, 50). The study
found that the intramodular hubs are significantly related to cell
proliferation and survival time in cancer (49, 51). All of the
protein of Cluster 1 genes are highly interacting and therefore
act as hub genes in the NSCLC network (Table S4). Top six hub
genes with more than 30 degrees of connectivity are CDC20
[i.e. 35], BUB1 [33], CDK1 [33], UBE2C [32], CCNB1 [31],
and CCNB2 [31] (Table S4). CDC20 regulates cell division
through activating the anaphase-promoting complex/cyclosome
(APC/C), which begins chromatid separation to enter into
anaphase. Overexpression of CDC20 is reported in various
cancer including breast cancer, cervical cancer, urinary bladder
cancer, and associated with poor prognosis of ovarian tumors
(52). It was reported that overexpression of CDC20 is associated
with poor prognosis in NSCLC, which support our findings
(Figure 4B) (8). Therefore, various studies considered CDC20 as
a therapeutic target for cancer treatment (52).

The ubiquitin-conjugating enzyme E2 (UBE2C) is a member
of the APC/C complex and promotes the degradation of various
target proteins required for cell cycle progression. The aberrantly
high expression of UBE2C was reported in various cancers. It
was experimentally showed that the TF FOXM1 binds to the
promoter region of UBE2C and activates its high expression
in esophageal squamous cell carcinoma, which supports our
finding that the FOXM1 as an upstream regulator of UBE2C
of Cluster 1 (Figure 3A) (53). CCNB1 interact with CDK1 to
form a complex that phosphorylate their substrates and promotes
G2/M transition in the cell cycle. Cluster 1 contains various
protein including CCNB1, which are degraded by APC/C E3
ubiquitin ligase complex. Overexpression of CCNB1 resulting in
cell proliferation and was reported in various cancers including
NSCLC (9). Inhibiting the expression of CCNB1 using siRNAs
promotes apoptosis in colorectal cancer cells (54). BUB1 is
component of spindle checkpoint for proper chromosome
segregation and its up-regulation was reported in human prostate
cancer (55).

Node with the highest betweenness centrality controls the
flow of information between two nodes and therefore, could be
crucial protein in signaling network and potential drug target
to stop the flow of communication in a disease state. The node
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RHOJ has the highest betweenness centrality and interacts with
DLC1, ARHGEF26, and ARHGAP6 and they all are down-
regulated in NSCLC (Figure 2; Table S4). A study found that the
encoded protein of RHOJ is activated by VEGF and may regulate
angiogenesis. DLC1 encodes a Rho GTPase-activating protein
that functions as a tumor suppressor and down-regulated inmore
than 95% of NSCLC and other cancers (56). A previous study
supports the role of DLC1 as an inducer of apoptosis in NSCLC
(57) and as a metastasis suppressor in breast cancer cells (58).
ARHGEF26 function as guanine nucleotide exchange factors
(GEFs), which catalyze the activation of RHOG by displacing
GDP (from inactive enzyme) with GTP (active enzyme).
ARHGAP6 involves in regulating the actin polymerization at the
cell plasma membrane. Our network analysis indicates that Rho
family proteins forming a complex of RHOJ- DLC1-ARHGEF26-
ARHGAP6, which need detail study in NSCLC. Node IL6 has
second highest betweenness centrality of 0.611 in the NSCLC
network, which connects 6 proteins across three sub-networks.
IL-6 is cytokines secreted during inflammation and chronic
disease like cancer. It binds with interleukin-6 receptor alpha (IL-
6Rα) present on the surface of T-cell, NK cell, B-cell and activates
them. IL6 and its interacting partners CXCL2 and CHRDL1 are
down-regulated; while other interacting partners UBE2C, SPP1,
CP, GOLM1 are up-regulated in the NSCLC network. CXCL2
gene encodes secreted proteins and plays an important role in
inflammation and immunoregulation. A study found CXCL2 role
in the resistance of anti-cancer drug, anlotinib, in NSCLC (59).
The overexpression of GOLM1 is reported in prostate cancer
(60) and lung adenocarcinoma (61). Because of high betweenness
centrality of down-regulated IL6, it may be playing a pivotal role
in the down-regulation of the inflammatory response in NSCLC.

Driver-Network and Upstream Regulators
Further analysis of NSCLC network identified the biologically
informative 15 local cluster networks. Among them, the highest
scoring Cluster 1 identified as local “driver-network” having
26 overexpressed gene and their upstream regulators FOXM1
(log2FC = 1.88), MYBL2 (log2FC = 1.09), TFDP1 (log2FC =

0.54), E2F4 (log2FC = 0.10), and SIN3A (log2FC = −0.44)
(Figure 3A). The “driver-network” is collectively associated with
cell proliferation (Cluster 1 in Figure S4). Interestingly, we
observed a strong positive correlation between gene expression
of each member of “driver-network” and its upstream regulators
FOXM1 and MYBL2 in NSCLC (Figure 4A; Figure S5).
Furthermore, NSCLC patients with their overexpression had
significantly worse OS (Figure 4B; Figure S10).

The previous study found that MuvB core proteins interact
with E2F4-DP1 and p130 or p107 to form a DREAM complex in
G0/G1 phase of the cell cycle, which put the cell in quiescence
state by globally repressing more than 800 cell cycle genes
(62). When cell exit from quiescence state, MuvB core proteins
dissociated from p130 and interacts with MYBL2 to form MMB
(MYBL2-MuvB) complex. Subsequently, MMB recruits FOXM1
protein to form MMB-FOXM1 complex, which binds to the
promoters of several cell cycle genes and activate their expression
in G2/M phase responsible for mitosis (63). A study found that
high expression MYBL2 gene disrupts the DREAM complex

and increase the MMB complex formation and subsequently
triggers the expression of the several target genes driving the cell
proliferation in cancer (64). In this way, MMB complex function
as opposite of the DREAM complex. A previous study identified
the highly confident candidate target genes and regulatory
network of DREAM and MMB-FOXM1 complexes involved in
the cell cycle (63). Comparing to the study, it was found that
all 26 genes of Cluster 1 are the target of DREAM complex
(63). The same study support that 24 genes of Cluster 1 (except
MELK and PBK) are the target of MMB-FOXM1 complex (63).
Furthermore, the TFs FOXM1, MYBL2, SIN3A, and TFDP1 are
the target gene of DREAM, but not the MMB-FOXM1 complex.
Combining all these findings, our study indicates that most of the
genes of Cluster 1 are the common target for both DREAM and
MMB-FOXM1 complexes. However, overexpression of MYBL2
and FOXM1 could disrupt the DREAM complex and enhance the
formation of MMB-FOXM1 complex resulting high expression
of cell cycle genes in Cluster 1 which consequences uncontrolled
cell proliferation and ultimately NSCLC.

FOXM1 is a member of the Forkhead box family of
transcriptional factor that expresses in actively dividing cells.
Several studies reported the overexpression of FOXM1 stimulates
the proliferation of tumor cells during the progression of
NSCLC and other types of cancers and also associated with
poor overall survival (13–15, 65). A study found FOXM1
overexpressed NSCLC associated with resistance of cisplatin-
based chemotherapy, and its inhibition using thiostrepton or
siRNA reversed the drug resistance resulted in inhibition of cell
proliferation and induce cell death (14). Silencing of FOXM1
expression by siRNA in A549 lung adenocarcinoma cells resulted
in significant reduction in cell cycle-promoting cyclin A2 and
cyclin B1 genes, as well as DNA replication and mitosis (13).
DREAM complex directly represses the transcription of TOP2A,
which encode DNA topoisomerase to relief the torsional stress
during DNA transcription and replication (62). Furthermore,
the study showed that depleting FOXM1 expression decrease
the TOP2A mRNA and protein level in A549 human lung
adenocarcinoma cells (66). Experimental studies showed the
FOXM1 protein directly bind to the promoter region of
TOP2A mRNA (66). Our study showed overexpression of
TOP2A (log2FC = 3.36) and its upstream regulator FOXM1
indicates that both genes are the promising target for anti-cancer
therapy for NSCLC (67). A pan-cancer study found FOXM1 is
overexpressed across all studied 32 TCGA cancer types including
NSCLC compared to normal tissues (68). A pan-cancer analysis
revealed FOXM1 regulatory network as a top predictor of poor
prognosis (69). We found all the genes of Cluster 1 except
NUSAP1, PBK, and CDK1 are present in the pan-cancer network
associated with mitotic cell cycle and adverse prognostic genes
[see Figure 2d of (69)]. In addition, the pan-cancer network
contains the TFs FOXM1 andMYBL2 which support our finding.

The MYBL2 is phosphorylated by cyclin A/cyclin-dependent
kinase 2 during the S-phase of the cell cycle and activate the
cell division (12). Overexpression of MYBL2 is associated with
poor patient survival in various cancers patient including NSCLC
(12, 70). A previous study showed experimentally that several
genes including KIF20A, KIF4A, NUSAP1, CCNB1, TOP2A,
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CDK1, CENPF, and KIF2C of Cluster 1 are transactivated by
MYBL2 (12). Abnormal expression of E2F4 and its mutations are
reported in several cancers including NSCLC (16, 71, 72).

The genes ofCluster 1 aremainly involving in the proliferation
of cell division. Our study supports the previous finding that
overexpression of Cluster 1 genes in several cancer including
NSCLC and associated with poor overall survival such as:
KIF2C (73), KIF4A (11, 74), and KIF11 (75) which are kinesin
family members of motor proteins regulating the cell mitosis
through faithful chromosome condensation and segregation
(76). Furthermore, it was reported that silencing of their
expression using siRNAs inhibit the cancer cell growth (11, 73).
Several inhibitors of KIF11 such as Monastrol, Ispinesib, and
Dimethylenastron have been developed and are in clinically
used to inhibit cell proliferation and induce apoptosis to
treat numerous cancers (77). The high expression of ASPM
responsible for mitotic spindle formation (10, 78). NEK2 (79, 80)
which triggers centrosome separation are reported in NSCLC.
Interestingly, another study also supports that E2F4 and FOXM1
bind to the promoter of NEK2 gene (80). NUF2 component
of NDC80 Kinetochore complex regulating the chromosome
segregation was overexpressed in NSCLC (81). Suppressing the
expression of NUF2 inhibits tumor growth and also stimulates
cell apoptosis (81). CENPF (82, 83) which is associated with the
centromere-kinetochore complex and requires for chromosome
segregation during mitosis.

Therefore, the “driver-network” and the predicted TFs
MYBL2 and FOXM1 give more insight about the initiation and
progression of NSCLC and also could be therapeutic target genes.
However, a further biochemical study is required to understand
the effect on cell proliferation in NSCLC by using functional
siRNAs targeting a combination of TFs FOXM1, and MYBL2,
and their downstream genes of “driver-network” (84).

Our study found that the “driver-network” is not only
under the regulation of TFs, but also under the regulation
of miRNAs. This study showed that 9 miRNAs (hsa-miR-134-
5p, hsa-miR-149-5p, hsa-miR-186-5p, hsa-miR-194-5p, hsa-miR-
204-5p, hsa-miR-26b-5p, hsa-miR-320a, hsa-miR-370-3p, hsa-
miR-630) targeting FOXM1 are down-regulated in NSCLC. In
addition, these miRNAs are also targeting 11 other genes (ASPM,
BIRC5, BUB1, DLGAP5, KIF11, KIF4A, MAD2L1, NEK2,
RRM2, TOP2A, and TTK), which means these are common
targets for miRNAs and FOXM1 (Table S7). Previous studies
found the down-regulation of has-miR-134-5p and hsa-miR-
149-5p were contributing epithelial-to-mesenchymal transition
(EMT), a key process of cancer metastasis, in NSCLC (85, 86).
These studies also demonstrated that has-miR-134-5p and hsa-
miR-149-5p act as tumor suppressors by directly binds to the
3′UTR of FOXM1 and inhibiting its expression and the EMT
in NSCLC (85, 86). Accumulating evidence indicate that down-
regulation of these miRNAs eliminate their suppressive effect
resulting overexpression of FOXM1 and its 11 downstream target
genes. The decrease expression of other miRNAs in NSCLC and
their role in cell proliferation and EMT has been demonstrated
in several studies including hsa-miR-194-5p (87), hsa-miR-204-
5p (88), hsa-miR-26b-5p (89), hsa-miR-320a (90), hsa-miR-370-
3p (91) and hsa-miR-630 (92). MYBL2 and TFDP1 are targeted
by five common miRNAs (hsa-miR-30a-5p, hsa-miR-30b-5p,

hsa-miR-30c-5p, hsa-miR-30d-5p, hsa-miR-30e-5p), though they
belong from same miRNA family. A previous study showed
the down-regulation of hsa-miR-30a-5p which directly targeting
MYBL2 mRNA in NSCLC (93). Interestingly, TCGA NSCLC
dataset showed higher mutation rates in the genes of “driver-
network” as well as its upstream regulators FOXM1 and MYBL1
in the NSCLC (Figure 6).

Previous bioinformatics studies were mainly focused on the
analysis of gene expression data to identify the DEGs, their
function enrichment, the interacting hub genes in NSCLC. Ni
et al. identified five up-regulated hub genes (TOP2A, CCNB1,
CCNA2, UBE2C, and KIF20A) in NSCLC (41). Huang et al.
identified five up-regulated hub genes (CDC20, CENPF, KIF2C,
BUB1, and ZWINT) in NSCLC (94). Another study found 16
hub genes (TEK, ANGPT1, MMP9, VWF, CDH5, EDN1, ESAM,
CCNE1, CDC45, PRC1, CCNB2, AURKA, MELK, CDC20,
TOP2A, and PTTG1) in NSCLC (95). However, our study has
following advantages compared to previous studies: (a) Current
study is based upon a large dataset of NSCLC obtained from
different GEOmicroarray dataset; (b) Identified various common
DEGs detected by previous studies; (c) The DEGs were integrated
with PPI, TFs and miRNAs to understand the regulatory
mechanism of NSCLC initiation and progression; (d) Finally,
we have identified a “driver-network” consist of 26 up-regulated
hub genes and their upstream regulators (FOXM1, MYBL2, and
miRNAs) involved in the proliferation of NSCLC and could serve
as diagnostic and therapeutic targets to treat NSCLC.

Our study suggested that a gene could be functionally
important even at a small level of overexpression such as FOXM1
and MYBL2 if they act as upstream regulators of genes of
interacting proteins involved in an important biological process
(20). However, our study has following limitations: (a) All the
findings are based upon computational analysis using integrated
data of gene expression, PPI, TFs, andmiRNAs; (b) Our study did
not integrate the data of gene mutations and gene copy number
variations, which could abolish the cis- and trans-regulatory
elements of a gene resulting aberrant gene expression and
cancer (96–98); and (c) Finally, our study lacks the experimental
validation and therefore need further experimental testing.

CONCLUSION

In this study, potential biomarkers and therapeutic targets
has been identified for NSCLC using systems bioinformatics
approach on the public gene expression data. All the genes in
“driver-network” (Cluster 1) and its upstream regulators, FOXM1
and MYBL2, which collectively overexpressed and involve in the
cell proliferation, and cell division are particularly promising
for further study. Furthermore, we identified several tumor
suppressor miRNAs and their interacting target genes in the
“driver-network.” Targeting two or more genes of the “driver-
network” may be synergistic and more effective therapy against
NSCLC. In our study, correlation expression, OS, and gene
mutations dataset with strong statistical support were used to
validate our finding. However, the biochemical study on the
potential biomarkers and therapeutic targets are necessary for
further validation on clinical samples.
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