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Long Noncoding RNAs in the Regulation of Oxidative Stress
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Oxidative stress takes responsibility for various diseases, such as chronic obstructive pulmonary disease (COPD), Alzheimer’s
disease (AD), and cardiovascular disease; nevertheless, there is still a lack of specific biomarkers for the guidance of diagnosis
and treatment of oxidative stress-related diseases. In recent years, growing studies have documented that oxidative stress has
crucial correlations with long noncoding RNAs (lncRNAs), which have been identified as important transcriptions involving the
process of oxidative stress, inflammation, etc. and been regarded as the potential specific biomarkers. In this paper, we review
links between oxidative stress and lncRNAs, highlight lncRNAs that refer to oxidative stress, and conclude that lncRNAs have
played a negative or positive role in the oxidation/antioxidant system, which may be helpful for the further investigation of
specific biomarkers of oxidative stress-related diseases.

1. Introduction

Oxidative stress is described as the imbalance of the oxida-
tion/antioxidant system caused by the accumulation of free
radicals, primarily the reactive oxygen species (ROS) and
the reactive nitrogen species (RNS), after the stimulation of
endogenous and external environment [1]. Indisputably,
oxidative stress could lead to cell death and the dysfunction
of physiology, which could ascribe to DNA damage, inflam-
mation, etc. [2, 3]. As oxidative stress has widely contributed
to diverse diseases, including AD, COPD, and cardiovascular
disease [4–6], specific biomarkers for the diagnosis and treat-
ment of oxidative stress related-diseases are urgently needed.
Studies have identified that oxidative stress is an important
activator of some critical antioxidative pathways, whereas

like Nrf2/Keap1/ARE [7] still cannot be effectively activated
to eliminate free radicals to exert the protective roles. COPD,
for example, has shown strengthening in oxidative stress and
reduced in the expression of the Nrf2 protein as well as the
antioxidant genes [8]; it is hinted that there are pivotal
molecules intervened in modulating oxidative stress.

Over the past decades, advanced sequencing technolo-
gies have uncovered that approximately 2% of the genome
is transcribed into messenger RNA (mRNA) and a myriad
of lncRNAs are pervasively transcribed [9]. lncRNAs are
characterized as transcripts with more than 200 nucleotides
(nt) in length with low or no ability to encode for proteins
[10]. It is appreciated that lncRNAs have relevance to
DNA expression, RNA transportation, etc. through molecu-
lar interactions: RNA-protein, RNA-RNA, and so forth [11,
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12]. Currently, a large portion of lncRNAs are functionally
characterized; nevertheless, a limited number of annotated
lncRNAs has enacted important roles in oxidative stress
related-diseases like the nervous system disease, respiratory
system disease, and cardiovascular system disease [13–15].
Recent reports have also revealed that lncRNAs played a
negative or positive role in response to oxidative stress [16,
17], which implicates that lncRNAs as key molecules may
involve in the oxidative stress field. And the low conserva-
tion and tissue-specific features of most lncRNAs suggest
that lncRNAs could enact specific biomarkers for oxidative
stress related-diseases [18, 19].

In the paper, we review the cis and trans pattern of
lncRNAs and the oxidation/antioxidant system. More
importantly, we underline the current researches of lncRNAs
that involved in the oxidation/antioxidant system and syn-
thesize their potential molecular mechanisms in modulating
the oxidative stress process for further investigation.

2. Oxidative Stress and
Nrf2/Keap1/ARE Pathway

ROS and RNS have constructed the primary proportion of
free radicals (FR), which are mainly derived from the accu-
mulation of exogenous FR such as cigarette smoking and
air pollution and endogenous FR primarily released from
various inflammatory cells like neutrophil and macrophage
[20]. Theoretically, the performance of oxidative stress is
accompanied by the activation of antioxidant pathways.
For instance, the nuclear factor erythroid 2-related factor
2/kelch-like ECH-associated protein 1/antioxidant response
element (Nrf2/Keap1/ARE) pathway is automatically exe-
cuted in response to oxidative stress to maintain the balance
of the oxidation/antioxidant system. Under physiological
condition, the Nrf2, a crucial antioxidant gene activator
of the Nrf2/Keap1/ARE pathway, is restrained at a low
level due to the combination of Keap1. With the stimula-
tion of oxidative stress, Nrf2 detaches from Keap1, enters
and accumulates in the nucleus, and combines with ARE;
afterwards, a series of antioxidative protein genes including
NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygen-
ase 1 (HO-1), and glutathione (GSH) are transcribed tomain-
tain the balance of oxidation/antioxidant [21] (see Figure 1).
But unexpectedly, a shortage of antioxidative proteins have
been found in numerous diseases; recent achievements of
the correlations between lncRNAs and oxidative stress may
provide a novel strategy for elucidating the phenomenon.

3. The Pattern of lncRNA in Targeting Genes

Currently, the criterion for the category of lncRNAs has not
yet reached an agreement due to the unclear functions of
numerous lncRNAs. To a consensus, lncRNAs have been
classified as sense, antisense, intronic, long intergenic non-
coding RNA (lincRNA), and bidirectional, according to the
transcription locus [22] (see Figure 2). Besides, lncRNAs
have also been categorized as signal, decoy, guide, and scaf-
fold molecules, based on the annotated lncRNAs [23].
According to the pattern of lncRNAs regulating target

genes, they are commonly identified as the cis and trans
lncRNAs [24]. As the cis and trans patterns are expected
to predict new and unexpected biology mechanisms of
lncRNAs [25], we briefly introduce the concept of the cis
pattern and trans pattern of lncRNAs with examples.
The cis pattern refers to lncRNAs that regulate the adja-
cent protein-coding genes or chromatin status. For exam-
ple, X chromosome inactivation-specific transcript (Xist),
~17 kb (in mice), ~19 kb (in human), is a lncRNA on
the X chromosome, and Xist as the cis pattern lncRNAs
plays a key role in X chromosome inactivation [26]. Ver-
sus the cis pattern, the trans, independent of positional
relationship, refers to lncRNAs whose transcriptional locus
is away from their functional locations. As an example,
HOX antisense intergenic RNA (HOTAIR) is located in
the human chromosome 12 with 2.2 kb in length; as a
scaffold, the 5′ domain and the 3′ domain are combined
with polycomb suppression complex 2 (PRC2) and
LSD1/CoREST/REST complex, respectively, to reedit the
chromosome state and regulate target genes [27].

4. lncRNAs Involving in the Oxidative Stress

Aberrant expression of lncRNAs has been observed in vari-
ous diseases [28]. Heretofore, a growing number of reports
have elucidated that lncRNAs have shown relevance with
the oxidation/antioxidant system; most lncRNAs have been
connected with the Nrf2/Keap1/ARE pathway or aimed to
the miRNA to exert functions. Based on the current
researches of lncRNAs in the oxidative stress field, the
lncRNAs implicated with oxidative stress are listed in the
table (see Table 1).

4.1. MALAT1. Metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) is a lincRNA with 7 kb in length. It
is documented that MALAT1 plays a negative or positive
role in response to oxidative stress. As an activator of the
antioxidant pathway, the overexpression of MALAT1 was
observed in hydrogen peroxide- (H2O2-) induced human
umbilical vein endothelial cells (HUVECs). Mechanically,
MALAT1 lowered the Keap1 level to activate and stabilize
the Nrf2 protein, thereby the antioxidant capacity was
enhanced to attenuate the oxidative stress damage, lipid per-
oxidation, and DNA damage in H2O2-induced HUVECs
[29]. MALAT1 has also been speculated as a Nrf2 regulator,
which binds to Nrf2 prior to the combination of Nrf2 and
ARE [30]. The regulatory interventions of MALAT1 suggest
that actions on the Nrf2/Keap1/ARE pathway might be an
important strategy of lncRNAs in regulating oxidative stress.
In addition, the p38MAPK pathway, which has been illus-
trated to modulate the apoptosis and oxidative stress [31],
was activated when MALAT1 was upregulated in human
lens epithelial cells and binds to SP1 [32]. In addition to
the above discussion, it has been observed that MALAT1
could target microRNAs (miRNAs) to alter the oxidative
stress. An example is that MALAT1 showed upregulated
in the brain microvascular endothelial cells under the con-
dition of oxygen-glucose deprivation (OGD), and cells
were protected from oxidative and ischemic stress damage;
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MALAT1 might target miR-145 to enhance the expression
of VEGF-A and ANGPT2 to implement function [33]. In
general, MALAT1 has implicated in oxidative stress, and
various functions of MALAT1 might be due to the
tissue-specific feature of lncRNAs.

4.2. H19. H19, 2.3 kb in length, is a highly conserved
lncRNAs. Knockdown of H19 performed sensitively to
H2O2, which is a common oxidative stress activator; mean-
while, six Nrf2-induced genes were reduced [34]. H2O2
could both downregulate H19 and its derived miR-675 in
the cardiac progenitor cells (CPC), and the influence could
be offset by the treatment of melatonin. It was further con-
firmed that H19-derived miR-675 targeted the 3′UTR of
USP10 to downregulate p53 and p21 proteins [35]. As the
MALAT1 which is mentioned above, H19 could also exert
functions through miRNAs. Overexpression of H19 attenu-
ated oxidative stress and inflammation in a diabetic mouse
model, and H19 might execute the antioxidant function

by targeting miR-657 to inhibit voltage-dependent anion
channel 1 (VDAC1) [36]. In addition, H19, as a compet-
ing endogenous RNA, targeted IL-16 and CXCR4 to affect
the invasion and migration ability of cholangiocarcinoma
cells; it might enact an oxidative stress receptor for the
activation of the antioxidant [37].

4.3. SCAL1. lncRNA SCAL1, also known as XLOC-004924
or LUCAT1, is a lincRNA located between the G
protein-coupled receptor 98 (GPR98) and arrestin
domain-containing 3 (ARRDC3) in human chromosome
5. SCAL1 is closely related to Nrf2, and knockdown exper-
iments of SCAL1 or Nrf2 showed a significant increase of
the toxicity of cigarette smoke (CS) in A549 cells. Mean-
while, the expression of SCAL1 was decreased, which
blocked Nrf2 and further inhibited the cellular activity
[38]; however, the recent studies also demonstrated that
SCAL1 performed conversely functions in cancers [39,
40]. All results indicated that SCAL1 might perform a
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Figure 1: Nrf2/Keap1/ARE pathway. Under the physiological condition, Nrf2 is degraded in a Keap1 manner, whereas with the stimulation
of oxidative stress, Nrf2 detaches from Keap1, enters into the nucleus, and activates the transcription of a variety of antioxidation genes.
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pivotal intermediate molecule in the process of Nrf2 regu-
lating antioxidant molecules.

4.4. NEAT1. Nuclear-enriched abundant transcript 1
(NEAT1) is a highly conserved lincRNA. It was observed

that NEAT1 could reverse the superoxide in LPS-treated
rat mesangial cells [41]. NEAT1 increased the proliferation
and metastasis of tumor cells and counteracted the
H2O2-induced neuronal damage. The high expression of
NEAT1 was also performed in enhancing the cell viability
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Figure 2: lncRNAs, according to the transcription locus relative to protein-coding genes, are classified as sense, antisense, intronic, intergenic,
and bidirectional. The blue represents genes of lncRNAs; the gray represents the protein-coding genes or exons of protein-coding genes, and
the arrow is the transcription direction. Sense: lncRNAs transcribe from the same strand of protein-coding genes with overlapping; antisense:
lncRNAs transcribe from the antisense strand of the strand of protein-coding gene with overlapping; intron: lncRNAs entirely transcribe from
the intron of protein-coding gene; intergenic: lncRNAs lie in two protein-coding genes; bidirectional: lncRNAs, in the same strand of
protein-coding gene, perform the opposite transcription direction.

Table 1: lncRNA involving in oxidative stress.

lncRNA Functions Relevant pathways References

MALAT1

(1) Downregulating Keap1 Nrf2/Keap1/ARE [29]

(2) Preemptively binding with Nrf2 to inhibit the expression of Nrf2-target genes Nrf2/Keap1/ARE [30]

(3) Binding with SP1 p38MAPK [32]

(4) Targeting miR-145 to enhance the expression of VEGF-A and ANGPT2 — [33]

H19

(1) Antagonizing the premature senescence of CPC — [35]

(2) Attenuating oxidative stress and inflammation in the diabetic mouse model — [36]

(3) As a competing endogenous molecule to affect the invasion and migration ability
of cholangiocarcinoma cells

— [37]

SCAL1 Driven by Nrf2, and protecting airway epithelial cells from oxidative stress Nrf2/Keap1/ARE [38]

NEAT1
(1) Reversing the superoxide in LPS-treated rat mesangial cells — [41]

(2) Figured as a neuroprotector in nerve injury caused by oxidative stress — [42]

gadd7 Induced by ROS, and low expression of gadd7 could significantly lower the ROS — [45]

MACC1-AS1
Promoting the proliferation of gastric cancer cells, inhibiting apoptosis, and
regulating metabolism

AMPK/Lin28 [47]

ODRUL Contributing to the toxicity in erythroid cells induced by AgNPs
Nrf2/Keap1/ARE;
PI4K-AKT/JNK

[48]

LINC01619 A “sponge” of miR-27a — [49]

LINC00963 Attenuating renal fibrosis and oxidative stress in chronic renal — [51]

FOXD3-AS1 A “sponge” of microRNA-150 — [53]

BDNF-AS
Involving in decreasing cell viability and increasing cell apoptosis induced via
oxidative stress

— [55]
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in neuro2A cells, which has showed oxidative stress and
cell damage with the induction of H2O2; it suggests that
NEAT1 could play as a neuroprotector in nerve injury
caused by oxidative stress [42].

4.5. gadd7. Growth arrested DNA damage-inducible gene 7
(gadd7) is described as a contributor to DNA damage, lipo-
toxic stress, and nonlipid oxidative stress [43, 44]. It is the
first lncRNA that presented in a feed-forward loop with oxi-
dative stress and also enriched in ROS environments derived
from lipotoxic stress. The silence of gadd7 could significantly
lower ROS and delay and reduce ROS-induced endoplasmic
reticulum stress [45]. Another example is that the dysregula-
tion of gadd7 was observed in varicocele-related sperm dam-
ages [46]; as a result, gadd7 is speculated as an important
participator in sperm damage caused by oxidative stress.

4.6. MACC1-AS1.MACC1-AS1 is transcribed from the anti-
sense of MACC1, which is a gastric cancer metastasis-
associated regulator. MACC1-AS1 has the ability to stabilize
and enhance the expression of MACC1. High expression
of MACC1-AS1 could promote the proliferation of gastric
cancer cells, inhibit apoptosis, and regulate metabolism.
Mechanistically, the AMPK/Lin28 pathway might coordi-
nate with the process of MACC1-AS1 to enhance glycol-
ysis and antioxidant capacity to modulate metabolic
plasticity [47].

4.7. ODRUL. Osteosarcoma doxorubicin resistance-related
upregulated lncRNA (ODRUL) has been elucidated to be
induced by Nrf2 in erythroid cells treated with AgNPs.
Although Nrf2 is a well-recognized antioxidant core mole-
cule, it also shows cell damage under oxidative stress. Nrf2
promoted the transcription of ODRUL in K562 cells, thereby
ODRUL interacted with PI4Kα protein to target AKT and
JNK, negatively regulated Bcl2 levels, and eventually trig-
gered cell death [48].

4.8. LINC01619. LINC01619 acts as a “sponge” lincRNA of
miR-27a, which has been illustrated involving endoplasmic
reticulum stress and podocyte injury in diabetic nephropa-
thy. It is speculated that LINC01619, as a competitive endog-
enous RNA, triggered oxidative stress and regulated
miR-27a/FOXO1 to the mediation of endoplasmic reticulum
stress and podocyte injury [49].

4.9. LINC00963. LINC00963 was initially revealed to involve
in prostate cancer [50]. Blocking LINC00963 weakened the
cell apoptosis, and LINC00963 might enhance the expres-
sion of FoxO3 to attenuate renal fibrosis and oxidative
stress in chronic renal failure. LINC00963 is a potential
marker in indicating the progression and outcome of
chronic renal failure [51].

4.10. lnc-CD1D-2:1. lnc-CD1D-2:1, a lincRNA with two
exons, has changed synchronously with ROS and performed
increasingly in melanocytes irradiated by ultraviolet radia-
tion B (UVB). Besides, lnc-CD1D-2:1, which was induced fol-
lowing UVB irradiation, inhibited phosphorylation of p38,

and it is implied that ROS involved in UVB irradiation to
produce melanin may be attributed to lnc-CD1D-2:1 [52].

4.11. FOXD3-AS1. FOXD3-AS1 is transcribed from the anti-
sense of FOXD3, and it could accelerate the apoptosis of
lung epithelial cells treated by oxidative stress. It has been
confirmed that microRNA-150 is a protector of lung epithe-
lial cell injury; FOXD3-AS1, as a “sponge” or the endoge-
nous competitor of microRNA-150, blocked the protective
function of microRNA-150 and enhanced the apoptosis of
lung epithelial cells induced by oxidative stress [53].

4.12. BDNF-AS. BDNF-AS, a nature antisense lncRNA of
BDNF, has been documented as a negative regulator of
BDNF [54]. The content of ROS and MDA went with the
expression of BDNF-AS; inversely, the antioxidant proteins
like superoxide dismutase and catalase were strikingly upreg-
ulated. Induced by oxidative stress, BDNF-AS performed in
decreasing cell viability and increasing cell apoptosis [55].

5. Conclusions

In recent years, cumulative studies have elucidated that
lncRNAs, which were originally regarded as “junk” and
“noise,” have widely involved in cancer, immune response,
etc. [56, 57] and associated with oxidative stress [17]. Theo-
retically, the antioxidant system is activated in response to
oxidative stress; however, crucial protective regulators like
Nrf2 have shown insufficient in COPD, Alzheimer’s disease,
etc. [58]. Here, we highlight the lncRNAs associated with
oxidative stress and present their potential mechanisms. In
conclusion, lncRNAs could exert cytoprotective or damaging
effects in intervening the Nrf2/Keap1/ARE antioxidant path-
way, interacting with miRNA, etc. Dramatically, some
lncRNAs have also performed opposite roles in different
studies, which might be due to the tissue-specific feature of
the lncRNAs. Our study suggests that these oxidative
stress-related lncRNAs, as potential pivotal biomarkers and
medicine targets, may provide a novel strategy for the diag-
nosis and treatment of diseases. Future studies will contrib-
ute to the precise mechanism of lncRNAs in the regulation
of oxidative stress.
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