Hum Genet (2007) 121:697-709
DOI 10.1007/s00439-007-0359-6

ORIGINAL INVESTIGATION

Complex chromosome 17p rearrangements associated
with low-copy repeats in two patients with congenital anomalies
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Abstract Recent molecular cytogenetic data have shown
that the constitution of complex chromosome rearrange-
ments (CCRs) may be more complicated than previously
thought. The complicated nature of these rearrangements
challenges the accurate delineation of the chromosomal
breakpoints and mechanisms involved. Here, we report a
molecular cytogenetic analysis of two patients with con-
genital anomalies and unbalanced de novo CCRs involving
chromosome 17p using high-resolution array-based
comparative genomic hybridization (array CGH) and fluo-
rescent in situ hybridization (FISH). In the first patient, a 4-
month-old boy with developmental delay, hypotonia,
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growth retardation, coronal synostosis, mild hypertelorism,
and bilateral club feet, we found a duplication of the
Charcot-Marie-Tooth disease type 1A and Smith-Magenis
syndrome (SMS) chromosome regions, inverted insertion
of the Miller-Dieker lissencephaly syndrome region into
the SMS region, and two microdeletions including a
terminal deletion of 17p. The latter, together with a duplica-
tion of 21q22.3-qter detected by array CGH, are likely
the unbalanced product of a translocation t(17;21)
(p13.3;922.3). In the second patient, an 8-year-old girl with
mental retardation, short stature, microcephaly and mild
dysmorphic features, we identified four submicroscopic
interspersed 17p duplications. All 17 breakpoints were
examined in detail by FISH analysis. We found that four of
the breakpoints mapped within known low-copy repeats
(LCRs), including LCR17pA, middle SMS-REP/LCR17pB
block, and LCR17pC. Our findings suggest that the LCR
burden in proximal 17p may have stimulated the formation
of these CCRs and, thus, that genome architectural features
such as LCRs may have been instrumental in the generation
of these CCRs.

Introduction

The majority of constitutional chromosomal abnormalities
are thought to be simple rearrangements, involving less
than three breaks in one or two chromosomes. It is known
that genomic architectural features such as low-copy repeat
(LCR) structures may play an important role in the forma-
tion of these abnormalities (Lupski 1998; Stankiewicz and
Lupski 2002). LCRs, also termed segmental duplications or
duplicons, encompass apparently normal stretches of geno-
mic DNA, often containing genes. LCRs are present in
more than one copy in the genome and are defined by a
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>1kb size and a >90% sequence identity (Bailey et al.
2001, 2002; Eichler 2001). LCRs can mediate recurrent
DNA rearrangements such as deletions, duplications, and
inversions through chromosome or chromatid misalign-
ment followed by nonallelic homologous recombination
(NAHR). The majority of the currently known chromosome
microdeletion/duplication syndromes result from NAHR
between large (usually >10 kb), highly identical (>95%)
LCRs and are, therefore, also termed genomic disorders
(Lupski 1998; Stankiewicz and Lupski 2002; Lupski and
Stankiewicz 2006). In addition to recurrent events, break-
points of nonrecurrent rearrangements have been associated
also with genomic architectural features including LCRs
and AT-rich palindromic sequences (Stankiewicz et al.
2003; Shaw and Lupski 2004, 2005; Kriek et al. 2006; Lee
et al. 2006).

Complex chromosome rearrangements (CCRs) are rela-
tively rare events, and can be classified into groups based
on the number of breakpoints and type of rearrangement,
being (1) three way exchange with three breaks in three
involved chromosomes, (2) two way exchange that coin-
cides two separate reciprocal translocations, and (3) excep-
tional CCRs with multiple breaks and complicated
rearrangements (Bartels etal. 2006). CCRs have been
observed in phenotypically normal individuals as well as in
individuals with mental retardation and/or congenital
abnormalities (Pai et al. 1980; Battisti et al. 2003; Kuechler
et al. 2005). As a consequence, the characterization of these
rearrangements is essential for reaching a proper clinical
diagnosis and for estimation of the recurrence risk. In stan-
dard clinical practice, this characterization is usually
achieved by conventional cytogenetic approaches only,
thus submicroscopic imbalances at the breakpoints will
remain undetected because of the low resolution of such
approaches. Recently, the use of high-resolution molecular
techniques such as array-based comparative genomic
hybridization (array CGH) have contributed to a growing
awareness of the presence of CCRs and cryptic imbalances
in patients with MR and/or congenital anomalies (Vissers
et al. 2003; Weise et al. 2003; Lespinasse et al. 2004; Pat-
salis et al. 2004; Shaw-Smith et al. 2004; Vermeulen et al.
2004; Borg et al. 2005; de Vries et al. 2005; Chen et al.
2006; Gajecka et al. 2006; Karmous-Benailly et al. 2006).
Although molecular mechanisms have been studied in
recurrent, simple rearrangements, the role of genomic
architecture underlying the occurrence of nonrecurrent
CCRs, remains as yet poorly understood because until
recently detailed identification of the exact breakpoints was
lacking.

Here, we investigated the potential involvement of
genome architectural features such as LCRs in the occur-
rence of nonrecurrent 17p CCRs in two patients with con-
genital anomalies. The proximal chromosome 17p arm is
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associated with a wide variety of recurrent chromosome
aberrations resulting from NAHR between LCRs including
four well known genomic disorders: Charcot—-Marie-Tooth
disease type 1A (CMT1A) [MIM 118220], hereditary neu-
ropathy with liabilities to pressure palsies [MIM 162500],
Smith-Magenis syndrome (SMS) [MIM 182290] and the
Potocki-Lupski syndrome associated with duplication
17p11.2 (Pentao et al. 1992; Reiter et al. 1996; Chen et al.
1997; Potocki et al. 2000; Inoue et al. 2001; Shaw et al.
2002; Bi etal. 2003; Potocki etal. 2007). By applying
high-resolution array CGH to these two novel CCRs we
observed an unexpected level of complexity. Subsequent
FISH analyses revealed the presence of LCRs at the CCR
breakpoints, thus providing a potential mechanistic basis
for the occurrence of the CCRs studied. We propose that
genomic architectural features such as LCRs may underlie
the occurrence of these CCRs.

Patients, materials, and methods
Patients

Patient 1-the male proband was born to a 42-year-old
woman and 43-year-old man at 39 week’s gestation by
Cesarean section. Because of an abnormal ultrasound
showing prominent nuchal fold, growth retardation, club
feet, and hyperechoic bowel, amniocentesis was performed
at 20 weeks of gestation and an abnormal karyotype with
17pter monosomy and 17p13.1p13.3 trisomy was identi-
fied. The birth weight was 2,840 g (10th centile), length
51 cm (60th centile), and head circumference 36 cm (50th
centile). Apgar scores were 6 and 8§ at 1 and 5 min, respec-
tively. The bilateral club feet were corrected by surgery.
Echocardiogram revealed bicuspid aortic valve. Physical
exam at 11 months revealed weight and height at the 3rd
centile while his head circumference had increased to the
75th centile. There was a premature closure of the metopic
suture, with anterior fontanel still open (2 x 2 cm) and mild
hypertelorism. At the age of 16 months, he was an amiable,
interpersonally interactive little boy who had developmen-
tal delay with babbling but no clear words. In addition, he
suffered from truncal hypotonia but he was able to pull to
stand. His skin was dry with marked eczema and the right
testis was still undescended.

Patient 2—this 8-year-old, moderately mentally retarded
girl was born after an uneventful pregnancy at 40 week’s
gestation, with a normal birth weight of 3,400 g. Apgar
scores were 3, 5, and 6 at 1 min, 5 min, and 10 min, respec-
tively. Feeding problems were present from birth. Her
development was moderately delayed with an IQ score of
50 points at the age of 4 years and 9 months. At the age of 6
years and 10 months, she had a short stature of 110 cm
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(<3rd centile) and a head circumference of 49 cm (10th
centile) with distinctive facial features such as synophrys,
upward slanting palpebral fissures, flattened upper-ear heli-
ces with large ear lobules, an upturned nasal tip, and a
broad mouth with a long philtrum and full lower lip. She
had a cardiac murmur; short broad hands with clinodactyly
of the fifth fingers, and absence of distal interphalangeal
joint creases; short broad feet with short toes and a slight
skin syndactyly between the second and third toes bilater-
ally. She had an outgoing personality and easily approaches
strangers. At the age of 8 years, she started to complain
about painful feet and developed a bilateral pes cavus
deformity. Neurological examination showed areflexia and
electromyography studies were consistent with a demyelin-
ating neuropathy. In addition, treatment for precocious
puberty was started.

We obtained samples from the patients and their family
members after acquiring informed consent approved by the
Institutional Review Board for Human Subject Research at
Baylor College of Medicine, Houston, and Radboud Uni-
versity Nijmegen Medical Centre, Nijmegen.

Array-based comparative genomic hybridization

Genomic DNA was isolated from peripheral blood lympho-
cytes or from lymphoblastoid cell lines by routine proce-
dures. Two pools of reference DNA were used—one
containing equal amounts of genomic DNA from ten
healthy male blood donors and one containing equal
amounts of genomic DNA from ten healthy female blood
donors. Isolation of genomic DNA, DNA labeling, hybrid-
ization of labeled DNA to a 32,447-BAC array, and spot
identification were performed as described elsewhere (de
Vries et al. 2005). In brief, 500 ng of genomic DNA from
each patient was labeled by random priming with Cy3-
dUTP or Cy5-dUTP (Amersham Biosciences) and hybrid-
ized to the sex-mismatched reference pool. Test and refer-
ence samples were mixed with 120 pg of human Cot-1
DNA (Roche), co-precipitated, and resuspended in 120 pl
of a hybridization solution containing 50% formamide,
10% dextran sulfate, 2 x SSC, 4% SDS, and 10 mg/ml of
yeast tRNA (Invitrogen). Hybridization and post-hybridiza-
tion washing procedures were performed using a GeneTac
Hybridization Station (Genomic Solutions). An 18-h
hybridization at 37°C with active circulation of the probe
was performed, followed by five post-hybridization wash
cycles in 50% formamide and 2 x SSC at 45°C, and five
wash cycles in phosphate buffer at 20°C. Slides were dried
by centrifugation and scanned using a GenePix Autoloader
4200AL laser scanner (Axon Instruments). Spot identifica-
tion and two-color fluorescence intensity measurements
were obtained using the GenePix 5.1 software, and all data
were entered into a database for subsequent analysis.

Following normalization, the log, transformed test-over-
reference ratios were analyzed for loss and gain of genomic
regions by a standard Hidden Markov Model (Rabiner
1989; de Vries et al. 2005).

Fluorescent in situ hybridization

PAC and BAC probes specific for human chromosome 17p
were selected based on their physical location within the
affected 17p region (Inoue et al. 2001; Bi et al. 2002; http://
www.genome.ucsc.edu/). DNA was isolated from liquid
cultures using Perfectprep Plasmid Mini (Eppendorf, Ham-
burg, Germany). The relative alignments of the selected
BACs were determined by BLAST searches against the
high-throughput genome sequence database (http://
www.ncbi.nlm.nih.gov/blast) and assembled using the
Sequencher software (Gene Codes Corp., Ann Arbor, MI,
USA). FISH was essentially performed as described (Stan-
kiewicz et al. 2001a). In brief, 100-200 ng of isolated BAC
or PAC DNA was labeled with biotin or digoxigenin by
nick-translation (BioNick Labeling System, Invitrogen;
DIG-Nick Translation Mix, Roche) and visualized with
FITC avidin (Vector) or rhodamine-labeled antibodies
(Sigma). Patient’s chromosomes derived from lymphoblast
cell lines were counterstained with DAPI (Sigma). The sig-
nals from the normal chromosomes 17 were used as inter-
nal control. Cells were analyzed using a Zeiss Axioskop
fluorescence microscope equipped with an appropriate filter
combination and a CCD camera. Monochromatic images
were captured and pseudocolored using MacProbe 4.2.2
(Perceptive Scientific Instruments, League City, TX, USA)
on a Power Macintosh G4 system.

Computational analyses

For the identification of novel LCRs associated with the
CCRs, ~100 kb fragments of genomic sequence flanking
breakpoints for which no LCRs are currently known, were
analyzed for sequence homology (http:// www.genome.
ucsc.edu; May 2004 freeze). Interspersed repeat sequences
within the downloaded DNA sequence were eliminated by
RepeatMasker (http:// www.genome.ucsc.edu) and the
repeat masked genomic sequences were analyzed using
NCBI BLAST?2 (http://www.ncbi.nlm.nih.gov/blast/bl2seq/
bl2.html).

Results
Cytogenetic and molecular analyses of patient 1

Conventional cytogenetic analysis at 550-band resolution in
patient 1 (Fig. la—c) revealed an abnormal male karyotype
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Fig. 1 Patient 1 (a—c) at the age
of 4 months. Patient 2 (d—e) at
the age of 6 years 10 months

with an apparent complex rearrangement involving the
short arm of chromosome 17. Parental chromosomes at
600-band resolution were normal. FISH analysis confirmed
this complex rearrangement and, in addition, revealed a
deletion of 17pter, a duplication of the genomic region con-
taining the SMS and the CMT1A regions, and an inversion
involving the Miller-Dieker lissencephaly syndrome
(MDLS) region. The presence of these abnormalities in the
parental chromosomes was excluded by FISH. The
patient’s karyotype was designated as:

46,XY,der(17).ish del(17)(p13.3)dup(17)(p11.2p12)
inv(17)(p11.2p13.3) dn.

Subsequently, array CGH was used to refine the break-
points and genomic sizes of the complex 17p rearrange-
ment. The deletion involving the telomeric region of 17p
was determined to be ~600 kb in size, whereas the duplica-
tion containing the SMS and CMT1A region was ~6.1 Mb
in size. Interestingly, array CGH revealed two additional
submicroscopic alterations that had remained undetected
using previous approaches. These included an ~2.2 Mb
interstitial deletion in 17p12 and an ~4.4 Mb duplication in
21q22.3 (Fig. 2a, b).

Dual color FISH experiments were performed to inde-
pendently map each of the chromosome breakpoints
(Fig. 3; Table 1). FISH analyses confirmed the deletion of
the 17p telomeric region (Fig.3a) as well as the
dup(17)(p11.2p12) (Fig. 3b). The FISH results of the dupli-
cation were consistent with a tandem duplication (Fig. 3b).
Interestingly, the MDLS region was found to be inserted
into the middle SMS-REP/LCR17pB block in the genomic
region involved in SMS (Fig. 3c). Unexpectedly, the dupli-
cated fragment 21q22.3-qter was localized on der(17),
likely representing the product of an unbalanced transloca-

@ Springer

tion t(17;21)(p13.3;q22.3) (Fig. 3d). FISH analyses on the
parental chromosomes excluded the presence of a balanced
t(17;21)(p13.3;g22.3). Based on these results, the patient’s
karyotype was redefined as:

46,XY,der(17).ish del(17)(p13.3)del(17)(p12p12)
dup (17)(p11.2p12)ins(17)(p11.2p13.3p13.2) t(17;21)
(pl 3.3;g22.3).arr cgh 17p13.3(CTD-2348K1—RP11-
143 G11)x1,17p12x(RP11-165H21—RP11-590H8)
x1,17 p12p11.2(RP11-687M21— CTD-2019P4)x3,
21g22.3 (RP11-282120—RP11-1000121)x3 dn.

Cytogenetic and molecular analyses of patient 2

Conventional cytogenetic analysis at 550-band resolution
in patient 2 (Fig. 1d—e) showed a normal 46, XX karyotype.
Multiplex ligation-dependent probe amplification revealed
normal disomic copy numbers of the subtelomeric regions.
Subsequent array CGH revealed four interspersed microdu-
plications involving the short arm of chromosome 17, in
total comprising 8.8 Mb of genomic sequence (Table 2). De
novo occurrence was established by a similar array CGH
analysis with DNA obtained from the accompanying par-
ents (Fig. 2¢; de Vries et al. 2005). Duplication I'in 17p13.2
was determined as ~2.9 Mb in size; duplication II in
17p13.1 was assessed as ~1.4 Mb in size; duplication III in
17p12 was estimated as ~2.9 Mb in size and included the
PMP22 gene known to cause CMT1A disease with dosage-
specific overexpression of PMP22 (Patel etal. 1992).
Duplication IV in 17pl1.2 was determined as being
~1.5 Mb in size.

Dual color FISH analysis was used to independently
confirm the array CGH results (Fig. 4; Table 2). In addition,
the parental chromosomes were evaluated for predisposing
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Fig. 2 Chromosome 17 (patient 1 and 2) and chromosome 21 (patient
1) array CGH profiles. On the x-axis, clones are ordered by Mb posi-
tion on chromosome 17 and 21, respectively, and on the y-axis log, 7/
R ratios are shown. Hidden Markov Model was used to identify the
duplications (green lines) and deletions (red lines) in patient 1 and 2. a
In patient 1, chromosome 17 shows two interspersed deletions of

rearrangements within chromosome 17p potentially
explaining the complexity of the CCR, however, no such
rearrangements were observed. The patients karyotype was
finally designated as:

46,XX.ish dup(17)(p13.1p13.2)dup(17)(p13.1p13.1)
dup(17)(p12p12)dup(17)(p11.2p11.2).arr cgh 17pl13.1
p13.2(RP11-59719—RP11-222J21)x3,17p13.1(RP11-
63C7—RP11-324C22)x3, 17p12(RP11-333I5—RP
11-640N23)x3,17p11.2(RP11-304M 17— CTD-2022C7)
x3 dn.

Overview of the 17p breakpoints in both patients

In total, 17 breakpoints were identified and molecularly
characterized at one BAC clone resolution in these two
patients, with nine breaks in patient 1 and eight breaks in
patient 2. In patient 1, one of the nine breakpoints
(inverted insertion of the MDLS region) was mapped
within the middle SMS-REP/LCR17pB block using FISH
with these LCR flanking clones RP1-178F10 and RP11-
28B23. In patient 2, three of the eight breakpoints were
associated with LCRs in proximal 17p. The proximal
breakpoint of duplication III was located in LCR17pA,
between subunits LCR17pA/B and LCRI17pA/D using
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~600 kb (17p13.3-Del I) and ~2.2 Mb (17p12-Del II), respectively,
and a duplication of ~6.1 Mb (Dup I). b Additionally, a 4.4 Mb dupli-
cation of 21q22.3 was observed (Dup II). ¢ Patient 2 showed four inter-
spersed duplications on 17pl1-p13 (Dup I-Dup 1V), in total
comprising ~8.8 Mb of genomic sequence. All alterations were shown
to be de novo

FISH with LCR17pA/B- specific BAC clone RP11-640115
and LCR17pA/D- and LCR17pA/C specific BAC clone
CTD-3157E16 that are known to cross-hybridize to their
homologous copies LCR17pB, LCR17pD and LCRq7pC,
respectively (Stankiewicz et al. 2004). BAC clone RP11-
640115 showed four fluorescent signals on der(17) (repre-
senting two normal and two duplicated copies of
LCR17pA/B (dup III) and LCR17pB (dup IV) and CTD-
3157E16 three signals on der(17) in analyzed interphase
nuclei (depicting normal, not duplicated copies of
LCR17pA/D LCR17pC, and LCR17pD). In duplication IV
the distal breakpoints was mapped in the middle of SMS-
REP, between PAC clone RP1-178F10 (flanks the middle
SMS-REP on the telomeric side) and BAC clone RP11-
448D22 (middle SMS-REP-specific) (Fig. 4d). The proxi-
mal breakpoint of dup IV was mapped in LCR17pC using
FISH with its specific BAC clone RP11-121A13. DNA
sequence analysis of the genomic regions surrounding the
remaining 13 chromosome breakpoints revealed no signifi-
cant homology or evidence of low-copy repeats. Figure 5
shows an overview of the proximal 17p breakpoints and its
association with genomic architectural features observed
in both patients. In addition, a selected set of breakpoints
previously reported in other patients with 17p aberrations
that are associated with LCRs is displayed.
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Fig. 3 Ideograms and FISH results of patient 1. Schematic represen-
tation of a normal 17p and der(17) (black and white) with translocated
chromosome 21 material (blue). The location of the FISH probes are
shown on the left side of each figure panel; der(17) is indicated on
FISH pictures by a white arrow. a Terminal deletion of 17pter was
validated using BAC clones RP11-1260E13 (red) and CTD-2326F1
(green) (del 1). b FISH with PMP22-specific PAC RP1-150M12 (red)
RAIl-specific and BAC RP11-525011 (green) revealed direct

Discussion

The availability of molecular genome profiling techniques
such as array CGH have markedly enhanced the resolution
of chromosome studies and enabled high-resolution
genome analysis, thus proving a more accurate method for
the identification and delineation of chromosomal rear-
rangements (Vissers et al. 2003; Shaw-Smith et al. 2004;
Cheung et al. 2005; de Vries et al. 2005; Johnston et al.
2007). As a result, precise definitions of CCRs and their
true complexity can now be better established (Astbury
et al. 2004; Thienpont et al. 2006). An apparent underesti-
mation of the full complexity of CCRs is well demonstrated
in patient 1, in whom a complex karyotype was identified,
including an inverted insertion of the MDLS region into the
middle SMS-REP/LCR17pB block, two microdeletions
(terminal and interstitial in 17p12) and a microduplication
involving both SMS and CMTI1A chromosome regions.
Furthermore, a duplication of 21q22.3qter translocated onto
17p13.3 was identified. The interstitial deletion on 17p12,
as well as the duplication of 21q22.3, were not identified
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duplication of the CMTI1A and SMS regions in 17p12p11.2 (dup I).
¢ FISH with PAC RP1-95H6 (red; adapted from Chong et al. 1997)
and BAC GS-202L17 (green; adapted from Knight et al. 2000) showed
inverted insertion of the MDLS region into the SMS region. d Array
CGH also identified a duplication of 21q22.3 (dup II). Additional FISH
analysis using BAC clones RP11-40L10 (green) and RP11-16B19
(red) revealed that the duplicated material of 21g22.3 was translocated
onto der(17). Summary of FISH results is provided in Table 1

prior to array CGH analysis. Thus, by unraveling the com-
plexity of CCRs using array CGH, the added value of this
technique to conventional karyotyping was demonstrated. It
is, however, noteworthy that current array CGH techniques
are incapable of detecting balanced alterations such as
inversions, and only provide information regarding geno-
mic gains and losses. FISH can augment the study of CCRs
by providing genomic positional and orientational informa-
tion of imbalances. This is well demonstrated by the appar-
ently balanced inverted insertion of the MDLS region into
the middle SMS-REP/LCR17pB block in patient 1, which
would have escaped attention if array CGH would have
been the only technique employed.

A total of 106 genes in patient 1 and 133 genes in patient
2 were affected by genomic imbalances (gains and losses)
because of the CCRs. For patient 1, the number of genes
affected is less than expected based on the average number of
15 genes/Mb on chromosome 17 and 6 genes/Mb on
chromosome 21. It thus seems that the CCR in patient 1
affected relatively gene poor regions. For patient 2, the total
number of genes affected was in concordance with the
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Table 1 Summary of the array CGH and FISH results patient 1

Chromosome band Clone® Distance Der(17) Technique(s)
from pter (Mb)®
17p13.3 CTD-2348K1 0.1 - Array CGH
17p13.3 CTD-2326F1 (Green) 0.1 - Array CGH/FISH
17p13.3 CTD-2573J8 0.2 - Array CGH Del I
17p13.3 RP11-1260E13 (Red) 0.3 - FISH
17p13.3 RP11-143G11 0.6 - Array CGH
17p13.3 RP11-488017 0.6 Normal Array CGH
17p13.3 RP11-411G7 0.6 Normal FISH
17p13.3 RP1-95H6" (Red) 2.7 Inv ins FISH
17p13.2 RP11-148L19 4.1 Inv ins FISH
17p13.2 GS-202L17°¢ (Green) 4.9 Inv ins FISH Middle SMS-REP/
LCR17pB
17p13.2 RP11-373N8 5.5 Inv ins FISH
17p12 RP11-466J1 11.1 Normal Array CGH
17p12 RP11-22L4 11.2 Normal FISH
17p12 RP11-27IN1 11.4 Normal Array CGH
17p12 RPI11-165H21 11.5 - Array CGH
17p12 RP11-802E21 11.6 - Array CGH
17p12 RP11-64L11 13.1 - FISH Del IT
17p12 RP11-352N24 13.2 - Array CGH
17p12 RP11-590H8 13.4 - Array CGH
17p12 RP11-112H7 13.6 Normal Array CGH
17p12 CTD-2120F7 13.7 Normal Array CGH
17p12 RP11-687M21 13.9 ++ Array CGH
17p12 RP11-78J16 14.1 ++ Array CGH
17p12 RP1-150M12¢ (Red) 15.4 ++ FISH
17p11.2 RP11-209J20 16.3 ++ FISH
17p11.2 RP11-525011 (Green) 17.6 ++ FISH Dupl
17p11.2 RP1-178F10 18.4 ++ FISH
17p11.2 RP11-28B23 18.7 ++ FISH
17p11.2 RPI11-1113L8 19.3 ++ FISH
17p11.2 RP11-277B5 19.4 ++ FISH
17p11.2 CTD-2019P4 19.6 ++ Array CGH/FISH
17p11.2 CTD-2020J20 19.7 Normal Array CGH
17p11.2 RP11-78007 19.7 Normal FISH
Chromosome band Clone Distance from Der(21) Technique(s)
pter (Mb)®
21q22.3 RP11-690D9 42.5 Normal Array CGH
21q22.3 RP11-282120 42.6 ++ Array CGH
21q22.3 RP11-40L10 (Green) 44.2 ++ FISH Dup II
21q22.3 RP11-16B19 (Red) 45.1 ++ FISH Located on der(17)
21q22.3 RP11-1000121 46.8 ++ Array CGH

‘-’ Deleted, ‘++’ duplicated, ‘inv ins’ inverted inversion. Extent of deletion and duplication is indicated at the right. Breakpoint-associated LCRs

are indicated in bold

* Clones indicated by red or green are shown in Fig. 3a—d in the respective colors
b LIS I-specific PAC clone (adapted from Chong et al. 1997)

¢ Adapted from Knight et al. 2000
4 PMP22-specific PAC clone

¢ Distances from pter to the clone midpoints
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Table 2 Summary of the array CGH and FISH results patient 2

Chromosome band Clone® Distance Der(17) Technique(s)
from pter (Mb)®
17p13.2 RP11-810M2 (Green) 4.0 Normal Array CGH/FISH
17p13.2 RP11-59719 (Red) 4.1 ++ Array CGH/FISH
17p13.2 RP11-106A7 4.3 ++ Array CGH/FISH
17p13.2 RP11-21707 43 ++ Array CGH
17p13.1 RP11-816H10 6.7 ++ Array CGH Dup I
17p13.1 RP11-417F20 6.9 ++ array CGH/FISH
17p13.1 RP11-558E15 7.1 ++ Array CGH
17p13.1 RP11-222J21 (Green) 7.2 ++ Array CGH/FISH
17p13.1 RP11-98D15 (Red) 7.3 Normal Array CGH/ FISH
17p13.1 RP11-205D17 73 Normal Array CGH
17p13.1 RP13-626G5 7.4 Normal Array CGH
17p13.1 RP11-63C7 7.7 ++ Array CGH
17p13.1 RP11-441N13 7.8 ++ Array CGH/FISH
17p13.1 RP11-452D1 8.1 ++ Array CGH/FISH
17p13.1 RP11-11113 9.0 ++ Array CGH/FISH Dup I
17p13.1 RP11-85B7 9.1 ++ Array CGH
17p13.1 RP11-342E3 9.1 ++ Array CGH/FISH
17p13.1 RP11-324C22 9.2 ++ Array CGH
17p13.1 RP11-482E13 9.2 Normal Array CGH/FISH
17p13.1 RP11-589N11 9.2 Normal Array CGH
17p12 RP11-560N10 12.3 Normal Array CGH/FISH
17p12 RP11-67413 12.5 Normal Array CGH
17p12 RP11-746E8 12.5 ++ FISH
17p12 RP11-333I5 12.6 ++ Array CGH/FISH
17p12 RP11-601N13 (Green) 13.9 ++ FISH
17p12 RP11-686G16 15.1 ++ Array CGH Dup III
17p12 RP11-726012 (Red) ) 15.2 ++ Array CGH/FISH
17p12 RP11-385D13 15.4 ++ FISH
17p12 RP11-640N23 15.5 ++ Array CGH
17p12 RP11-640115 15.6 ++ FISH LCR17pA
17p12 CTD-3157E16 15.7 Normal FISH
17p12 RP11-59N13 15.7 Normal Array CGH
17p11.2 RP11-484D23 18.3 Normal Array CGH
17p11.2 RP11-667E24 18.4 Normal Array CGH
17p11.2 RP1-178F10 18.4 Normal FISH
17p11.2 RP11-448D22 (Green) 18.6 ++ FISH Middle SMS-REP/
LCR17pB
17p11.2 RP11-304M17 18.6 ++ Array CGH
17pl11.2 CTD-2145A24 (Red) 18.7 ++ FISH Dup IV
17p11.2 RP11-137E6 20.0 ++ Array CGH/ FISH
17p11.2 CTD-2022C7 20.0 ++ Array CGH
17p11.2 RP11-121A13 20.1 ++ FISH LCR17pC
17p11.2 CTD-2313N10 20.3 Normal Array CGH
17p11.2 RP11-185K8 20.4 Normal Array CGH

‘++” duplicated. Extent of duplication is indicated at the right. Breakpoint-associated LCRs are indicated in bold
# Clones indicated by red or green are shown in Fig. 4a—d in the respective colors
® Distances from pter to the clone midpoints
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Fig. 4 Ideograms and FISH results of patient 2. Schematic represen-
tation of the normal 17p and der(17). The locations of the FISH probes
are shown on the left side of each figure panel. a The distal breakpoint
of duplication I showed a relatively simple fluorescence signal pattern
with probes RP11-810M2 (green; normal) and RP11-59719 (red;
duplicated). b The proximal breakpoint of duplication I showed a
duplicated signal for RP11-222J21 (green) and a normal signal for
RP11-98D15 (red). ¢ Direct orientation of duplication III was shown
using BAC clones RP11-601N13 (green) and RP11-726012 (red). d

expected number of genes affected by the CCR. Given the
large number of genes affected in each patient and the fact
that only a fraction of these genes may be subject to gene
dosage effect causing a phenotype, it is difficult to correlate
any specific gene with the observed phenotypes. However, a
few genes affected by the CCRs are well-established dosage
sensitive genes, including RAII in patient 1 and PMP22 in
patient 2, which are known to cause disease when duplicated.
Recently, duplication of RAII has been shown to cause a
physical and behavioral phenotype termed Potocki—Lupski
syndrome (Potocki et al. 2007). However, due to the young
age of patient 1, as well as the imbalances of other genomic
regions, assessing phenotype-genotype correlations is not
possible. One of the genes affected by the CCR in patient 2 is
the dosage-sensitive PMP22 gene. Duplication of this gene
causes CMTI1A, a common inherited neuropathy character-
ized by myelin degeneration (Patel et al. 1992). Indeed, the
first clinical signs of CMT1A were present in this patient.
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For the distal breakpoint of duplication IV, BAC clones RP11-448D22
(green) and CTD-2145A24 (red) showed duplicated signals on
der(17), indicating that both middle SMS-REP and LCR17pB are
duplicated as a block. Four red signals on der(17) representing two
normal and two duplicated copies of LCR17pA/B (dup III) and
LCR17pB (dup IV) and four green signals depicting three normal cop-
ies of SMS-REPs and the duplicated middle SMS-REP. Summary of
FISH results is provided in Table 2

Genome profiling techniques provide a readily accessi-
ble platform for the delineation of complex rearrangements
at the breakpoint level, thus allowing the study of the
molecular mechanisms underlying such rearrangements.
For recurrent as well as nonrecurrent alterations, it has been
shown that genomic architectural features such as LCRs
and smaller repetitive elements including Alu sequences are
capable of mediating and/or stimulating the occurrence of
deletions and duplications (Pentao et al. 1992; Chen et al.
1997; Shaw and Lupski 2005). LCRs in proximal 17p com-
prise more than 23% of the analyzed genomic sequence,
which is approximately fourfold higher than might be
expected based on virtual analysis of the entire human
genome (Stankiewicz et al. 2003). It might be anticipated
that the breakpoints of the uncommon nonrecurrent chro-
mosomal aberrations as observed in this study occurred by
chance alone within one of these LCRs. However, of five
breakpoints that occurred within the proximal part of 17p,
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Fig. 5 Schematic diagram of breakpoints for DNA rearrangements in
17p. Top: Cytogenetic chromosome bands 17pl2, and sub-bands
17p11.2 and 17p11.1 are shown. Breakpoints of the chromosome rear-
rangements in patients 1 and 2 associated with architectural features in
proximal 17p are shown by vertical dotted blue arrows. In patient 1,
one breakpoint is located within the middle SMS-REP/LCR17pB
block, whereas in patient 2 breakpoints are located within LCR17pA
(proximal Dup III), middle SMS-REP (distal Dup IV) and LCR17pC
(proximal Dup IV). Duplication III and IV in patient 2 are indicated by

four were located within a LCR structure. The remaining
ten breakpoints were located in the LCR-poor distal frag-
ment of 17p. Thus, it appears that the location of the break-
points is associated with local genome architecture, i.e,
LCRs.

Based on the abundance of genomic architectural fea-
tures in proximal 17p, it remains to be determined whether
the two CCRs described in this study are representative for
other CCRs. However, a comparable genomic complexity
has been observed in other genomic regions. For instance,
LCRs in 22q11.2 have been shown to be responsible for
recurrent and nonreccurrent chromosome deletions, dupli-
cations, and translocations (Shaikh et al. 2001; Spiteri et al.
2003). Thus, it can be expected that additional complex
rearrangements with genomic architecture playing a medi-
ating role, will be identified. It is, however, noteworthy that
chromosomes known to be rich in LCR structures, includ-
ing chromosome 17 and 22, are not overrepresented in
large series of CCRs reported (Chen et al. 2006). It could
therefore be the case that the potential role of LCRs in gen-
erating CCRs is restricted to a number of exceptional cases,
such as the cases presented here, or to CCRs affecting only
one chromosome, as is the case for the CCR in patient 2.

The molecular characterization of the complex rear-
rangements enabled the identification of nine and eight
breakpoints in the CCRs in patient 1 and 2, respectively. Of
all these 17 breakpoints, four involved known LCRs being
the middle SMS-REP/LCR17pB in patient 1 and the middle

@ Springer

horizontal blue lines. Bottom: Previously identified rearrangements
associated with LCRs in 17p. Breakpoints of translocations and iso-
chromosome 17q are indicated by vertical black arrows whereas com-
mon ~4 Mb and uncommon ~5Mb SMS deletions and marker
chromosomes are indicated by black horizontal lines. The LCR17p
structures are depicted in colors to better represent their positional ori-
entation with respect to each other; the shaded rectangles and horizon-
tal black arrows represent the orientation of the LCRs

SMS-REP, LCR17pA and LCRI17pC in patient 2. The
remaining breakpoints did not reveal any significant simi-
larity and/or any evidence for the presence of LCRs. The
proximal breakpoint of duplication III in patient 2 was
located within LCR17pA. This genomic region has previ-
ously been found to be involved in several other constitu-
tional and evolutionary rearrangements, including t(4;19) in
Gorilla gorilla (Stankiewicz et al. 2001a, b, 2003, 2004;
Shaw et al. 2004; Lupski and Stankiewicz 2005; Yatsenko
et al. 2005; Ou et al. 2006). The distal breakpoint of this
duplication, however, was not located within a genomic
segment sharing sequence homology with LCRI17pA.
Breakpoints of duplication IV were mapped within non-
homologous LCR copies, middle SMS-REP and LCR17pC.
The middle SMS-REP/LCR17pB was also insertion target
of the MDLS region in patient 1. These observations sug-
gest that other recombination mechanisms, such as nonho-
mologous end-joining (NHEJ), may have facilitated these
CCRs. NHEJ may play a prominent role in nonrecurrent
rearrangements as has been shown for PLP/ deletions and
duplications (Inoue et al. 2002; Lee et al. 2006). It remains
to be determined to what extent NHEJ is a mechanism for
genomic rearrangements, since other potential replication-
based mechanisms may occur with nonrecurrent rearrange-
ments (Lee et al. 20006).

The detailed molecular information gathered on the
breakpoints does, however, allow for speculation on the
mechanism underlying CCR formation in our patients. We
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Fig. 6 Schematic representation of the proposed mechanism for CCR
formation in patient 1 and patient 2. a The complex rearrangement ob-
served in patient 1 includes nine breakpoints, with one insertion, two
microdeletions and two microduplications. We propose that the breaks
in chromosome 17, p13.3, p12 and p11.2 as well as the break in chro-
mosome 21g22.3 arose simultaneously. This resulted in the insertion
of the MDLS region into the middle SMS-REP/LCR17pB block, loss

propose models based upon the principle of parsimony and
the minimal amount of breaks required for formation of the
CCRs. Although predisposing inversion(s) and transloca-
tions rendering susceptibility to rearrangements in the
offspring similar to what is known for several genomic dis-
orders have been excluded in the parental chromosomes
(Axton 2006; Lupski 2006), alternative mechanisms of
CCR formation cannot be fully excluded. The complex
rearrangement observed in patient 1 includes nine break-
points, with one insertion, two microdeletions, one micro-
duplication, and one translocation. We propose that the
breaks in der(17), 17p13.3, 17p12, and 17p11.2 as well as
the break in chromosome 21q22.3 arose simultaneously.
This resulted in the insertion of the MDLS region into the
middle SMS-REP/LCR17pB block, loss of the subtelo-
meric region 17p13.3, and part of 17p12, and duplication of
the CMT1A and SMS regions. Additionally, the duplicated
21g22.3 region was translocated to the 17p subtelomeric
region (Fig. 6a), most likely by a telomere healing mecha-
nism. The complex rearrangement in patient 2 includes
eight breaks. For the most parsimonious mechanism, a

middle
SMS-REP

dup Il q22.3

der 17

@
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% %

of telomeric 17p and part of 17p12 and duplication of the CMT1A re-
gion. Additionally, the duplicated 21q22.3 fragment was translocated
to the 17p subtelomeric region. b The complex rearrangement in pa-
tient 2 included eight breaks. We suggest that breaks in chromosome
17,p13.2,p13.1, p12 and p11.2 occurred at the same time, resulting in
four interspersed directly orientated microduplications. Arrows do not
represent a chronological order of events

E
7,

single breakpoint is involved in both, the formation of, as
well as the insertion of, the duplicated segment. Thus, for
each duplication observed in patient 2, one of the break-
points is involved in the formation of the duplication and
provides at the same time the site for inserting the dupli-
cated segment. We suggest that also in this case all breaks
in chromosome 17 occurred concurrently, resulting in four
interspersed directly orientated microduplications (Fig. 6b).
In conclusion, the human genome contains many geno-
mic architectural features such as LCRs, of which several
have been identified at the breakpoints of (recurrent) chro-
mosome rearrangements. As such, these chromosome rear-
rangements do not appear to represent random events but,
instead, result from underlying genomic architectural fea-
tures. Here, we present two patients with unique de novo
CCRs, of which several breakpoints are located within
LCRs. These results provide evidence for the first time that
in addition to previously reported chromosome deletions,
duplications, inversions, translocations, and marker chro-
mosomes, genomic architectural features such as LCRs are
mechanistically important for the origin of some CCRs.
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