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Abstract

The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M;
S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this
representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior
inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in
PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for
populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning
narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted
for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed
to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the
color space representations in both glob and interglob populations were correlated with the organization of CIELUV
space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy
given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant
to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless
of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined
luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at
different luminance levels (orange/brown).
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This article provides the first quantitative test of the correspondence between the neural representation of
color in posterior inferior temporal cortex (PIT; the V4 complex) and the organization of perceptual color
space. fMRI-guided micoelectrode recording was used to target two subpopulations of neurons within the
PIT/V4 complex, globs and interglobs. The results suggest the following: (1) glob cells have narrow color
tuning, and as a population have a uniform representation of color space with a bias for warm colors; and
(2) glob cells provide a neural correlate for the psychophysical distinction between two colors that have the
same hue but differ in luminance (e.g., orange/brown). The work also underscores the importance of
\carefully controlled stimuli in neurophysiological studies of color. j
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Introduction

Colors can be organized into a uniform color space in
which adjacent colors are separated to a similar degree
using perceptual thresholds (Munsell, 1907; MacAdam,
1990; Commission Internationale de I’Eclairage, 2004). At
the same time, some colors—the unique hues (red, green,
blue, yellow, black, white)—are widely considered psy-
chologically more important than other colors (Hurvich
and Jameson, 1974). The neural basis for the uniformity of
color space, on the one hand, and the specialness of
certain colors, on the other hand, is unknown. These
features are not a trivial consequence of the spectrum: the
spectrum is continuous and linear, whereas color is cat-
egorical and color space forms a circle (purple, not in the
spectrum, sits where the circle closes). The retina reduces
spectral information to three numbers, represented by the
activity of the three, broadly tuned, classes of cone pho-
toreceptors (L, M, S). How are cone signals processed by
the brain to bring about color perception? We take up this
question by asking how color is represented in a mid-tier
area halfway along the putative visual-processing hierar-
chy [posterior inferior temporal cortex (PIT); the V4 com-
plex]. Color-coding cells earlier on in processing, in the
retina and lateral geniculate nucleus (LGN), are dispropor-
tionately sensitive to some colors (Derrington et al., 1984;
Sun et al., 2006): one set of neurons responds best to
colors that modulate L/M activity (without altering S ac-
tivity), appearing reddish (L+, M—) or bluish-green (M+,
L—); the second set responds to colors that selectively
modulate S activity, appearing lavender (S+) or lime (S—).
These color biases define the physiologically important
cardinal directions (MacLeod and Boynton, 1979), but
their impact on color categorization, if any, is not well
understood. They do not correspond to the unique hues
(Webster et al., 2000).

Is color space represented anywhere in the brain, such
that the proportion of cells tuned to each color in the
space is equal? Is there a neural correlate for unique
hues? Physiology in the retina (and LGN), along with
behavioral adaptation experiments (Krauskopf et al.,
1982; Eskew, 2009), and some microelectrode recording
studies in V1 (Tailby et al., 2008a; Horwitz and Hass,
2012), raise the possibility that color depends on a pop-
ulation code, in which each color is defined by the relative
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activation of the two sets of cardinal-tuned neurons.
Other studies (Webster and Mollon, 1991; Hansen and
Gegenfurtner, 2006; Stoughton et al., 2012) suggest that
color depends on multiple, independent mechanisms that
together comprise a uniform space. Candidate neural
substrates include cells in V2 (Moutoussis and Zeki, 2002;
Xiao et al., 2003) and V4 (Zeki, 1980; Li et al, 2014), and
cells in subregions of inferior temporal cortex (Komatsu
et al., 1992; Conway and Tsao, 2006; Conway et al., 2007;
Yasuda et al., 2010; Lafer-Sousa and Conway, 2013). One
possibility is that color is encoded by a population code
early in processing, which is then decoded by subsequent
stages (De Valois and De Valois, 1993; Zeki and Marini,
1998; Conway, 2009; Zaidi et al., 2014).

We analyzed data from fMRI-guided microelectrode
recording of millimeter-sized, color-biased globs and ad-
jacent non-color-biased interglobs in V4/PIT (Conway
et al., 2007). The use of fMRI is valuable since it provides
an independent means for identifying functional sub-
domains. Most cells in the globs are not only color tuned
but also show tuning that is tolerant to luminance modu-
lation (Conway et al., 2007; Namima et al., 2014). More-
over, glob cells are spatially organized into chromotopic
maps (Conway and Tsao, 2009), consistent with a role in
representing perceptual color space (Zaidi et al., 2014). A
preliminary analysis suggested that the glob cells, as a
population, might show a bias for the unique hues
(Stoughton and Conway, 2008). Mollon (2009) has chal-
lenged this idea, arguing that variation in stimulus satura-
tion caused the apparent biases. Mollon (2009) suggested
that the data might be accounted for by a population of
linearly tuned neurons biased toward the cardinal direc-
tions (such as in the LGN). To address these issues, we
compared the color tuning of the population of recorded
glob and interglob cells against model predictions that
capture a range of theoretical possibilities incorporating
the extent to which the neural tuning reflects a linear
versus nonlinear combination of cone signals (narrowness
of tuning), and the extent to which the color preferences
across the population uniformly represent color space.
The analyses suggest that the color representation in glob
cells is different from the representation in the LGN: glob
cells most likely possess nonlinear narrow color tuning
that, as a population, represent a perceptually uniform
color space with a bias toward “warm” colors (reds/yel-
lows) over “cool” colors (blues/greens). The analyses also
underscore the importance of future work to determine
neural color tuning using stimuli that fully sample a uni-
form color space.

Materials and Methods

Single-unit recording

The physiological data were collected as part of a
previous report (Conway et al., 2007), and all the details of
the recording are described in that report. Tungsten mi-
croelectrodes were used to target microelectrode record-
ing to functionally defined domains identified using fMRI
in the same animals. Electrodes were inserted into the
brain for recording sessions that lasted several hours, and
then the electrodes were removed. Anatomical MR im-
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Figure 1. Chromaticity coordinates of color stimuli. A-C, chromaticity coordinates of the stimuli in CIELUV space for the high-
luminance (A), equiluminant (B), and low-luminance (C) stimulus sets. Cell responses to 45 hues at each luminance level were
measured. Markers with black outlines denote the 21 subsampled hues. The black lines connect each of the 21 hues with the origin
(gray cross). Note that the angles between each of the 21 hues are relatively uniform. Black dots denote 17 hue-matched stimuli used

for decoding. Inset in A shows stimuli in MB-DKL color space.

ages were obtained following many microelectrode re-
cording sessions and confirmed the placement of the
electrodes. Single-unit responses were measured in two
animals trained to fixate a spot on a computer monitor
using standard procedures and apparatus (BAK Electron-
ics). Complete color-tuning responses for 300 glob cells
and 181 interglob cells were used in the present analysis.
By combining the information from the anatomical scans
and the depth information obtained during the recordings,
the locations of the recorded cells were correlated with
the functional maps and categorized as residing in a glob
or an interglob. The anterior boundary of area V4 was
initially not obvious in fMRI mapping (Fize et al., 2003),
prompting use of the term “the V4 complex” or the ana-
tomical term “posterior inferior temporal,” as used pres-
ently; subsequent evidence shows a clear boundary
between V4 and inferior temporal cortex (Lafer-Sousa and
Conway, 2013).

Visual stimuli for single-unit experiments

Optimal stimulus dimensions (bar length, width, and
position) were used for each cell. The shape and location
were fixed for a given cell, and the color of the shape was
then varied. A total of 135 colors were used, consisting of
three sets of 45 colors; the colors within a set were
equiluminant with each other, spanned the full color
gamut of the monitor, and were as saturated as the
monitor could produce (Fig. 1; Stoughton and Conway,
2008, their Table S1, CIE coordinates). The colors of one
set were higher luminance (7.8 cd/m?) than the back-
ground; those of another set were photometrically equi-
luminant with the background (3.05 cd/m?); and those of
the third set were of lower luminance than the background
(0.62 cd/m?). All colors, including those at the lowest
luminance, had discernable color to human observers.
The two color sets of equal or high luminance to the
adapting background were vividly colored; stimuli of the
low-luminance set may be considered mesopic and could
have involved rod activation. All stimuli were surrounded
by an adapting background of 3.05 cd/m?. Luminance
artifacts could cause different amplitude responses to
different colors, which could be (inaccurately) interpreted
as color tuning. Using stimuli at different luminance levels,
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and testing for luminance-invariant color tuning, provides
one way of controlling for luminance artifacts arising from,
for example, chromatic aberration or variability in macular
pigmentation. Responses to black (0.02 cd/m?) and white
(78.2 cd/m?) were also measured. The different colors
were presented in pseudorandom order. Within the time
period during which the three sets of colors were pre-
sented, white and black versions of the stimulus were
each presented three times, so that one complete cycle
consisted of 141 stimulus presentations (color set 1, 45
colors; color set 2, 45 colors; color set 3, 45 colors; white,
3; black, 3). The full stimulus set at any given luminance
level did not sample the monitor gamut at regular inter-
vals. To do so, in some analyses we subsampled the data,
extracting responses to 21 hues (at each luminance level)
that were more or less evenly spaced when plotted in
CIELUV color space (Commission Internationale De Le-
clairage, 2004), which is designed to be perceptually uni-
form (Fig. 1, outlined points connected by spokes to the
neutral point). We acknowledge that all color spaces,
including CIELUV, are not entirely perceptually uniform,
and the deviations from uniformity can be pronounced
(Melgosa et al.,, 1994). To address this issue, we con-
verted our stimuli to CIECAMO2 space, a space thought to
remedy some of the defects in uniformity found in CIELUV
space (these defects are apparent when comparing col-
ors across large distances in the space; Moroney et al.,
2002; Luo et al., 2006). We calculated the CIECAMO02
Cartesian coordinates and CIECAMO02 color angle for
each stimulus using the MATLAB (RRID:SCR_001622)
function CIECAMO02 (Computational Colour Science Tool-
box; Ripamonti et al., 2013). Results using CIECAMO02
were qualitatively very similar to the results obtained using
the CIELUV space and did not change the conclusions
(data not shown). We note that the CIECAMO2 space is
itself not perfect. Indeed, determining a perceptually uni-
form space remains a persistent challenge, both psycho-
physically and theoretically. Our long-term goal is to use
neurophysiological data from populations of neurons
shown to be involved in color to bootstrap a psychophys-
ical definition of perceptual uniformity, and to use this
information to determine the theoretical basis for the color
space.
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The use of monkeys to investigate the neural basis for
human color perception is licensed because monkeys
have very similar color detection thresholds and psycho-
physical mechanisms to those found in humans (Stoughton
et al.,, 2012; Gagin et al., 2014). Responses to multiple
presentations of the same stimulus were averaged to-
gether. Each stimulus was displayed for 200 ms and
separated in time from the previous and subsequent stim-
uli by 200 ms, during which time the animal was rewarded
for maintaining constant fixation.

Estimates of stimulus saturation

The stimuli used in the original study by Conway et al.
(2007) were the most saturated that the monitor could
produce. The limitation of these stimuli is that there is
likely considerable variability in the saturation across
stimuli of different hue, confounding saturation, and hue.
In an attempt to model the impact of saturation on neural
responses, we estimated the saturation for each stimulus.
Saturation can be defined in numerous ways, although
there is no consensus; moreover, it is unlikely that the
neural responses vary linearly with changes in saturation.
Nonetheless, we assume linearity because the neural re-
sponse to saturation has not been empirically determined.
We defined saturation for each stimulus in both MB-DKL
color space (a physiologically defined cone-opponent
space; MacLeod and Boynton, 1979; Derrington et al,
1984) and LUV space (a perceptually defined color
space). For MB-DKL saturation, we calculated the dis-
tance between the stimulus and the adapting gray point.
The MB-DKL location of each stimulus was calculated
with a CIE-to-MB-DKL conversion matrix from the spectra
of each of the primaries of the monitor at maximum
strength (Zaidi and Halevy, 1993; Hansen and Gegenfurt-
ner, 2013). MB-DKL saturation was used to assess the
hypothesis that neurophysiological data matches the ac-
tivity in the LGN. For LUV saturation, we calculated the
ratio of the distance between the stimulus and the adapt-
ing gray point, over the distance between the gray point
and the spectrum locus through the stimulus; this defini-
tion was used to test the hypothesis that the neurophys-
iological data explain psychologically important colors,
the unique hues.

Preprocessing of cell responses

Every visually responsive cell that was tested was in-
cluded in the analysis if responses to at least two com-
plete stimulus cycles were obtained; in most cases,
responses to at least five stimulus cycles were obtained.
Most cells responded with higher firing rates compared
with baseline values. A small number of cells was sup-
pressed by the majority of stimuli at some or all luminance
levels. Five glob cells and one interglob cell were on
average suppressed at all luminance levels. Nine glob
cells and four interglob cells were on average suppressed
at one or two luminance levels. But even among these
cells, none were suppressed below baseline activity by all
stimuli: there was always at least one hue, at one lumi-
nance level, that elicited a response that was higher than
the baseline activity. For all cells, we calculated the stim-
ulus responses by summing spikes during a window that
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was optimized for the response duration of each cell, for
each luminance level. The time window began with the
visual latency, which was defined as >2.5 SDs above the
background firing rate, and ended either when the re-
sponse rate fell below the background firing rate plus 2.5
SDs, or after a period slightly shorter than the stimulus
duration (reduced by one-quarter of the latency time of
each cell), whichever was shorter. Capping the integration
window avoided integrating over OFF responses. Across
all cells, the average latency was 78 ms (SD, 28 ms). The
average integration window was 146 ms (SD, 52 ms).

Curve fitting

In order to estimate the narrowness of the response of
each cell, we fit the responses with a curve. Responses to
the 21 evenly spaced stimuli at each luminance level were
smoothed using a boxcar filter (across one stimulus), and
fit with a model tuning curve adapted from Seung and
Sompolinsky (1993), according to Equation 1, as follows:

— 2
froin T Fax'COS (W) , 10l <w
ro) = v
f.in» Otherwise
where £, is the baseline firing rate, f,, is the maximum

firing rate, w is the tuning width (full-width at half-
maximum) in radians, and « is the peak tuning angle. As w
increases, the cell becomes more broadly tuned; as w
decreases, the cell becomes more narrowly tuned. A
linear cell, such as those found in the LGN, has a w value
of m radians, equivalent to 180°.

We chose to curve-fit responses to only the 21 evenly
spaced in CIELUV angle stimuli in order to avoid biasing
the curves to fit values closer to the monitor primaries,
which were oversampled in the 45-hue set. We chose to
boxcar smooth responses prior to curve fitting in order to
decrease noise and improve the fit. Results obtained
using all 45 stimuli and unsmoothed responses yielded
similar conclusions. Results obtained using a half wave-
rectified cosine exponent curve (De Valois et al., 2000)
yielded similar conclusions (data not shown).

Is it possible that our sampling of colors space (21
angles ~17° apart) was too coarse to obtain a good
estimate of narrowness? To assess this, we compared the
tuning width estimates with those obtained using re-
sponses to all 45 hues. If a 21-hue set is insufficient to
provide an accurate estimate of tuning width, we would
expect the tuning widths to be narrower when using the
responses to more dense sampling of color space, espe-
cially for cells with tuning peaks located in the part of color
space most densely sampled by the 45 colors. The 45-
color stimulus set sampled most densely the color space
around the monitor primaries. We did not find systematic
differences of the tuning widths estimated with either
approach (data not shown), suggesting that 21 hues sam-
pled densely enough to accurately reflect the tuning
widths of the neurons.
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Model populations

The color space represented by a population of neurons
can be defined by varying the following two parameters:
the narrowness of the color-tuning function for each cell
(w); and the uniformity with which the population of neu-
rons samples color space. Our goal was to determine the
combination of these parameters that best describes the
color representation in the globs and interglobs, and to
compare these parameters to those evident in the LGN.
We performed multiple iterations of a model simulation,
parametrically varying the linearity and degree of unifor-
mity in a population of model cells; we used 181 model
cells on each iteration of the model (corresponding to the
number of cells recorded in the interglobs). To compare
the model to the glob population, we randomly sampled
181 units from the total 300 glob cells recorded. This
subsampling was performed in order to equate the num-
ber of cells between the glob and interglob populations to
allow a direct comparison of the best-fitting models
achieved for the two populations of neurons.

To simulate an entirely uniform population of linear glob
cells, each model cell was assigned a tuning width of 180,
and a random peak tuning angle drawn from a uniform
distribution of integers between 1 and 360. A tuning func-
tion was generated using Equation 1. The baseline firing
rate and maximum firing rate were not varied, as all re-
sponses (both model and real cells) were normalized to
facilitate comparison between recorded and model cells;
for the simulated neurons, the minimum firing rate was set
to 0 and the maximum firing rate was set to 1. To account
for differences in saturation among the stimuli, the re-
sponse of the model cell to each stimulus was multiplied
prior to normalization by the saturation of that stimulus, as
described above. A stimulus with higher saturation would
more greatly affect the tuning curve of the model cell than
a stimulus with lower saturation. The 181 model cells were
then rank-ordered by the angle to which they showed
peak response. The neural populations were also rank
ordered by the LUV angle at which they maximally fired.
R? values were then computed between the tuning func-
tion of each model cell (defined by both tuning width and
peak tuning angle) and its corresponding (rank-ordered)
recorded neuron (raw responses to all 45 hues). This
procedure was performed 1000 times. The success of the
match between the population of recorded cells and the
model simulation was defined as the median R? value
across all 181,000 comparisons. We determined the R?
values for simulations in which the narrowness varied
from 84 to 360 CIELUV degrees. The model responses
were compared with unsmoothed responses obtained to
all 45 stimuli of a given luminance level.

We also determined R? values for simulations in which
the uniformity of color space varied. We tested the follow-
ing two hypotheses: first, that the population reflected the
distortions of the color space manifest in the retina and
LGN; and, second, that the population reflected the dis-
tortions of color space predicted by the purported privi-
lege of the unique hues. To simulate a population of LGN
cells, each model cell had a randomly assigned « drawn
from a distribution of values within 5° of the cardinal
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angles in LUV space (353°, 100°, 173°, 280°). To simulate
a population of unique hue-biased cells, each model cell
had a randomly assigned « drawn from a distribution of
values within 5° of the unique hue angles (14°, 70°, 139°,
and 238°). The degree of nonuniformity within each model
simulation was then systematically varied by adjusting the
fraction of the model cells that were defined as nonuni-
form (LGN or unique hue) versus uniform.

We summarize the conclusions of the model simula-
tions in heat maps of the median R? values across the
181,000 comparisons (1000 iterations X 181 recorded-
model cell pairs) at each narrowness—uniformity pairing.
The darker the cell of the heat map, the better overall
correlation there was between the model population and
the real population. Black/white boxes indicate the best-
matching simulated population, and numbers report the
median R? for the best-matching simulated population.

Receiver operating characteristic analysis

To test whether cells in the glob and interglob populations
discriminate stimuli based on luminance, we performed a
receiver operating characteristic (ROC) analysis (Britten
et al., 1992; Mayo and Sommer, 2013). We z-scored the
raw mean firing rates of each cell to the full stimulus set
(45 hues at each of three luminances). For each cell, for
each pair of luminance categories (equiluminant/low-
luminance, high-luminance/equiluminant), we used the
perfcurve function in Matlab R2013b to compute an area
under the curve (AUC) of the ROC of the cell. An AUC of
0.5 would indicate chance discrimination between the two
luminance categories. An AUC < 0.5 would indicate a
preference for the first luminance category. An AUC > 0.5
would indicate a preference for the second luminance
category. To determine whether the AUC of a cell was
significantly different than chance, we performed a per-
mutation test in which, for each of 2000 iterations, we
performed the ROC procedure but with randomly shuffled
luminance category labels. This yielded a null distribution
for which we computed 95% confidence intervals (Cls); if
the AUC of a cell fell outside these bounds, it was deemed
significant at p < 0.05.

Analysis of peak shifting as a function of luminance
To determine the effect of stimulus luminance on the glob
and interglob hue preferences, we quantified the change
in color-tuning preferences across luminance levels. We
sought to test whether or not cells maintained the same
hue-tuning preference across luminance levels; for exam-
ple, does a cell that responds best to purple at equilumi-
nance also prefer purple at high-luminance? This test
sheds light on the possible involvement of rods. Although
the adapting state maintained by the surrounding neutral
gray was likely photopic (3.05 cd/m?), the stimuli of the
low-luminance set had relatively low luminance, raising
the possibility that they activate rods. Moreover, some
prior work would also suggest that the stimuli of the other
luminance sets might also involve rods. If rods were im-
plicated in driving the neural responses, one might expect
systematic shifts in color tuning as the luminance is
changed (Shapiro et al, 1996). Our results do not provide
conclusive evidence for such shifts (see Fig. 9).
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To assess the extent to which neurons of each popu-
lation (glob and interglob) shifted their peak hue tuning,
we compared the correlation of the peak tuning deter-
mined at different luminance levels. We calculated the
Pearson’s correlation coefficient (r) between the peak
determined using stimuli at one luminance level and the
peak determined using stimuli at a different luminance
level following 200 bootstraps of the responses of half of
each population. We performed a t test on the glob and
interglob distributions of Fisher’s z-transform-corrected r
values. In order to calculate 95% ClIs on these p values,
we performed the 200 bootstraps 1000 times, and calcu-
lated the Cls using the percentile method. The reported p
value for each comparison is the median of the 1000 p
value distribution.

In order to test for systematic differences in peak shift-
ing across luminance levels between cells tuned to differ-
ent hues, we calculated peak shifting within groups of
neurons defined by their color preferences assessed us-
ing the equiluminant stimulus set. We categorized the
cells into eight color categories, each spanning 45° in
color space. We used a Mann-Whitney-Wilcoxon U test
to determine whether the tuning of the population in each
category shifted when tuning was assessed at different
luminance levels. The 95% confidence intervals on this p
value were obtained by doing 2000 bootstraps, in which
the p value was calculated using a random selection of
90% of the cells. The reported p values are the mean p
value over these bootstraps. This analysis was performed
for both glob cells and interglob cells, comparing tuning at
equiluminance to tuning at low-luminance, as well as
tuning at high-luminance to tuning at equiluminance. The
Seung-Sompolinsky curve fits (Eqg. 1) were used to deter-
mine the peak tuning angle at each luminance level.

Multidimensional scaling

To view the population representations of stimuli, we
applied multidimensional scaling (MDS). Each stimulus
has a high-dimensional neural representation, with each
dimension corresponding to the raw mean firing rate of a
single neuron in response to that stimulus. MDS attempts
to find a k-dimensional embedding of this high-dimen-
sional space that approximately preserves its structure,
where k is specified as an input. Given a set of x stimuli
S = {sq, ... s} and a function d measuring the pairwise
dissimilarities between them, MDS uses an iterative algo-
rithm to find an embedding f: S — R* for some fixed k
such that the distances ||f(s;) — f(s;)| | have approximately
the same rank ordering as the dissimilarities d(s;, s;). We
selected Sammon’s error (Sammon, 1969) as the error
function to minimize, and defined the dissimilarity be-
tween two stimuli s; and s; in terms of their neural repre-
sentations §; and S;: d(s,s) = 1 — p(S;, §), where p is
Pearson’s correlation coefficient. Stimuli are considered
dissimilar to the extent that the population responses they
evoke are uncorrelated.

We performed two separate MDS analyses on the glob
and interglob population datasets. The aim of the first
analysis was to view how the populations represent the
full stimulus set (45 hues at each of three luminances). We
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z-score normalized the raw response of each neuron to
the stimulus set, and applied MDS for a range of k-values.
In the second analysis, we examined separately the neural
representations of each stimulus luminance class (stimuli
at lower luminance than the background, equiluminant
with the background, and at higher luminance than the
background) in order to view the neural representations of
hue within each luminance class. Here, we z-score
normalized the responses of each neuron within each
luminance set (45 hues each) before performing MDS
for k = 2.

Representational similarity analysis

We used representational similarity analysis (RSA;
Kriegeskorte et al., 2008) to compare the neural represen-
tations of hue by the two populations to CIELUV color
space hue angle. We divided the data into three lumi-
nance sets (45 hues each) as above, and z-score normal-
ized the response of each neuron within a set. For each
set, we created a neural representational dissimilarity ma-
trix (RDM) in which, as in the MDS analyses, an entry
contained the neural correlation dissimilarity between two
stimuli. We created a second RDM containing the CIELUV
hue angle distance between stimuli. For each luminance
class, we then determined the Pearson’s r value between
the neural and CIELUV RDMs, yielding a measure of
similarity between neural and color space representations
of hue (Cichy et al., 2014). To test whether these correla-
tions were significant, we performed a Student’s t test,
two-tailed on the Fisher’s z-transforms of r. To determine
whether there was a significant difference between pairs
of correlation coefficients for the glob versus interglob
populations, we performed paired t tests, two tailed to
z-transforms of the r values.

Model LGN populations

To test whether or not the MDS and RSA results for the
glob and interglob cells were different than those we
could expect earlier in the visual system, we performed
these analyses on a population of model parvocellular
LGN cells. The population of 300 model LGN cells was
generated using the narrowness-uniformity model (see
Fig. 5). The model LGN cells were linearly tuned (tuning
width of 180) and biased for the cardinal axes (28%
uniform, 72% cardinal), matching values found in previous
studies of the LGN (Derrington et al., 1984; De Valois
et al., 2000). The model does not account for luminance,
so we analyzed the responses to the luminance levels
separately. Limitations of the model also precluded an
MDS analysis of the full dataset for comparison with the
MDS analysis performed on the glob and interglob cells
(see Fig. 10A,B). Additionally, because the model LGN
cells had identical responses to a small number of stimuli,
these stimuli were removed from analysis. MDS was run
on responses to 41 low-luminance stimuli, 43 equilumi-
nant stimuli, and 45 high-luminance stimuli.

Decoding hue and luminance information from the
population responses

Guided by the results of the MDS analyses and RSAs,
which suggested that both populations represent both
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hue and luminance information, we sought to determine
(in the population responses) whether hue information
was preserved across changes in luminance, and whether
luminance information was preserved across changes in
hue. We determined accuracies in classifying (1) hue in-
formation invariant to changes in luminance, and (2) lumi-
nance information invariant to changes in hue, using a
linear support vector machine (SVM; MATLAB_R2013b
svmtrain, least-squares method), which attempts to find a
hyperplane with maximum margins separating the high-
dimensional points (neural responses to stimuli) belonging
to two training classes. For these analyses, we used
responses to a hue-matched subset of the stimuli (de-
scribed in the next paragraph), and, prior to applying
decoding, z-score normalized the responses of each neu-
ron within the hue-matched stimulus subset.

For our decoding analyses, it was important that we
used sets of stimuli that had closely corresponding hue
angles across the luminance levels. We identified a triplet
of hue-matched stimuli as one in which the three hues at
the three luminance levels differed no more than 3° in
CIELUV angle. Seventeen hue-matched triplets (51 stim-
uli) were identified (Fig. 1, colors identified by a small dot).

In order to test the decoding of hue invariant to changes
in luminance, we tested whether a linear SVM could gen-
eralize hue information from two luminance classes to a
third luminance class. For each possible pair of the 17
hues in the hue-matched stimulus subset, we trained the
classifier to distinguish between the pair of hues, h, and
h,, given the population response to these hues at two
luminances, and tested whether the classifier assigned
the correct labels to h, and h,, given the population
response to the test luminance (e.g., high luminance). We
performed decoding for three generalization problems,
generalizing to low-luminance, equiluminant, and high-
luminance stimuli. We present the mean pairwise decod-
ing accuracies for each of these problems separately.

In order to test the decoding of luminance invariant to
changes in hue, we tested whether the classifier could
generalize luminance information across changes in hue.
We performed three decoding problems: we trained and
tested a classifier’s ability to distinguish among the (1)
low-luminance and equiluminant stimuli, (2) equiluminant
and high-luminance stimuli, and (3) low-luminance and
high-luminance stimuli. For each classification problem,
we trained the classifier on 15 of 17 stimulus hues, and
tested on the held-out pair. We performed a decoding run
for each possible pair of test hues. We present the mean
decoding accuracy across runs for each of these classi-
fication problems (see Fig. 12).

In both decoding analyses, to account for a mismatch in
population size between the globs (N = 300) and inter-
globs (N = 181), we performed subsampling. For each of
200 subsampling runs, we drew a random subset of 181
glob neurons, and performed the full decoding procedure
to obtain decoding accuracies for this population.

To test whether decoding accuracies for each classifi-
cation problem were significantly above chance, we per-
formed a permutation test in which we repeated the full
decoding procedure 200 times with randomly shuffled
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labels, yielding a null distribution of decoding accuracies.
We counted as significant decoding accuracies lying
above all null points, which enabled us to bound p at
0.005 (1/200). For the glob population, this procedure was
repeated for each subsampling run (all subsampling runs
achieved accuracy at p < 0.005). To test whether decod-
ing accuracies were significantly different between the
glob and interglob populations, for each classification
problem, we obtained a p value by taking the average of
200 p values derived by comparing the results for the
interglob population and the results for one subsampling
run of the glob population using a two-tailed McNemar’s
exact test.

Comparing narrowness of tuning with estimates
obtained in prior work

In order to compare the narrowness of the tuning of cells
in the glob and interglob populations with values reported
by Namima et al. (2014) for cells in V4, PIT, and anterior
inferior temporal cortex (AIT) populations, we followed a
similar method to compute a narrowness measure. We
considered the responses of each cell to the low-
luminance and high-luminance stimuli in the hue-matched
subset, to match the high- and low-luminance stimulus
sets used in the analysis by Namima et al. (2014). For
each cell, for each luminance set, we calculated a selec-
tivity index = 1 — (minimum response)/(maximum re-
sponse), where responses are the raw mean firing rates
of the cell in response to the luminance set. If a cell had
a selectivity index >0.6 for either luminance set (all cells
in the glob and interglob populations met this criterion),
we next computed the sparseness index of that cell
(Rolls and Tovee, 1995; Vinje and Gallant, 2000) using

Equation 2:
n 2
27)
—— /(1
(2,-:1 H)

where r; is the response of the cell to the ith stimulus
and n is the number of stimuli in the luminance set. A
sparseness index of 1 indicates the cell is sharply selec-
tive, whereas a low score indicates the cell responds
similarly to all stimuli. Consistent with Namima et al.
(2014), we then labeled cells with sparseness indices
>0.3 for either set as “sharply selective,” and those with
sparseness indices =0.3 to both sets as “broadly selec-
tive.” We compared the proportions of sharply tuned and
broadly tuned cells in the two populations to values re-
ported by Namima et al (2014, their Fig. 5).

sparseness index = |1 —

Proportion of warm- and cool-tuned cells

In order to determine whether the glob or interglob pop-
ulations were biased for warm colors over cool colors, as
suggested in the population-tuning distribution for the
glob cells (see Fig. 3), we performed a permutation test.
We defined warm hues as the CIELUV hue angles lying
between Munsell RP and Y (pink, red, orange, and yellow),
and cool hues as those between Munsell G and PM
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Figure 2. Color tuning of representative glob and interglob cells. A, B, Responses to the 21 subsampled hues, smoothed with a
boxcar kernel of 1 hue, at each luminance level from six glob cells (A) and six interglob cells (B). Responses were measured using
a bar stimulus optimized for each cell. Points show spike/second (Hz) firing rate response to each stimulus’s LUV hue angle. Lines
show the Seung-Sompolinsky curve fit (light gray, high-luminance set; dark gray, equiluminant set; black, low-luminance set).
Numbers denote the narrowness (tuning width in CIELUV degrees) for each example cell.

(green, cyan, blue, and violet). On each of 2000 permuta-
tions, we randomly assigned a population of cells (n =
300 for globs, n = 181 for interglobs) 1 of the 45 hue
angles per luminance level. We then calculated the ratio of
cells tuned to warm colors to those tuned to cool colors.
We then used this distribution to calculate p values. For
2000 permuations each, using a random selection of 90%
of the real glob or interglob populations, we calculated the
warm-tuned-to-cool-tuned cell ratio. We then determined
a p value by counting the number of permutation popu-
lations with a higher warm-tuned-to-cool-tuned cell ratio
than the bootstrap population. The 95% Cls on the p
value were also calculated from the bootstrap distribution
using the percentile method. This analysis was performed
separately for both populations (globs and interglobs),
and each luminance level.

Results

The neurophysiological data were obtained from the orig-
inal study by Conway et al. (2007). The stimuli used to
characterize the color responses were defined using the
CIELUV chromaticity diagram (Komatsu et al., 1992; Con-
way et al., 2007), which organizes colors in a more or less
perceptually uniform manner (Fig. 1). The full stimulus set
comprised 45 colors at three luminance levels (all the
colors within a set were equiluminant with each other; one
set was higher luminance than the adapting background;
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one set was lower luminance; and one set was equilumi-
nant with the background). Of these 45 colors, 21 hues
were selected to be at relatively equal angles in CIELUV
space (Fig. 1, points outlined in black); responses to these
stimuli were used to quantify the neural color tuning. In
other analyses, we analyzed responses to 17 hue-
matched (within 3°) stimulus triplets (Fig. 1, dotted colors);
responses to these hue-matched stimuli were used in
various decoding analyses, which are described below.
Figure 2 shows tuning curves obtained for representa-
tive cells in the globs (Fig. 2A) and interglobs (Fig. 2B).
Glob cells typically showed narrower color-tuning curves
than interglob cells, and color preferences that were re-
tained across different luminance levels. The median tun-
ing width (see Eq. 1) among glob cells was narrower than
that of interglobs for all luminance levels (glob cells: 104°,
84°, and 91°, respectively, for high-luminance, equilumi-
nant, and low-luminance; interglob cells: 120°, 125°, and
121°). For the combined population of glob and interglob
cells across all luminance levels, the median narrowness
was 100. The median goodness of fit of the tuning-curve
fits for glob cells and interglob cells were 0.86 and 0.62.
The correlation of peak tuning preferences across lumi-
nance levels was higher for globs (0.90 equiluminant/
low-luminance; 0.91 high-luminance/equiluminant) than
interglobs (0.80 equiluminant/low-luminance; 0.84 high-
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Figure 3. Peak color tuning distributions for the glob and interglob populations. The peak color tuning of each cell at each luminance
level was defined as the angle of the stimulus to which each cell maximally fired. The number of cells tuned to each hue was counted.
The size of the marker at each hue denotes the number of cells tuned to each hue. This analysis was performed separately for the
glob (top row) and interglob populations (bottom row), for all 45 stimuli (main plots) and then binned into the 21 evenly spaced hues
(insets). In all panels, black axes labeled L-M and S denote the cardinal axes, and colored markers show the nine Munsell primary and

intermediate hue coordinates.

luminance/equiluminant). See Figures 8 and 9 for more
in-depth population analyses of narrowness differences
between the two populations and tuning differences
across luminance levels.

Figure 3 shows the number of cells tuned to each of the
45 colors at each luminance level, for globs and inter-
globs. For each cell, the color tuning was defined as the
color corresponding to the stimulus that elicited the peak
firing rate. We applied no smoothing of the firing rates
across colors, to avoid inflating the extent to which our
model predictions, described below (see Fig. 5), corre-
spond to the neural data. (As expected, comparisons of
smoothed neural data and the model predictions pro-
duced higher R? values; data not shown.) The insets in
Figure 3 show the distribution of color-tuned cells, binned
into categories defined by the 21 equally spaced hues.
The plots show lines demarking the cardinal axes (L-M,
and S), along with the Munsell principal and intermediate
hues (Munsell, 1907). The red, yellow, green, and blue
lines are the Munsell coordinates corresponding to the
unique hues, although we acknowledge that there is con-
siderable variability within the population with regard to
the precise location of the unique hues. Both the glob and
interglob populations included neurons tuned to every
stimulus we used. Both glob and interglob cells showed a
clear over-representation of some colors (red, green, blue,
and possibly purple). The pattern of over-representation
was evident at all three luminance levels tested, but more
clearly consistent across luminance levels for the glob
population.
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To test whether the populations are best described by a
distribution biased toward the cardinal directions, by the
unique hues, or, alternatively, by a uniform distribution,
we compared the neurophysiological results to model
predictions. The simulated neural populations corre-
sponded to a range of theoretical possibilities by varying
the uniformity with which the population represents color
space (100% uniform vs a bias toward either the cardinal
colors or the unique hues), and the linearity of the color
tuning of the cells (100% linear, meaning a tuning curve in
the shape of a sine wave, vs highly nonlinear, meaning a
tuning curve narrow than a sine wave). Cells with maxi-
mally nonlinear tuning would respond to a single color
only. Importantly, the model incorporates information
about the saturation of the stimuli to account for the
differences in saturation among the stimuli used to test
the neural responses. Plotted in CIELUV space (Fig. 1) or
cone-opponent MB-DKL space (Fig. 1A, inset), the stimuli
track a triangle defined by the three monitor primaries.
Consider a cell that shows maximal responses to color X
when tested with a stimulus set comprising colors of
equal saturation (a circular set). “X” would constitute the
true color tuning of the neuron. But now consider the
response of the same cell when tested with the triangular
set: the cell could show peak firing to an adjacent color of
higher saturation, especially if the tuning of the cell is
relatively broad (Mollon, 2009). We sought to test whether
the biases in the population reflect those predicted for a
population of linear cells that represent color space uni-
formly, against the two other predictions: a population of
linear cells that over-represents the cardinal directions,
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Figure 4. Peak color tuning distributions predicted by model populations. Like recorded cells, the peak color tuning of each model
cell at each luminance level was defined as the stimulus to which each cell had the largest response. Model cell responses were the
product of the Seung—-Somplinsky tuning curve and the saturation of each stimulus. A, B, Conventions are as in Figure 3, for model
populations bias for the cardinal axes (A) and the unique hues (B). Shown here for the 21 evenly spaced equiluminant hues. Cardinal
distribution is 22% uniform and 78% cardinal (our closest approximation of the LGN); unique hue distribution is 100% unique hue

biased; uniform distributions are 100% uniform.

and a population of nonlinear cells that over-represents
the unique hues.

We determined how the different model populations
would respond to the 21 evenly spaced colors of the
equiluminant triangular stimulus set (Fig. 4). The lower left
panel of Figure 4A shows the predicted color-tuning dis-
tribution for a population of linear neurons that as a
population are biased for the cardinal axes, simulating the
known properties of LGN cells. The population shows two
dominant peaks, which correspond to the colors of high-
est cone contrast and highest saturation (within the stim-
ulus set, these colors are closest to the red and blue
primaries of the monitor). The lower right panel in Figure
4A shows the distribution for a population of linear neu-
rons that sample color space uniformly; again, the popu-
lation distribution is weighted toward the color of maxi-
mum saturation (blue), although there are subsidiary
peaks for intermediate colors. The top panels in Figure 4A
show the corresponding distributions for nonlinearly
tuned neurons. The predicted population responses are
less distorted by differences in saturation: the top left
panel in in Figure 4A shows four peaks, corresponding to
the poles of the cardinal axes; the top right panel in Figure
4A shows peaks sampling the entire gamut. Figure 4B
shows predictions for model populations that are biased
toward the unique hues; the model predictions for popu-
lations of uniformly tuned neurons shown in Figure 4B are
different from the predictions for populations of uniformly
tuned neurons shown in Figure 4A: a metric of saturation
defined in psychophysical color space (CIELUV) was used
in Figure 4B, while a metric of saturation defined in cone-
opponent coordinates was used in Figure 4A (see Mate-
rials and Methods).
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Comparison of recorded and model populations

Figure 5 quantifies the relationship between the measured
population responses and those predicted by one set of
models. The tuning curves for each cell in the model were
drawn either from 10°-wide distributions centered on the
cardinal hues or from bins that uniformly sampled color
space. To define the population of cells, the proportion of
cells with peaks drawn from the cardinal categories was
systematically varied, from all cells drawn from drawn
from the cardinal categories (a value of 0 on the x-axis) to
all cells drawn from the uniform sampling (a value of 1 on
the x-axis). All cells in each iteration were assigned the
same narrowness, which varied from broader than linear
to highly nonlinear (tuning curves were modeled using Eg.
1; we varied the tuning-width parameter to achieve non-
linear tuning). The blackness in the heat map in Figure 5A
corresponds to the R? value comparing the model predic-
tion to the neural glob data obtained using the equilumi-
nant stimulus set. The model that captures the pattern in
the LGN (linear cells tuned to the cardinal axes) yielded a
relatively low R? value (Fig. 5A, outlined black box in the
lower left). We can therefore rule out the first hypothesis
that the population is best described by linearly tuned
cells that are biased for the cardinal directions. Could the
neural data be well described instead by a population of
linear neurons regardless of the population distribution?
No: the R? values obtained for models capturing nonlinear
tuning tended to be greater (the rows in the heat map get
darker from bottom to top up until the best-fitting width of
132). Across the columns in the heat map, the R? values
are highest for the models that capture an almost com-
pletely uniform representation of color space (far right
columns in the heat map). Of these, the optimal model is
the one that consists of cells with nonlinear color tuning
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Figure 5. Model of color-tuning properties. We generated model populations varying in peak tuning distributions and narrowness.
Each simulated cell was assigned a peak tuning angle that was drawn either from a distribution centered on the cardinal angles, or
a uniform distribution. A, The proportion of simulated peaks drawn from each distribution was systematically varied from 100%
cardinal to 100% uniform (bubble plots). A, All cells in each iteration were assigned the same narrowness, which varied from more
broad than linear (tuning width of 360) to highly nonlinear (tuning width of 84; tuning curves) and then scaled by the saturation of each
stimulus. Each square of the heat map represents one combination of narrowness and proportion uniform peaks. Each model
population was compared with the recorded glob or interglob populations. The darker the square of the heat map, the better overall
correlation between the model population and the real population. The best-matching simulated population is indicated with a
black/white box. The heat map shown here compares the responses of the model population to the responses of the glob population
to the equiluminant stimuli. Thick black boxes correspond to the example peak distributions and tuning curves to the left and below
the heat map; the black box in the lower left shows the predicted best-matching population for the LGN. B, C, The best-matching
model population was similar to the glob cells in both tuning peaks (B; conventions are as in Fig. 3) and tuning width (C; black line
average glob tuning curve, black points show representative glob cell, thick gray line shows tuning function of the best model fit, thin

gray line shows tuning function of a model cell with linear narrowness.).

(R?* = 0.52; narrowness = 132; Fig. 5B). That the best
model fit consists of nonlinear neurons is reflected in the
tuning curves of the recorded data (Fig. 2). Figure 5C
shows the tuning curve and raw data for an example glob
cell with median narrowness (black line), along with a
model tuning curve with a tuning width of 132 (and for
comparison, the linear curve, tuning width of 180; see Fig.
8). These results undermine the hypothesis that the pop-
ulation comprises a uniform distribution of linear neurons
that manifests as a population with biases for those colors
of highest saturation.

The best model was similar regardless of the luminance
of the stimulus set used to collect the neural data (Fig. 6,
left panels): for each stimulus set, the best model was one
comprised of nonlinear neurons that represent color
space in a uniform fashion. Glob cells were best matched
by cells with nonlinear tuning for the high-luminance and
equiluminant stimulus sets (tuning width of 120 for the
data obtained using the high-luminance sets, 132 for the
equiluminant set, and 168 for the low-luminance set).
Interglob cells were best fit by a population of broadly
tuned neurons with a uniform tuning distribution (Fig. 6,
right panels).

The preceding results show that the population of PIT
neurons cannot be well described by a model comprising
neurons, such as those in the LGN, that are biased for the
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cardinal directions. But can the population be better ex-
plained by a model biased for the unique hues? Figure 7
shows the heat maps comparing the neural data with
simulated populations that vary in the extent to which the
neurons are biased for the unique hues. The models that
account for the most variance among the glob cells are
those that comprise nonlinear neurons with a uniform
representation of color space. The interglobs are best
described by the model populations consisting of broadly
tuned neurons. Neurons with broader tuning functions are
more sensitive to variation in stimulus saturation, which
would lead to peaks in the population distribution for
colors of highest saturation (Fig. 4, bottom rows, peaks at
the apices of the triangles). The conclusions from Figure 7
are no different if saturation is defined in cone-opponent
space (data not shown).

Narrowness in the recorded populations

In order to relate the parameters predicted by the model
to those found in the recorded cells, we quantified the
tuning properties of the glob and interglob cells. First, we
fit each cell with the Seung-Somplinsky curve fit (Eq. 1;
Figs. 2, 5C, curve fits; we used the same equation, mul-
tiplied by the saturation of each stimulus, to simulate cell
responses in the model). Glob and interglob cells showed
a variety of tuning curve widths, but, in general, glob cells
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Figure 6. Comparison with model populations: cardinal. Heat maps in the convention described in Figure 5 show the median R? value
across the 1000 iterations of the model and 181 recorded-model cell pairs for the glob (left) and interglob (right) populations. Darker
shading denotes better fits. White/black outline denotes the parameter combination with the highest median R? value for that
luminance level. Top row, High-luminance stimulus set; middle row, equiluminant stimulus set; bottom row, low-luminance stimulus
set. Black box to lower left denotes the best expected match for LGN cells.

showed narrower tuning compared with interglob cells (Fig.
8). The majority of poor fits for the interglobs were cells with
very broad (often almost flat) color-tuning curves (Fig. 2B,
bottom left, response to equiluminant stimuli for the example
cell).

Effect of stimulus luminance on recorded cell
responses

The tuning curves of example cells (Fig. 2) suggest that
the neurons in both the glob and interglob populations
carry luminance information: in both sets of cells, the peak
response amplitude and hue tuning of the neuron varied
somewhat with changes in luminance level. We performed
an ideal observer ROC analysis to quantify the luminance
sensitivity of glob and interglob cells. Although implemen-
tations can differ (see Materials and Methods), the ROC
analysis can be described as follows. For each neuron, we
computed histograms showing the number of stimuli that
elicited a given firing rate: one histogram for responses to
the stimuli of the high-luminance set, one for responses to

July/August 2016, 3(4) e0039-16.2016

unifor?n c%rdinal

6
B
|3

unifor;n
Proportion uniform

the equiluminant set, and one for responses to the low-
luminance set. The ROC analysis compares the extent to
which the histograms overlap: the less the overlap, the
more likely the cell could distinguish the luminance differ-
ence between the stimulus sets. We performed two com-
parisons: equiluminant versus low-luminance sets; and
high-luminance versus equiluminant sets (Fig. 9A). Given
a criterion firing rate (selected from the range of firing
rates produced by the neuron), we calculated the propor-
tion of stimuli to which the first histogram exceeded the
criterion, and the proportion of stimuli to which the sec-
ond histogram exceeded the criterion. The calculation
was performed for criterion values spanning the response
range of the neuron; and we plotted the proportion of
stimuli on which the second histogram exceeded the
criterion as a function of the proportion of stimuli on which
the first histogram exceeded the criterion. From these
plots, we computed an AUC. Data points for histograms
that perfectly overlap would fall along the diagonal (AUC = 0.5)
and indicate that the neuron could not distinguish the
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Figure 7. Comparison with model populations: unique hues. Heat maps with conventions as in Figure 5 for glob (left) and interglob
(right) populations. Peak distributions ranged from 100% unique hues to 100% uniform. Top row, High-luminance stimulus set; middle
row, equiluminant stimulus set; bottom row, low-luminance stimulus set.

luminance of the two sets of stimuli. AUC values <0.5
would indicate that the neuron could distinguish the lumi-
nance, and, moreover, that the neuron preferred the lu-
minance associated with the first stimulus set. AUC
values >0.5 would indicate that the neuron preferred the
luminance associated with the second stimulus set.
Figure 9A shows AUC measurements for the population
of neurons, for the three sets of comparisons. Black bars
indicate neurons whose AUCs were significantly different
from chance on permutation test®. On average, compared
with the interglob population, the glob population con-
tains fewer neurons that were capable of discriminating
luminance (there are fewer black bars in the two leftmost
plots). The glob and interglob populations contained dif-
ferent proportions of cells that could distinguish lumi-
nance, for each discrimination problem (equiluminant vs
low-luminance: p = 0.00002°; and high-luminance vs
equiluminant: p = 2.6 X 10~ '3.° The glob cells that could
discriminate luminance were equally distributed into ones
preferring high-luminance, equiluminant, or low-luminance. By
contrast, the majority of interglob cells showed a prefer-
ence for the high-luminance or the low-luminance stimuli,

July/August 2016, 3(4) e0039-16.2016

but rarely the equiluminant stimuli: there is a greater
proportion of cells with AUCs >0.5 for the low-luminance
versus equiluminant comparison (Fig. 9A, third column),
and <0.5 for the equiluminant versus high-luminance
comparison (Fig. 9A, rightmost column). These results
support the idea that the luminance response among the
interglob cells does not contribute to the neural represen-
tation of color, whereas the luminance response among
the glob cells does contribute to the neural representation
of color.

We also tested the tolerance to luminance modulation
of hue tuning in the globs and interglobs. Figure 9B,
leftmost column, shows the peak tuning angle (Eqg. 1) of
each glob cell for the equiluminant stimulus set plotted
against the peak tuning angle of the same cell for the
low-luminance stimulus set. Figure 9B shows this analysis
for equiluminant versus low-luminance globs (leftmost
column), high-luminance versus equiluminant globs (second
column), equiluminant versus low-luminance interglobs
(third column), and high-luminance versus equiluminant
interglobs (rightmost column). The glob cells showed
higher peak angle correlation across luminance levels

eNeuro.org
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Figure 8. Tuning width distributions. The responses of each cell were fit with a Seung-Sompolinsky curve equation (see Materials and
Methods). As the narrowness of the tuning of the cell increases, the tuning width parameter decreases. Glob cells (A-C) had lower
tuning width values on average than interglob cells (D-F) for all luminance levels. Top row, Histogram for high-luminance stimuli;
middle row, equiluminant stimuli; bottom row, low-luminance stimuli. Dotted line marks the median tuning width. Shading indicates
the goodness of fit of the sine exponent curve: white, all cells; light gray, cells with curve fits of R? > 0.4; dark gray, R? > 0.6; black,

R2 > 0.8.

than the interglobs, for both the equiluminant versus low-
luminance comparison (glob, r = 0.90; interglob, r = 0.80
equiluminant vs low-luminance, p = 1.27 X 10_,55)° and
high-luminance versus equiluminant comparison (glob,
r = 0.91; interglob, r = 0.84; high-luminance vs equilumi-
nant, p = 4.70 x 107 '39c,

To determine whether or not peak shifting varied as a
function of hue preference, we divided the glob and in-
terglob cells into categories based on peak tuning pref-
erence. We defined eight bins of equal angle sizes (bin
edges 0:45:360) and sorted each cell into a category on
the basis of its peak color preference using the equilumi-
nant stimulus set (Fig. 9C, left) or the color preference
obtained using the high-luminance stimulus set (Fig. 9C,
right). We then compared the color preferences obtained
using the low-luminance (Fig. 9C, left) and equiluminant
(Fig. 9C, right) stimulus sets for each category. This anal-
ysis was repeated for both glob and interglob popula-
tions, and for the equiluminant versus low-luminance
and high-luminance versus equiluminant comparisons.
In the high-luminance versus equiluminant comparison,
cells were sorted based on their high-luminance peak
angle. For the globs, only the bin containing orange-
yellow cells (45:90) showed a significant peak shift ac-

July/August 2016, 3(4) e0039-16.2016

cording to a Mann-Whitney-Wilcoxon U test. The shift for
this bin was significant for both the equiluminant versus
low-luminance comparison (p = 0.009168, see Table 1 for
a complete list of p values for hue categories)®, and high-
luminance versus equiluminant comparison (o = 0.02754)°.
For the interglobs, both the orange-yellow and yellow-
green bins showed significant peak shifting, only for the
high-luminance versus equiluminant conditions (orange-
yellow, p = 0.009795; yellow-green, p = 0.02961)¢. None
of the eight hue bins showed significant hue shifting for
the interglobs between equiluminant and low-luminance
stimuli, despite the large differences in equiluminant and
low-luminance mean peak hue angles (Fig. 9C, solid and
dashed lines). This effect is likely due to the lower corre-
lation in peak angle across luminance levels (Fig. 9B).
Interglobs show large differences in peak hue tuning be-
tween luminance levels, but the shifts are inconsistent
across cells: while most glob cells tuned to equiluminant
yellow shift tuning such that they are tuned to low-
luminance orange (Fig. 9C, leftmost column), some inter-
glob cells tuned to equiluminant purple are tuned to
low-luminance red, while others prefer low-luminance
green and orange (Fig. 9C, third column). We did not find
evidence of rod intrusion in this analysis: there was no

eNeuro.org
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Figure 9. Effect of stimulus luminance on tuning. A, Luminance sensitivity of cells in the glob (left) and interglob (right) populations
assessed by ROC analysis. Interglob cells exhibit a preference for low-luminance or high-luminance stimuli over equiluminant stimuli.
The histograms show AUCs for the ROC for each cell, for two luminance discrimination problems. An AUC <0.5 indicates a neuron
preferred the first luminance in the pair; an AUC >0.5 indicates a preference for the second. Black bars indicate cells that significantly
preferred one of the two luminance categories (p < 0.05, permutation test). The interglob population had significantly more cells
whose AUCs were significantly different than chance than did the glob population, for both luminance discriminations (equiluminant/
low-luminance: p = 0.00002, Fisher’s exact test, two-tailed; high-luminance/equiluminant: p = 2.6 X 10~ '%). B, Luminance-invariant
color tuning assessment in globs (left) and interglobs (right). For each cell, the peak angle within the low-luminance set is plotted
against the peak angle within the equiluminant set (first and third columns), and the peak angle within the equiluminant set is plotted
against the peak angle within the high-luminance set (second and fourth columns). The marker color indicates the hue to which the
cell maximally responded for the x-axis stimulus set. The marker size increases with the cell’s tuning narrowness. Because color
space is circular, stimuli are rotated to appear at the y-axis point as close to the x = y line as possible. For example, if a cell had its
peak at 10 CIELUV degrees for the equiluminant set and 355° for the low-luminance set, it would be plotted at (10, —5) rather than
(10, 355). C, Peak shifting histograms. Each cell was placed into one of eight bins based on the angle to which it maximally responded
within a luminance level. Lighter bars show the peak tuning of the cells in each bin at the lighter of the two luminance values shown
(equiluminant for the first and third columns, high-luminance for the second and fourth columns). Darker bars show the peak tuning
of the same cells, at the darker of the two luminance values shown (low-luminance for the first and third columns, equiluminant for
the second and fourth columns). The solid line shows the mean tuning angle for the higher of the two luminance values shown, and the
dashed line shows the mean tuning angle of the cells at the darker of the two luminance values shown. Arrowhead designates the
peak rod response hue angle.

systematic shift in peak tuning toward the peak rod sen-
sitivity (Fig. 9C, black arrowhead) at lower luminance
levels.

These results are consistent with the idea that the
interglob population is sensitive to luminance contrast
independent of the hue of the stimulus, whereas the glob

July/August 2016, 3(4) e0039-16.2016

population is sensitive to a combination of luminance
contrast and hue. Such a combined sensitivity is pre-
dicted for neurons that represent a psychophysical color
space in which the same hue at different luminance levels
can be distinguished as having a different color. For ex-
ample, orange and brown have the same hue but differ in
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Data structure

a N/A

Figure 9A Permutation test does not make assumptions
about distribution of the data

b

Figure 9A

c Normally distributed after Fisher’s z transform

Figure 9B

d N/A

Figure 9C Mann-Whitney U rank-sum test does not

assume a normal distribution

Type of test
Type of test: permutation test

Description: test of whether there is a significant difference
in the proportion of significant AUC cells in the glob vs
interglob population (where significant AUC cells are
those cells with AUCs significantly different than 0.5, or
chance) for a given discrimination problem (e.g., low
luminance/equiluminant)

Type of test: Fisher’s exact test of proportions, two-tailed

Methods used to compute 95% Cls: For each of 200
bootstrap samples of the cells (N = 300 for the globs,
N = 181 for the interglobs), we determined the
proportions of cells with significant AUCs and
computed the test statistic described above. From the
distribution of p values, we computed 95% Cls by the
percentile method

Description: Test of whether the Pearson’s r values
quantifying the correlation between peak tuning angles
at two luminance levels is significantly different for the
glob and interglob populations. We performed 200
bootstraps to define a distribution of r values for each
luminance population combination

Type of test: Student’s t test (two-tailed) applied to the z
transform of a bootstrapped distribution of r values.

Methods used to compute 95% Cls: We performed 200
bootstraps 1000 times in order to get 1000 p values for
each comparison. From the distribution of p values, we
computed 95% Cls by the percentile method.

Description: test for peak shifting between luminance
levels for eight evenly sized color categories

Type of test: Mann-Whitney U rank-sum test (MATLAB
ranksum)

Methods used to compute 95% Cls: We performed the
rank-sum test on 2000 bootstraps containing 90% of
the cells in each population in order to get a distribution
of 1000 p values for each comparison. From the
distribution of p values, we computed 95% Cls by the
percentile method

(Continued)

Power [Cls]
p = 0.030 [0.0269-0.0334]

Equiluminant/Low-luminance: p = 0.00002 [95%

Cls: 3.95 x 107 1% to 0.006]

High-luminance/Equiluminant: p = 2.6 x 10713

[1.03 x 102" t0 1.75 x 1079

Significance of glob cell vs interglob cell luminance

peak correlation

Equilum vs Low Lum: p = 1.27 x 107" [6.32 x

10718 10 1.50 x 107144

High Lum vs Equilum: p = 4.70 x 1073 [3.67 x

107" 10 2.92 x 107119

Glob

Equilum vs Low Lum (in same order as in panel C,
top to bottom): p = 0.1267 [0.1193-0.1342];

0.4726 [0.4596-0.4857];
0.3052 [0.2923-0.3182];
0.2256 [0.2143-0.2369];
0.2731 [0.261-0.2853];
0.3197 [0.307-0.3324];
0.009168 [0.007482-0.01085];
0.3883 [0.3748-0.4018];
High Lum vs Equilum: p =
0.592 [0.5808-0.6031];
0.4484 [0.4354-0.4614];
0.1211 [0.1125-0.1296];
0.4631 [0.4495-0.4766];
0.4176 [0.4041-0.4311];
0.5271 [0.5149-0.5394];
0.02754 [0.02441-0.03067];
0.4146 [0.4013-0.428]
Interglobs

Equilum vs Low Lum (in same order as panel C,
bottom to top): p = 0.3541 [0.3409-0.3673];

0.3396 [0.3259-0.3533];
0.07011 [0.06317-0.07704];
0.1924 [0.1805-0.2044];
0.4253 [0.4117-0.439];
0.312 [0.2988-0.3252];
0.4446 [0.4312-0.458];
0.152 [0.1417-0.1623];

High Lum vs Equilum: p =
0.4467 [0.4335-0.4599];
0.1771, [0.166-0.1882];
0.07582, [0.069-0.08263];
0.4654, [0.4517-0.4791];
0.1828 [0.172-0.1936];
0.009795 [0.007742-0.01185];
0.02961, [0.02585-0.03336];
0.457 [0.4438-0.4702]
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Data structure

e Normally distributed after Fisher’s z transform
Figure 11A

f Normally distributed after Fisher’s z-transform
Figure 11A

a Classification accuracies; permutation test
Figure 11B does not make assumptions about

distribution of the data

Type of test
Description: Test of whether a Pearson’s r quantifying the

correlation between a CIELUV RDM and a neural RDM
is significantly different from zero

Type of test: Student’s t test (two-tailed) applied to the z

transform of r

Methods used to compute 95% Cls: For each of 200

bootstrap samples of the cells, we created an RDM,
computed the correlation between this bootstrap RDM
and the CIELUV RDM, and computed the test statistic
described above. From the distribution of p values, we
computed 95% Cls

Description: Test of significance of difference between

glob and interglob Pearson’s r correlation coefficients

Type of test: Paired t test (two-tailed) applied to z-

transforms of r’'s

Methods used to compute 95% Cls: As described in d

above, we computed correlations between bootstrap
RDMs and the CIELUV RDM, but here, subsequently
performed the test statistic described above.

Description: Test of whether classification accuracy is

significantly above chance (50%)

Type of test: Permutation test
Methods used to compute 95% Cls: For each of 200

bootstrap samples, we determined a classification

accuracy given the bootstrap sample, and performed a

permutation test to obtain a p value. Since our null
distribution contained 200 points, p was bound at
0.005, permitting calculation of only an upper 95%
confidence bound.

Because the glob and interglob populations were of
different sizes, we subsampled the glob population to N

= 181 for each of 200 subsample runs, and consider
the ps for all subsamples

(Continued)

Power [Cls]

Significance of Glob and CIELUV RDM Correlation

High Lum set: p = 4.31 x 10729 [95% Cls: 2.11 X
107316, 6.63 x 107259

Equilum set: p = 1.62 x 107271 [2.82 x 1072® to
3.76 x 1072%9]

Low Lum set: p = 3.71 x 107321 [0 t0 2.44 X
10—276]

Significance of Interglob and CIELUV RDM
Correlation

High Lum set: p = 3.33 x 107157 [1.08 x 107" to
1.40 x 107119

Equilum set: p = 5.16 X 10798 [1.70 x 107 "* to
6.68 x 107119

Low Lum set: p = 4.80 x 10722 [2.03 x 107 1% to
3.31 X 10799

Significance of Model LGN and CIELUV RDM
Correlation

All values are highly significant, with p < 2.23 X
1073% (upper bound on 95% ClI 0, equivalent to
2.23 x 107398 in MATLAB 2015b)

High Lum set: p = 2.05 X 1078 [95% Cls, 6.15 X
107%10 4.00 x 10719

Equilum set: p = 1.70 X 1072 [2.20 X 10 ° t0 6.17
x 1071

Low Lum set: p < 2.0 x 1076 [2.22 x 1076, < 2.0
x 10716

Hue decoding

Globs

Generalizing to High Lum: p < 0.005. [No null points
lay above the observed decoding accuracy for
any subsample of any bootstrap sample.]

Generalizing to Equilum: p < 0.005. [No null points
lay above the observed decoding accuracy for
any subsample of any bootstrap sample.]

Generalizing to Low Lum: p < 0.005. [No null points
lay above the observed decoding accuracy for
any subsample of any bootstrap sample.]

Interglobs

Generalizing to High Lum: p < 0.005. [No null points
lay above the observed decoding accuracy for
any bootstrap sample.]

Generalizing to equiluminant: p < 0.005 [upper 95%
confidence bound = 0.08]

Generalizing to Low Lum: p < 0.005 [upper 95%
confidence bound = 0.315]

Luminance decoding

Globs

Low Lum/High Lum: p < 0.005. [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

Low Lum/Equilum: p < 0.005 [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

Equilum/High Lum: p < 0.005. [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

Interglobs

Low Lum/High Lum: p < 0.005. [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

Low Lum/Equilum: p < 0.005. [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

Equilum/High Lum: p < 0.005. [No null points lay
above the observed decoding accuracy for any
bootstrap sample.]

July/August 2016, 3(4) e0039-16.2016
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h
Figure 11B

i
Discussion

Data structure
Binomial distribution

N/A, permutation test does not assume a
normal distribution

Type of test

Description: Significance of difference between
classification accuracies for the glob versus interglob
populations

Type of test: McNemar’s exact test, two-tailed on paired
binomial data, with « = 0.05

Methods used to compute 95% Cls: For each of 200
bootstrap samples, we obtained a p value by taking the
average of 200 p values derived by comparing the
results for the interglob population and the results for
one subsampling run of the glob population using
McNemar’s extact test, two-tailed (for paired binomial
data).

Description: significance of difference between proportion
of warm tuned and cool tuned cells

Type of test: permutation test. For 2000 permutations,
each cell was randomly assigned one of the 45 stimulus
angles to be tuned to. A null distribution of warm-
tuned-to-cool-tuned cell ratios was calculated from this
permutation.

Methods used to compute 95% Cls: We ran 2000
bootstraps using 90% of each population. For each
bootstrap, we calculated a p value as the proportion of
permuted populations with a higher warm-tuned-to-
cool-tuned cell ratio than the warm-tuned-to-cool-tuned
cell ratio of the bootstrap population. The 95% Cls are
calculated from the bootstrap populations. Because we
had 2000 bootstrap permutations, the lowest bound of
the p value possible is p < 5 x 1074

Power [Cls]

Hue decoding

Generalizing to High Lum: p = 5.29 X 1077 [95%
Cls: 1.05 X 107° to 0.003]

Generalizing to Equilum: p = 6.27 X 10712 [1.88 x
107 t01.12 X 1079

Generalizing to Low Lum: p = 1.69 X 107° [1.88 x
1075 to 0.006]

Luminance decoding

Low Lum/High Lum: p = 0.213 [95% Cls:
0.005-0.939]

Low Lum/Equilum: p = 0.463 [0.003-0.570]

Equiluminant/High-luminance: p = 0.074 [2.6 X
1075, 0.375]

Globs

High Lum: p = 0.001 [5 X 10~ % to 0.14]

Equi Lum: 5 X 1074 [5 x 107 to 0.001]

Low Lum: p <5 x 10745 x 107 t0 5 x 1074
(globs had higher warm-tuned-to-cool-tuned cell
ratio than all permutations on all bootstraps)

Interglobs

High Lum: p = 0.0035 [5 X 10 “ to 0.15]

Equi Lum: p = .51 [0.06-0.95]

Low Lum:p =p <5 x 10745 x 1074 t0 5 X 1074

Equilum, Equiluminant; High Lum, high-luminance; Low Lum, low-luminance; N/A, not applicable.

luminance contrast. Certain glob cells would be capable
of signaling both the hue and the luminance that distin-
guish orange from all other hues, and orange from brown.

Quantitative comparison of population coding to
color space
The tuning curves of example cells (Fig. 2) also suggest
that both glob and interglob cells carry information about
hue. In our next set of analyses, we considered how the
globs and interglobs represent color information at the
population level. We used MDS to first obtain a picture of
neural color space, allowing our results to be compared
with those of Namima et al. (2014). We then deployed
RSA to quantitatively compare the neural representations
of colors to the spatial relationships between those colors
in CIELUV color space. To our knowledge, our analysis is
the first in the single-unit literature that quantitatively tests
the fit between neural representations and color space.
Each stimulus has a high-dimensional neural represen-
tation in which each dimension corresponds to the mean
firing of one cell in the population of recorded neurons.
For the glob population (N = 300), the representation of a
given stimulus is 300-dimensional; for the interglob pop-
ulation (N = 181), it is 181-dimensional. From the high-
dimensional neural representation, we can read out
information about how similar the two stimuli are: we
deem stimuli to be similar to the extent that their neural
response vectors are correlated. MDS allows us to reduce
(or “embed”) the high-dimensional neural representation
to a lower-dimensional representation that we can plot,
and that still captures (most of) the similarity structure of
the original representation.

July/August 2016, 3(4) e0039-16.2016

We can compute an error measure (we used Sammon’s
stress) to determine how much the similarity relationships
between pairs of points in the high-dimensional represen-
tation are uncaptured by a best-fitting lower-dimensional
representation (Fig. 10, insets, top panels). While higher
numbers of dimensions always produce better dissimilar-
ity approximations, this comes at the cost of increased
model complexity; for our embeddings, stress drops for
two dimensions, and then decreases gradually thereafter.
Figure 10 shows plots of the two-dimensional MDS em-
beddings for the two populations of neurons in V4/PIT, as
well as a population of model LGN cells. The color of each
data point corresponds to the color of the stimulus, and
the spatial relationship of the points reflects the extent to
which the neural responses to the stimuli were related:
data points are plotted closest together when the neural
responses to the two stimuli were most similar (see Fig. 12
for the three-dimensional MDS embeddings).

For the glob population, the arrangement of the stimuli
clearly reflects CIELUV color space: points of the same
hue irrespective of luminance level are plotted next to
each other, and the progression of the points forms a
circle that proceeds according the color wheel: following
clockwise, blue is next to cyan, which is next to green,
followed by yellow (brown), orange, red, and, closing the
circle, purple. The pattern obtained for the interglob cells
also bears some similarity to perceptual color space, but
is not as clearly organized (e.g., cyan dots are intermin-
gled with blue and purple dots).

The MDS analyses in the top panels of Figure 10 were
performed using the neural responses to all the stimuli at
all luminance levels. How do the populations represent

eNeuro.org
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Figure 10. Glob, interglob, and LGN neural color spaces as calculated by MDS. Both the glob and interglob populations represent
hue information, and these representations resemble the structure of perceptual CIELUV color space. A-K, MDS applied to the glob
(A, B, C, D), interglob (E, F, G, H), and model LGN (I, J, K) responses to stimuli yields a picture of neural color space. Each stimulus
has a high-dimensional neural representation, where each dimension corresponds to the mean firing rate of a single cell. MDS
produces a low-dimensional embedding that seeks to preserve the distances between stimuli in the original, high-dimensional space.
We use 1 — p (Pearson’s correlation coefficient) as our distance metric: stimuli are distant to the extent that the patterns of activity
they evoke are uncorrelated. Stimuli are plotted by their color in coordinates determined by the new, two-dimensional embedding. A,
B, Glob and interglob MDS embeddings of the full stimulus set (45 hues at three luminance each). Insets show Sammon’s stress as
a function of embedding dimensions used. Glob (B-D), interglob (F-H), and model LGN (I-K) MDS embeddings of stimulus hues for
each luminance level (Sammon'’s stress for globs: low-luminance = 0.05; equiluminant = 0.06; high-luminance = 0.05; for interglobs:
low-luminance = 0.12; equiluminant = 0.10; high-luminance = 0.10; for model LGN cells: low-luminance = 0.10; equiluminant = 0.10;
high-luminance = 0.10).
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Figure 11. Neural color space and CIELUV hue RSA (A) and hue decoding (B). A, Neural distances between stimuli are significantly
correlated with the hue angle distances between these stimuli in perceptual CIELUV color space. Both glob and interglob population
representations are significantly correlated with CIELUV for the high-luminance, equiluminant, and low-luminance stimulus sets (p <
0.0001, t test, two-tailed). For all sets, the glob representations are significantly more correlated with CIELUV than are the interglob
representations (high-luminance set: p = 2.05 X 1078, t test two-tailed, Fisher r-to-z; equiluminant set: p = 1.70 X 10°%;
low-luminance set: p < 2.0 X 10~ '9). B, Representations of the same hue at different luminance levels are sufficiently similar that hue
information can be read out by a linear SVM invariant to changes in luminance. Mean pairwise hue classification accuracies for three
generalization problems. A classifier was trained to distinguish between hues given two stimulus sets (e.g., low-luminance and
equiluminant), and tested on the held-out stimulus set (e.g., high-luminance). The test luminance appears below each set of bars.
Classification accuracy was significantly above chance for all generalization problems in both populations (p < 0.005, permutation
test), though significantly higher for the glob than interglob population (all generalization problems: p < 0.0001, McNemar’s exact test,

two-tailed). Error bars indicate the SD of the mean across 200 subsampling runs.

hue information when luminance is removed as a vari-
able? In other words, to what extent is the neural repre-
sentation of color preserved across luminance levels? To
answer this question, we performed MDS separately on
responses to stimuli in each luminance set. For the globs,
the representation of the stimuli largely reflects perceptual
color space for all luminance levels tested (Fig. 10, B-D).
For the interglobs, the representation of the stimuli corre-
sponds less clearly to perceptual color space, especially
when assessed using the equiluminant and low-lumin-
ance sets (Fig. 10, F-H). The MDS analysis suggests that
behavioral judgments of the similarity between colors
closely match the similarities between the neural re-
sponses to these colors by the glob population, and, to a
lesser extent, by the interglob population. For compari-
son, we performed the same MDS analysis on a simulated
population of parvocellular LGN neurons (see Materials
and Methods). The MDS representation recovers the se-
quence of colors found in perceptual color space (Fig. 10,
right column) but is distorted toward the stimuli that had
the highest saturation, as expected from a population of
neurons with linear tuning (Fig. 4).

If the sensitivity to color is reflective of a causal role in
color perception, we hypothesized that the relative re-
sponse of a population to pairs of stimuli should reflect
the similarity of the colors of the stimuli defined by a
uniform perceptual color space. To test this idea quanti-
tatively, we performed RSA, in which we looked at the
extent to which the representational dissimilarities be-
tween stimuli according to neural response are correlated
with the dissimilarities according to perceptual CIELUV
color space hue angle. Given any two stimuli, we can
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measure their dissimilarity both by the angular distance
between their hues in CIELUV space, and by the correla-
tion distance between their neural response vectors. Per-
forming these two computations for each pair of stimuli,
we obtain two 45 X 45 dissimilarity matrices, where 45 is
the number of hues. To assess whether the two measures
induce similar representations, we calculate the Pear-
son’s correlation coefficient between the two dissimilarity
matrices. A high correlation indicates that the neural re-
sponses agree well with the color space.

To focus on hue, we split the stimuli into the three
luminance sets (low-luminance, equiluminant, and high-
luminance), and for each luminance set, we performed
RSA on each of the glob and interglob population re-
sponses. Given our MDS results (Fig. 10), we predicted
that the glob representations of hue at each luminance
would strongly correlate with CIELUV hue space for all
luminance sets, but that for the interglobs this correlation
would be high only for the high-luminance set. Further, we
expected there to be a significant difference in the corre-
lation values for the two populations.

As shown in Figure 11A, we found that the representa-
tions by the glob population of the low-luminance, equi-
luminant, and high-luminance sets were indeed signifi-
cantly correlated with the angular distances between
stimuli (high-luminance set: Pearson’s r = 0.70, p =
4.31 X 10729, two-tailed t test®; equiluminant set: r =
0.68,p = 1.62 X 1072""; low-luminance set: r = 0.72, p =
3.71 X 107%2"), The representations of the interglob pop-
ulation were also significantly correlated for each set
(high-luminance set: r = 0.55, p = 3.33 X 107 '%7; equi-
luminant set: r = 0.56, p = 5.16 X 10~ '®®; low-luminance
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Figure 12. Luminance clustering within neural color space (A, B) and luminance decoding (C). Both the glob and interglob populations
segregate stimuli by luminance. A, B, Three-dimensional MDS embedding for the glob (A) and interglob (B) populations. Squares
indicate low-luminance stimuli, circles indicate equiluminant stimuli, and triangles indicate high-luminance stimuli. C, Luminance
information is accessible to readout by a linear classifier invariant to changes in hue for both populations, showing that these
populations carry information about stimulus luminance as well as hue. Mean classification accuracies across decoding runs were
high (>89%) for distinguishing between all luminance class pairs, for both populations (all p < 0.005, permutation test). Error bars

indicate the SD of the mean across 200 subsampling runs.

set: r = 0.43, p = 4.80 X 107%%). But the glob represen-
tations were more similar to CIELUV than were the inter-
glob representations (high-luminance set: p = 2.05 X
1078, paired two-tailed t test’; equiluminant set: p = 1.70
X 107%; low-luminance set: p < 2.0 X 107 %), showing
that hue information in the glob population more closely
resembles perceptual color space. We performed the
same analysis on a population of model LGN cells and,
similarly, found high correlations between their represen-
tation of the stimulus sets and the angular distances
between stimuli: (high-luminance set: r = 0.83; equilumi-
nant set: r = 0.96; low-luminance set: r = 0.89; all corre-
lations were significant, p < 2.23 X 1073%8¢, two-tailed t
test).

Decoding of hue information across changes in
luminance

Contemporary color-ordering systems treat hue and lumi-
nance as separable parameters. To examine whether the
extraction of hue and luminance from colored stimuli
could be supported by the neural data, we used invariant
decoding: we used a pattern classifier to predict the hue
of a stimulus from its neural representation. During train-
ing, we presented the classifier with labeled examples of
the neural response vectors for two hues at two lumi-
nances each (e.g., low-luminance green, equiluminant
green, low-luminance blue, equiluminant blue). We then
tested the classifier by asking it to predict the hues of
two new neural response vectors, where our test cases
were the same two hues seen during training, but at a
new luminance (e.g., high-luminance green and high-
luminance blue). To do well on this task, then, our classi-
fier must generalize the hue information it learned during
training to correctly classify these hues at a luminance it
has never seen before. We obtain a comprehensive mea-
sure of classification accuracy by averaging the results for
each pair of hues. High classification accuracy indicates
that the population represents hue in such a way that it is
sufficiently similar as to be recognizable across changes
in luminance.
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When a classifier successfully “reads out” an exper-
imental variable given a pattern of activity, this sug-
gests that the information may be accessible to
upstream neurons. Similar analyses have been used to
look at how neural populations represent object identity
invariant to changes in position and scale (Hung et al.,
2005; Rust and diCarlo, 2010) and to recover color
information from fMRI data (Brouwer and Heeger,
2009). Given that our RSA and MDS results showed that
the glob population captures hue information to a
greater degree than does the interglob population, we
predicted that classification accuracy would be higher
for the glob cells.

Figure 11B shows results for both populations for three
classification problems, namely, problems in which we (1)
train on low-luminance and equiluminant sets, and test on
high-luminance; (2) train on low-luminance and high-
luminance, and test on equiluminant; and (3) train on equi-
luminant and high-luminance, and test on low-luminance.
Classification accuracy was significantly above chance for
all three problems for both the glob and interglob popula-
tions (all p < 0.0059, permutation test). But classification
accuracies were significantly higher for the glob than the
interglob population (generalizing to high-luminance: p =
5.29 X 1077, two-tailed McNemar’s exact test" generalizing
to equiluminant: p = 6.27 X 10~ '2; generalizing to low-
luminance: p = 1.69 X 1079).

Analyses of luminance information present in the
population responses

In Figure 9, we showed that many of our individual cells
can discriminate stimulus luminance. How does this abil-
ity manifest at the population level? As we did with hue,
we can use MDS embeddings to visualize stimuli by
luminance category. Figure 12 shows the three-dimen-
sional MDS embeddings for the glob (Fig. 12A; Sammon’s
stress = 0.03) and interglob populations (Fig. 12B; stress
= 0.06). In both populations, the stimuli are well segre-
gated by luminance. Striking is the fact that, in the globs,
each luminance set forms a discrete ring, and each of
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Movie 1. Three-dimensional MDS stimulus em-
bedding for the glob population, colored by
stimulus color. Rotations reveal hue-organized
rings.

Coordinate 2

these rings contains a full hue map, similar to three-
dimensional renderings of CIELUV color space. Movies 1
and 2 show the rotations of the three-dimensional em-
bedding for the glob population colored by stimulus color
(1) and luminance category (2). Movies 3 and 4 show the
rotations of the interglob embedding.

Given the luminance category segregation apparent in
the MDS plots, we expected that hue-invariant luminance
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Movie 2. Three-dimensional MDS stimulus em-
bedding for the glob population, colored by
luminance category. Squares indicate low-
luminance stimuli, circles indicate equiluminant
stimuli, and triangles indicate high-luminance
stimuli. Rotations reveal three luminance rings.
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Movie 3. Three-dimensional MDS stimulus em-
bedding for the interglob population, colored
by stimulus color.
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decoding should be possible for both populations. Pro-
ceeding analogously to our hue-decoding analysis, we
trained a classifier to distinguish between each pair of
stimuli of constant hue and different luminance. For each
pair, we trained the classifier by showing it luminance-
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Movie 4. Three-dimensional MDS stimulus
embedding for the interglob population, col-
ored by luminance category. Squares indi-
cate low-luminance stimuli, circles indicate
equiluminant stimuli, and triangles indicate
high-luminance stimuli. Rotations reveal that
the population segregates stimuli by
luminance.
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labeled examples of 15 of 17 hues. Next, we tested its
ability to predict the luminance of the two hues that had
been left out. We found that the classifier was able to read
out luminance information with high accuracy invariant to
changes in hue for both neural populations (>89%, p <
0.005, permutation test9; Fig. 12C). Classification accura-
cies were not significantly different between the glob and
interglob populations.

Discussion

The organization of colors can safely count as one of the
longest-lived problems in science (Kuehni and Schwartz,
2008). Newton was perhaps the first to systematically
arrange colors in a circle, making meaningful use of ge-
ometry; his insight suggested that color organization was
determined not solely by physical parameters but also by
the way signals are processed in the brain. Contemporary
color-ordering schemes adopt three dimensions: hue
(e.g., “red,” “purple,” “green”), saturation (“red” vs “pink”),
and brightness (or value). Unknown are the neural rules
that determine the geometric relationships within and be-
tween these dimensions. One tradition proposes that
color is organized around six unique hues (Hering, 1905;
Hurvich, 1981), which were initially thought to reflect color
tuning in the LGN (De Valois et al, 1966). The psycholog-
ical importance of these colors is not unquestioned
(Saunders and van Brakel, 1997; Witzel et al., 2015; Wool
et al., 2015). And careful analysis shows that LGN color
tuning does not underlie the unique hues (Webster et al.,
2000); the neural basis for the unique hues remains un-
known. Where Newton’s color-ordering system was
launched by physics, and Hering’s color-opponent scheme
began with psychology, our approach starts with the
structural organization of perception and the represen-
tation of color in the brain. Our goal is to determine
what brain areas (and cells) represent color, and to
interrogate the neural responses to reverse engineer
the rules that govern color space geometry. We have
not yet reached this goal, but here we present evidence
showing that a population of neurons (glob cells) in
PIT/V4 not only contains a representation of color
space that bears remarkable similarity to uniform per-
ceptual color space, but also possesses nonlinear (nar-
row) color tuning, two features that suggest an
important role in color perception.

Color-tuned neurons have been found earlier than V4/PIT
in the visual-processing hierarchy. V1 has received consid-
erable attention (Gegenfurtner and Kiper, 2003; Solomon
and Lennie, 2007; Conway, 2009; Conway et al., 2010;
Shapley and Hawken, 2011), although linear systems anal-
ysis has not uncovered a meaningful correspondence be-
tween V1 color-tuning properties and color space (Lennie
et al., 1990). An analysis of just the population of cone-
opponent V1 cells—cells most likely involved in color
processing—uncovered an over-representation of the
colors associated with daylight (Conway, 2001; Lafer-
Sousa et al., 2012), possibly providing a Bayesian prior
used to resolve stimulus ambiguity (Lafer-Sousa et al.,
2015). Other work, applying a nonlinear analysis, sug-
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gests that V1 cells inherit the chromatic-tuning biases of
the LGN (Horwitz and Hass, 2012). Together, this re-
search suggests that V1 constitutes an intermediate step
in the computation of color. Consistent with this hypoth-
esis, imaging in humans shows that the color space de-
rived from the covariation across V1 voxels in response to
different colors does not correspond to perceptual color
space; instead, higher-order areas (hV4, V-O1) possess a
representation that more closely corresponds to percep-
tion (Brouwer and Heeger, 2009). Cells carrying color
information are found in V2 (Burkhalter and Van Essen,
1986; Hubel and Livingstone, 1987; Moutoussis and Zeki,
2002); as a population, V2 cells show a bias for colors of
daylight (Kiper et al., 1997), similar to V1. One study
suggests that V2 contains maps that match color space
(Xiao et al., 2003; Lim et al., 2009), but quantitative tests
of this correspondence have not been performed. Neu-
rons in V3 either appear indistinguishable in their color-
tuning properties from V2 neurons (Gegenfurtner et al.,
1997) or they carry considerably less color information
(Baizer, 1982).

A substantial transformation of color signals takes place
in or before area V4/PIT (Zeki, 1980; Desimone et al.,
1985). The importance of V4 in color processing was
initially challenged (Schein et al., 1982), but the contro-
versy was resolved with experiments combining fMRI and
fMRI-guided microelectrode recording, which showed
that V4 contains color-biased subdomains, “globs,” that
are separated by interglob regions showing lower color
bias (Conway and Tsao, 2006; Conway et al., 2007).
These findings have been confirmed using optical imaging
(Tanigawa et al., 2010; Li et al, 2014). Prior work suggests
that glob cells have narrow color tuning (Conway et al.,
2007), but the narrowness has not been quantified until
now. Here we show that glob cells are probably much
narrower in their tuning than LGN cells (and most V1
cells). The stimuli used presently, which are typical of
many neurophysiological studies of color, preclude a de-
finitive conclusion because they confound saturation and
hue. Nonetheless, the likely narrow tuning, coupled with
the representation of color space encompassed by the
population of glob cells, suggests a neural basis for
higher-order psychophysical chromatic mechanisms (Web-
ster and Mollon, 1991; Hansen and Gegenfurtner, 2007;
Stoughton et al., 2012).

A preliminary analysis suggested that the glob cell pop-
ulation is biased toward the unique hues (Stoughton and
Conway, 2008). The stimuli used to obtain these data
were similar to stimuli used in other studies (Komatsu
et al., 1992): they consist of the most vivid colors permit-
ted by the monitor. These colors lie on a triangle in CIE
space. Cone contrast varies among stimuli within this set,
and is highest for the red and blue apices. It has been
suggested that the color-tuning biases observed in the
population of glob cells would be observed in the LGN, if
LGN responses were assessed with the triangular stimu-
lus set (Mollon, 2009). Alternatively the color-tuning dis-
tribution may reflect the responses of a population that
has color-tuned neurons uniformly representing color
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space, in which each neuron is sensitive to saturation
(Conway and Stoughton, 2009). We tested these alterna-
tive predictions by comparing model simulations to re-
corded data. Simulations that assume linearly tuned
neurons did not match the glob cell data: the simulations
only yielded peaks to colors located at the apices of the
triangle, unlike the measured neural population that also
had peaks at intermediate colors. These findings rule out
the first possibility: glob cells do not appear to have color
tuning as found in the LGN. Among nonlinear models,
does the best-fitting model show a bias toward the car-
dinal directions? It seems not. The nonlinear models bi-
ased to the cardinal directions showed too few responses
to green compared with the glob cell data. Instead, the
optimal model was a uniform representation. Among glob
cells, those tuned to purple showed the narrowest color
tuning, a feature that may reflect the peculiar properties of
S cone-opponent neurons in V1 (Cottaris and De Valois,
1998; Conway and Livingstone, 2006; Horwitz and Hass,
2012), LGN (Tailby et al., 2008b), and retina (Dacey and
Lee, 1994). These cells probably account for the band
corresponding to models with a tuning width of 96 (Fig. 6).
The nonlinear models biased for the unique hues did not
fare any better at each level of nonlinearity than the mod-
els of populations biased to the cardinal colors: the best
model was still close to a uniform distribution. These
results suggest that the variation in saturation among the
stimuli is the cause of the bias toward red, green, and blue
that was reported previously.

The best-matching models in all the comparisons have
R? values hovering around 0.5, leaving plenty of variation
unaccounted for. Some of this variability may be attrib-
uted to uneven sampling of neurons. It is also possible
that the color space sampling, every ~17°, was too
sparse; we suspect this is not the case because we did
not find systematic changes of narrowness as a function
of color tuning when using stimuli that more finely sample
color space. The stimuli were all relatively low luminance,
raising the possibility of rod intrusion (Stiles and Burch,
1959). The analysis of color responses at different lu-
minance levels does not indicate a bias predicted by
the rod peak, although the impact of rod intrusion could
be complex (Shapiro et al., 1996; Buck, 1997). The
complications of interpreting the neurophysiological
data described here underscore the critical importance
of the careful choice of stimuli, and draw attention to
the overlooked gaps in our understanding of what con-
stitutes seemingly elementary properties of color (hue,
saturation, and brightness) and their interaction. In par-
ticular, we note that there remains no consensus on the
spatial organization of color space: CIELUV, the per-
ceptual space used here, is a standard, but it has
defects (Melgosa et al., 1994)

Prior work has shown that glob cells are spatially clus-
tered by color preference (Conway and Tsao, 2009). Con-
way and Tsao (2009) present the first microelectrode
evidence for chromotopic maps anywhere in the visual
system, but they perform no quantitative tests of the
correspondence between the neural representation of
color and the organization of perceptual color space. The
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data presented here fill this gap, and strongly suggest that
the population of glob cells contains narrowly tuned neu-
rons representing most directions in color space, not just
the cardinal directions favored by the LGN. Moreover,
using representational similarity analysis, we found that
the representation of color space encoded by the glob, as
compared with the interglob, population, shows a better
correspondence to CIELUV color space; the glob cell
population also shows a bias toward warm colors (reds,
yellows). RSA of a model LGN population also showed
similarity to CIELUV color space, which demonstrates that
a correspondence with color space can occur in the
absence of single cells narrowly tuned to each color in
space. The RSAs on the two cortical populations suggest
that between glob and interglob populations, it is the glob
cells that perform the readout of the color space repre-
sentation found in the LGN. This conclusion is supported
by the narrow tuning found among glob cells and the
decoding algorithms showing that stimulus color can be
predicted from the color tuning of the most active neurons
in the glob cell population (Zaidi et al., 2014).

The responses to the luminance of the different sets of
stimuli, by both glob and interglob populations, could be
read out by a linear classifier. But a linear classifier de-
coded the hue invariant to luminance better for the glob
than for the interglob population. Luminance classification
accuracy (luminance invariant to hue) was high for both
populations. One might have thought that neurons impli-
cated in color perception (glob cells) would show color
tuning that was entirely invariant to changes in luminance.
But luminance is an important dimension of color, and can
change a hue from one color into another: an increase in
luminance contrast (brightness) converts brown into or-
ange. The sensitivity to luminance contrast of the glob
cells is consistent with prior observations (Conway et al.,
2007; Namima et al., 2014), and may underlie the Bezold—
Brucke hue shift (Stoughton and Conway, 2008). The
interglob cells, meanwhile, typically did not retain their
hue tuning across luminance levels. We quantified this
result, and confirm that interglob cells tended to show
clear preferences for stimuli that were either darker or
brighter than the background, regardless of hue. To-
gether, the results on the interglob cells suggest that this
population is using chromatic information in the service of
something besides color perception, such as the detec-
tion of color boundaries for object recognition. Such a
computation would be useful in object segmentation and
in defeating camouflage, where sensitivity, but not selec-
tivity, for color is crucial; this property of interglob cells
suggests that they are part of the network that includes
the “complex equiluminance” cells found in V1 (Conway
and Livingstone, 2006; Conway, 2014).

Imaging experiments show that considerable cortical
territory within and anterior to V4 is implicated in color
(Tootell et al., 2004; Conway et al., 2007; Harada et al.,
2009; Lafer-Sousa and Conway, 2013); there is a high
degree of homology in the functional organization of the
ventral visual pathway in humans and IT cortex in
monkeys (Wade et al., 2008; Lafer-Sousa et al., 2016).
Microelectrode recording and anatomical track-tracing
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experiments in monkeys confirm that extrastriate regions
identified as color biased using fMRI typically are enriched
for color-tuned neurons (Conway et al., 2007) and prob-
ably connected to each other (Banno et al.,, 2011).
Namima et al. (2014) offer the first systematic comparison
of the narrowness of color tuning at multiple stages span-
ning the temporal lobe, from V4 to AIT. They found that
neurons in AlIT showed more nonlinear tuning than neu-
rons in V4/PIT, although they did not target recordings to
color-biased domains identified independently with imag-
ing. We wondered whether the relatively narrower tuning
of neurons in AIT might be evident in V4/PIT, if one
restricted the analysis to just globs. If so, then the high
nonlinearity in AIT might not be generated cumulatively
through serial stages along IT, as suggested by Namima
et al. (2014), but rather created early in processing and
inherited by AIT. Consistent with our hypothesis, glob
cells had considerably narrower color tuning than inter-
glob cells. Indeed, the narrowness of the glob cells was
higher than the estimates for neurons in AIT (93% sharply
selective glob cells, compared with ~75% in AIT, as
estimated by Namima et al., 2014).

The results presented here suggest that the neural cor-
relate of perceived color is computed in V4/PIT. What then
is the functional role of the vast amount of color-biased
cortical tissue within the rest of IT? At this point, we can
only speculate. Chromatic information informs many be-
haviors ranging from attentional recruitment, to memory,
to social cognition (Conway, 2016).These behaviors un-
derscore an important advantage of color perception: the
system is trainable and can forge associations not only
between colors and objects, but also between colors and
abstract concepts such as emotional states (red/anger)
and words. IT is implicated in many aspects of high-level
object vision, including recognition, categorization, mem-
ory, and attention. Koida and Komatsu (2007) have shown
that the firing of color-tuned neurons within AIT is influ-
enced by task demands, lending support to the idea that
the job of more anterior regions of IT is not to compute
color perception (a job taken care of by PIT), but rather to
use this information to direct behavior. It seems likely,
then, that the color-biased regions within AIT are involved
in high-level behaviors that depend on or involve color.

Hering (1964) made a powerful case that opponency is
the basis for color vision. He took this observation further
to argue that color is constructed by three sets of exclu-
sive color pairs: red/green; blue/yellow; and black/white.
The results from the study by Hering (1964) have been
interpreted as supporting the theory that basic color cat-
egories are universal and derive from the hardwiring of
color tuning in the nervous system (Berlin and Kay, 1969;
Lindsey and Brown, 2009). But the universalist theory has
received some hard blows challenging the methodology
(Saunders and van Brakel, 1997). Psychophysical work
has also challenged the theory: the unique hues are not
more salient than other colors, as they should be if they
are privileged (Wool et al., 2015). Moreover, there is con-
siderable variability among people (Webster et al., 2002),
and across language groups (Lindsey et al., 2015), in the
location and boundaries of the unique hues within color
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space; and the specific colors that are assigned special
status vary across cultures (Davidoff et al., 1999; Rober-
son et al., 2000), which suggests that the unique hues are
not as special as widely assumed. Neurophysiological
work strongly suggests that the building blocks of color
processing in the retina and LGN depend on cone oppo-
nency (Conway, 2009); but this opponency does not ac-
count for the unique hues or basic color categories
(Webster et al., 2000). Is it possible that the importance of
the unique hues is learned, reflecting some special be-
havioral importance, and as such depends on processing
in higher-order areas, rather than being innate and ac-
counted for by activity early in the visual-processing hier-
archy? The ultimate goal of the visual system is to
transform an inherently ambiguous retinal stimulus into an
unequivocal signal that can guide action. The retinal stim-
ulus for color is typically ambiguous, which seems to be at
odds with our experience of color: most observers are
under a powerful illusion that color (including the impor-
tance of the unique hues) is tied in some direct way to the
physical world (Conway, 2009, 2016)—the apparent un-
equivocal nature of our experience of color is one of the
triumphs of the brain. Each of us has great conviction
about the accuracy and validity of our color experience,
even when there is no clear consensus among people
considering the same stimulus (Lafer-Sousa et al., 2015).
Our convictions could corrupt experimental design: in
retrospect, it seems likely that the methods of the impor-
tant World Color Survey (http://www1.icsi.berkeley.edu/
wcs/) begged the existence of basic color terms (Saunders
and van Brakel, 1997). Rather than reflecting a fundamen-
tal input to the color vision machinery, the unique hues
more likely represent the computational product of this
machinery, reflecting the integration of task demands,
behaviorally relevant statistics, and language, computa-
tions that we hypothesize are implemented in IT and the
frontal cortex (Lafer-Sousa and Conway, 2013; Romero
et al., 2014). These arguments reformulate the question
regarding the unique hues: do they have some special
behavioral relevance that underlies their privileged status?

Throughout this article, we have referred to “color-biased
regions” rather than “color areas.” We draw this distinction
because we are not yet in a position to conclude what com-
putations these regions are performing. The term “color area”
implies a specific and exclusive role in computing color. Given
the extensive amount of cortical real estate in the temporal lobe
that responds to chromatic stimulation, the wide range of op-
erations that could benefit from sensitivity to color, and the
likely sensitivity of color-biased regions to other stimulus attri-
butes such as texture and material properties (Goda et al.,
2014), it would seem premature (and wrong) to conclude that
color-biased regions, including the globs of V4/PIT, are func-
tionally discrete areas dedicated to processing only color. The
analysis presented here provides a method for quantitatively
testing the relationship between color behavior and neural ac-
tivity that we hope to exploit in tracing the transformation of
color signals through these regions to figure out what the
regions are doing and how color tuning emerges. The close
relationship between perceptual color space and the neural
representation of color found among glob cells of PIT/V4
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shows what information is available to subsequent stages in
the putative visual-processing hierarchy, and will guide future
work measuring neural activity with stimuli that densely sample
uniform color space in an attempt to find a solution to the
geometry of color space.
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