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Abstract: Humoral immunity has emerged as a vital immune component against severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). Nevertheless, a subset of recovered Coronavirus
Disease-2019 (COVID-19) paucisymptomatic/asymptomatic individuals do not generate an antibody
response, constituting a paradox. We assumed that immunodiagnostic assays may operate under
a competitive format within the context of antigenemia, potentially explaining this phenomenon.
We present a case where persistent antigenemia/viremia was documented for at least 73 days post-
symptom onset using ‘in-house’ methodology, and as it progressively declined, seroconversion
took place late, around day 55, supporting our hypothesis. Thus, prolonged SARS-CoV-2 anti-
genemia/viremia could mask humoral responses, rendering, in certain cases, the phenomenon of
‘non-responders’ a misnomer.

Keywords: SARS-CoV-2; COVID-19; viremia; antigenemia; antibody; seroconversion; immunopreva-
lence; non-responders; ELISA; immunodiagnostics

1. Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the culprit of an
ongoing pandemic, continues to engender detrimental effects on healthcare systems world-
wide leading to serious socioeconomic consequences. Following an incubation period of
2-14 days infected individuals experience a heterogeneous clinical course of the so-called
Coronavirus Disease-2019 (COVID-19), ranging from asymptomatic infection to critical
illness [1,2]. Similarly, symptomatic infection comprises of a wide array of clinical manifes-
tations from localized disease affecting preferentially the respiratory and occasionally the
gastrointestinal tract to multisystemic organ involvement [3,4].
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The brisk induction of proinflammatory responses, the so-called cytokine storm syn-
drome, is currently regarded as the major contributor of COVID-19-related multiorgan
dysfunction [5]. However, there is sparse evidence that contradicts this supposition, imply-
ing a possible underestimated degree of viral-induced organ cytotoxicity [6]. Although the
route of viral dissemination to other organs is still a subject of debate, growing evidence
suggests this occurs hematogenously [4,5,7]. Nonetheless, SARS-CoV-2 viremia and anti-
genemia have only been documented in disproportionally lower rates than expected and
the clinical significance of these parameters remains undetermined [8–11].

Besides the role of antigenemia/viremia in COVID-19 pathogenesis, another variable
aspect of the disease is the host’s immune response against SARS-CoV-2, and more specifically,
the diversity of the humoral response level among SARS-CoV-2-infected patients. Based on cur-
rently available serological assays, it is evident that the majority of COVID-19 patients serocon-
vert within 2 weeks post symptom onset (p.s.o), whereas delayed (beyond the 2nd week p.s.o)
or even absent antibody responses (non-responders) have also been documented (Figure 1) [12].
The latter is particularly true in asymptomatic or paucisymptomatic patients [12]. This diver-
gent pattern of humoral response has also been observed in the other two beta-coronaviruses
(SARS-CoV and Middle East respiratory syndrome coronavirus, MERS-CoV) and other viral
strains, such as human papillomavirus (HPV) and human rhinoviruses [12–14]. This phe-
nomenon of undetectable antibody titers following convalescence constitutes a paradox, which
has neither been studied nor satisfactorily explained.
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Table 1. Patient’s clinical information. 

Demographic Information 

Age 19 

Sex Male  

Weight 95 kg 

Height 175 cm 

BMI 31 kg/m2 

Past Medical History  

Underlying disease Prediabetes 

Medication Metformin  

Allergies No  

Smoking history  Non-smoker  

Alcohol consumption  Socially  

Family History  

Father Prediabetes 

Mother  Hypertension  

Figure 1. Diagram summarizing antibody responses, viral load (obtained from upper respiratory specimens) and associated
clinical course. Antibody responses and viral load temporal kinetics as they correlate with clinical symptoms are depicted.
Estimated time intervals are based on data from several published studies. The line graph in red qualitatively illustrates
the viral load in nasopharyngeal swabs and the antibody response pattern of our patient—who is considered as late/non-
responder—relatively to that mounted in most COVID-19 individuals.

To explain this paradox in COVID-19, we sought to examine the hypothesis that the
presence of viral antigens in serum (antigenemia) could mask seroconversion by their
binding to circulating antibodies. In such a competitive environment, antibody detection
may be compromised in immunoassays. If this scenario is valid, then two conditions
should be met: (1) viral antigen(s) should be detected in the blood stream and (2) whether
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the absence of seroconversion is due to the presence of antigen–antibody complexes,
then progressive decrease of antigenemia should be followed by increasingly detectable
antibody levels. Herein, we report, to the best of our knowledge, evidence as proof-of-
concept supporting the proposed supposition.

A 19-year-old male presented on 12 October 2020 (day 1) with a 24-h history of fever
up to 38.4 ◦C, without any additional signs or symptoms (Table 1). His past medical
history was significant for prediabetes treated with metformin while no history of primary
or secondary immunodeficiency was reported. Due to a recent history of close contact
with a confirmed COVID-19 case, a nasopharyngeal swab was obtained and tested for
SARS-CoV-2 with reverse transcription polymerase chain reaction (RT-PCR) on 13 October
2020 (day 2) p.s.o, confirming the diagnosis (cycle threshold value (Ct) = 15). Subsequently,
the patient self-isolated at home for two weeks, as per national infection control protocols.
His fever subsided within a few days. Besides antipyretics, the patient did not receive any
other medications. However, upon completion of the two-weeks’ isolation, low grade fever
(up to 37.4 ◦C) recurred. A repeat RT-PCR test performed on a nasopharyngeal swab on 27
October 2020 (day 16) p.s.o. was positive (Ct = 30) (Table 1). Fever finally resolved on 29
October, which is 18 days after symptom onset.

A series of serum samples for the detection of antibodies against SARS-CoV-2 were
collected at regular intervals (every 4–5 days) starting on day 6 p.s.o up to day 27 p.s.o,
followed by two additional samples on days 55 and 73 (Table 1), a timeframe that exceeded
the expected seroconversion window (Figure 1).

Table 1. Patient’s clinical information.

Demographic Information

Age 19

Sex Male

Weight 95 kg

Height 175 cm

BMI 31 kg/m2

Past Medical History

Underlying disease Prediabetes

Medication Metformin

Allergies No

Smoking history Non-smoker

Alcohol consumption Socially

Family History

Father Prediabetes

Mother Hypertension

History of Present Illness

Onset of COVID-19 symptoms 12 October 2020 (Day 1)

Symptoms Fever

Duration of symptoms

12 October 2020–14 October 2020
(Day 1–3; Fever up to 38.4 ◦C)

25 October 2020–29 October 2020
(Day 14–18; Fever up to 37.4 ◦C)

PCR tests (nasopharyngeal swab specimens) 13 October 2020 (Day 2; Ct = 15)
27 October 2020 (Day 16; Ct = 30)
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Table 1. Cont.

History of Present Illness

Days of blood sampling O.D. values

Antibody assay Antigen Assay

Day 6 0.046 ± 0.005 0.313 ± 0.028

Day 11 0.066 ± 0.011 0.332 ± 0.010

Day 16 0.056 ± 0.007 0.325 ± 0.008

Day 20 0.064 ± 0.019 0.307 ± 0.023

Day 27 0.055 ± 0.004 0.277 ± 0.016

Day 55 0.167 ± 0.024 0.249 ± 0.032

Day 73 0.200 ± 0.009 0.233 ± 0.021

2. Methods
2.1. Serum Isolation and Handling

Whole blood from patients was collected in the vacuumed gel separator and clot
activator tubes (reference number: 44718, FL Medical) and then centrifuged at 2000 rpm
for 8 min. Shortly after centrifugation, sera were loaded onto freshly made ELISA plates
for antigen and antibody detection as described in more detail below. Upon usage, the
remaining serum was transferred to a sterile cryovial for long cryopreservation at −80 ◦C.
Sera unable to be tested within the same day of collection were similarly stored at −80 ◦C
prior to their analysis. In case of hemolysis, sera were discarded and excluded in all
experimental steps involved in the development of our ‘in-house’ assays.

2.2. Serum Characteristics

All sera used in the present study were used shortly after isolation or within the
same day when this was not possible. Hemolytic, icteric, and lipidemic sera were not
used as it has been shown that they may result in non-specific interferences in ELISA [15].
Pre-COVID-19 sera used as negative controls for the development of our ‘in-house’ assays
were stored at −80 ◦C and used for testing after one freeze–thaw cycle. Plasma samples
were not used during assay development or testing in the present study.

2.3. Monoclonal Antibody Production

The monoclonal antibodies 480-S2 and 479-G2 used in the present immunoassays
have been generated by immunizing mice against the receptor binding domain (RBD)
region of the spike (S) protein of SARS-CoV-2 via a modification of the method described
by Koehler and Milstein [16]. Following vigorous immunosorbent assay selection cycles,
clones exhibiting the required sensitivity, specificity and reproducibility were selected
for downstream applications as detailed below. These have been extensively validated
(Supplementary Figure S1A) and are under proprietary rights (patent application no.:22-
0003846810). The validation process was undertaken on three distinct settings (archival
material, nasopharyngeal swabs, and serum) (Supplementary Figure S1) using appropriate
positive and negative controls, as detailed in the corresponding sections below.

2.4. Double Antigen ELISA for Antibody Detection

For antibody detection in the patient’s serum, an ‘in-house’ double antigen ELISA de-
tecting antibodies directed against the trimeric S protein (S-trimer, Trenzyme, GmBH, Ger-
many) was developed as follows: high-binding plates precoated with 1.5 µg/mL S-trimer
were blocked with 300 µL of 4% bovine serum albumin (BSA) following incubation for one
hour at room temperature (RT). Then, 50 µL of serum samples were loaded in duplicates
(1:1 dilution ratio) and incubated at 4 ◦C overnight. Next, 50 µL/well of S protein conju-
gated to horseradish peroxidase (S-HRP) (5:12,000 dilution) were loaded and incubated
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for 45 min at RT. After appropriate washing, 50 µL/well of 3,3′,5,5′-Tetramethylbenzidine
(TMB) were added and let to incubate for ten minutes at RT in the dark. Subsequently, 50 µL
of phosphoric acid were used for reaction termination and the absorption was quantified
using a microplate reader at 450 nm (cut-off value: 0.100). Washing was performed at
appropriate steps using phosphate buffer saline/0.1% Tween (PBSTx5).

Following testing on 150 negative pre-COVID-19 and 250 RT-PCR positive samples,
validation data revealed 90.5% sensitivity and 95% specificity (Supplementary Figure S1(Bi)).
Number of freeze–thaw cycles and different cryopreservation time periods of sera does
not affect methodology. The same assay was also cross-referenced to an FDA-approved
enzyme linked immunosorbent assay (ELISA) (Euroimmun, Luebeck, Germany), by test-
ing a panel of 321 anonymized samples (Pearson’s Chi-squared test with Yates’ continuity
correction; p-value = 0.5288) [17]. Additionally, a commercially available rapid antibody de-
tection test (ProGnosis Biotech, Catalog number: V1210/V1230) was also implemented for
comparison purposes.

2.5. Sandwich ELISA for SARS-CoV-2 Antigen Detection

For SARS-CoV-2 antigen detection in patient’s serum, a sandwich ‘in-house’ ELISA as-
say was developed as follows: high-binding plates precoated with 2 µg/mL of monoclonal
antibody 480-S2 were blocked with 300 µL of 4%BSA/0.05%Tween blocking buffer follow-
ing incubation for one hour at 37 ◦C. Subsequently, 50 µL of serum samples (1:1 dilution
ratio) were loaded in duplicates and were allowed to incubate overnight at 4 ◦C. Following
adequate washes with PBST, 50 µL of secondary antibody 479-G2 solution labelled with
HRP (G2-HRP at a concentration of 1:50,000) were loaded into each well, and after a 30 min
incubation period at RT in the dark, development of the signal was performed using 50 µL
of TMB substrate. Following a ten-minute incubation time, equal volume of phosphoric
acid was introduced to terminate the reaction and signal was quantified as above (cut-off
value: 0.100). Performance characteristics of the test were calculated following testing on
100 samples (28 RT-PCR positive and 72 negative pre-COVID-19 samples), revealing a sensi-
tivity of 93% and specificity of 99% (Supplementary Figure S1(Bii)). Number of freeze–thaw
cycles and different cryopreservation time periods of sera does not affect methodology.

2.6. Immunohistochemistry

Immunohistochemistry was performed using the aforementioned anti-SARS-CoV-2
monoclonal antibody (479-G2). The Novolink Polymer Detection System (Leica Biosystems,
Vamvakas, Athens, Greece) was used for development of the signal and hematoxylin for
counterstaining (Supplementary Figure S1A). The specificity of the immunohistochemical
signal was confirmed by (1) omitting the primary antibody and (2) performing competition
with the corresponding S antigen (Supplementary Figure S1A). Tissues from a large cohort
of non-COVID-19 patients served as negative controls, whereas viral particles were detected
in archival material from lung tissues of COVID-19 patients [18,19].

2.7. RNA Extraction and Real-Time qPCR

RNA was extracted using the NucleoSpin Virus RNA purification kit (Macherey-Nagel
#740.983, Lab Supplies, Athens, Greece) according to the manufacturer’s instructions and
as previously described [20]. RT-qPCR was performed utilizing the One Step PrimeScript
III RT-PCR Kit (Takara # RR601B, Lab Supplies, Athens, Greece) on a Rotor-Gene Q 6000
(Qiagen) thermal cycler following the manufacturer’s instructions and using the CDC N-
gene (IDT, BioLine, Athens, Greece) directed primers (https://www.cdc.gov/coronavirus/
2019-ncov/lab/rt-pcr-panel-primer-probes.html; accessed on: 20 May 2021).

2.8. Next Generation Sequencing

Next generation sequencing (NGS) of the viral genome was performed (Supplementary
Figure S2) as follows: the Ion AmpliSeq Library Kit Plus was used to generate libraries
following the manufacturer’s instruction, employing the Ion AmpliSeq SARS-CoV-2 RNA

https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html
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custom primers panel (ID: 05280253, Thermo Fisher Scientific, AntiSel, Athens, Greece). Briefly,
library preparation steps involved reverse transcription of RNA using the SuperScript VILO
cDNA synthesis kit (Thermo Fisher Scientific), 17–19 cycles of PCR amplification, adapter
ligation, library purification using the AgencourtAMPure XP (Beckman Coulter, Leriva SA,
Athens, Greece)and library quantification using Qubit Fluorometer high-sensitivity kit. Ion
530 Chips were prepared using Ion Chef and NGS reactions were run on an Ion GeneStudio
S5, ion torrent sequencer (Thermo Fisher Scientific). Raw data (FASTA sequence) of isolated
viral strain are available under the submission code EPI_ISL_856971 at GISAID Initiative
(https://www.gisaid.org/; accessed on: 22 January 2021).

2.9. Bioinformatics

The SARS-CoV-2 Wuhan-Hu-1 strain complete genome was used as reference for
alignment. Both, AmpliSeq alignments and quality controls were performed using the
Torrent Server of Ion Torrent S5 sequencer employing default settings. Aligned reads
served for both reference-guided assembly and variant calling. Assembly was performed
using the iterative refinement meta-assembler (IRMA v0.6.1) that produced a consensus
sequence (per sample) using a >50% cut-off for calling single nucleotide polymorphism.

2.10. Data and Statistical Analysis

Line graph representing the optical density (O.D) values of antigen and anti-SARS-
CoV-2 antibody titers as a function of time was constructed with GraphPad Prism version
7.00 (www.graphpad.com; accessed on 15 May 2021). Statistically significant differences
between the two methods ‘in-house’ ELISA and Euroimmun were evaluated by Pearson’s
Chi-squared test with Yates’ continuity correction as appropriate. p < 0.05 was considered
statistically significant. The samples were examined in duplicates.

2.11. Ethical Statement

Written informed consent was obtained by the patient for the collection and processing
of the samples and for the publication of this case report. This study was conducted within
the frame of ‘Emblematic action to handle SARS-CoV-2 infection: Epidemiological study
in Greece via extensive testing for viral and antibody detection, sequencing of the virome
and genetic analysis of the carriers’, which has been approved by the Ethics Committee of
Medical School of National Kapodistrian University of Athens (Approval No. 317/12-06-
2020). Finally, all animal experiments were performed in accordance with ethical standards
of the responsible committee on human experimentation and with the Helsinki Declaration
of 1975, as revised in 1983.

3. Results

Patient’s serum was examined concurrently for the presence of viral S-antigen and
anti-SARS-CoV-2 immunoglobulins during the period of 73 days. During his disease course,
serial serum samples were obtained and tested negative for the presence of antibodies
within the first month p.s.o (expected seroconversion window). According to the first part
of our hypothesis, we sought to examine the presence of antigenemia using our ‘in-house’
methodology. Interestingly, persistent viral S-antigen presence was observed for at least
73 days after the onset of symptoms, supporting existing evidence regarding antigen detec-
tion in the blood [11,21]. With regards to the second part of our assumption, monitoring
of the kinetics of the two parameters under investigation showed a progressive decline of
S-antigenemia that was accompanied by a gradual increase of antibody titers, resulting
in evident seropositivity, beyond the expected seroconversion window (Figures 1 and 2A).
Notably, lateral flow testing failed to detect seroconversion (Figure 2A).

https://www.gisaid.org/
www.graphpad.com
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Figure 2. (A) Diagram depicting antigen load in parallel with antibody trends as a function of time and (B) experiment
demonstrating antibody masking through exponentially increasing S-antigen concentrations. (A) Diagram depicting kinetics
of antigen/viral load as relate to antibody generation detected by two separate immunodiagnostic assays (‘in-house’ ELISA
and lateral flow). Time-dependent decline in the antigen load is associated with seroconversion 55-days post symptom
onset in the case of our ‘in-house’ ELISA, whilst it failed to occur according to the lateral flow assay. (B) ELISA plate
demonstrating OD readings at 450 nm of spiked known positive (high antibody titers, no antigen)—(patients 1 and 2)
and negative (no antibody, no antigen)—(patients 3 and 4) control serum samples. Sequentially decreasing OD values
accompanies the sequential increase in S-antigen concentration in the spiked positive control samples (patients 1 and 2).
A transition from positive to negative result for the presence of antibodies takes place at an S-antigen concentration of
10 µg/mL and 5 µg/mL for patients 1 and 2, respectively.
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To functionally recapitulate the above observation (masking of humoral response by
antigenemia), serum from two separate patients (patients 1 and 2 with history of confirmed
COVID-19 diagnosis) with different levels of antibody and undetectable antigenemia titers,
as per our suggested workflow, (positive controls) were spiked with increments of S-trimer
protein diluted in PBS. S-trimer concentrations of 1.25 µg/mL, 2.5 µg/mL, 5 µg/mL, and
10 µg/mL were used (total volume 25 µL) along with two pre-COVID-19 sera, which
served as negative controls (patients 3 and 4). Serum samples and S-trimer solution were
added in a 1:1 volume ratio (50 µL total volume) and the resulting mixture was incubated
for 1 h at 37 ◦C followed by overnight incubation at 4 ◦C to allow for antibody complexes
to form. These spiked samples were loaded on our double antigen ELISA platform for
antibody detection as described in methods section. In support to our hypothesis, the
positive control samples spiked with 10 µg/mL and 5 µg/mL of S-trimer, respectively were
confirmed as being negative with an OD value lower than or equal to the cut-off value
(Figure 2B). This finding strengthens our observations and emphasizes the existence of
a threshold ratio between antibody/antigens, above which antibody detection can occur
with available assays.

Finally, to exclude presence of S protein-associated mutations that could affect anti-
body affinity and thus, potentially account for such results, we performed genome wide
sequencing of the isolated strain. Sequencing revealed a novel strain showing 99% similar-
ity with Wuhan-Hu-1 variant and bioinformatic analysis demonstrated presence of two
S-related mutations, including the D614G and A879S (Supplementary Figure S2). As sero-
conversion did occur, it is unlikely that these mutations are able to affect the performance
of available immunoassays.

4. Discussion

Immune responses against SARS-CoV-2 have challenged the scientific community
worldwide, mainly due to their high interindividual variability [2]. Heightened immune
responses have been associated with adverse clinical outcomes while non-detectable ones,
characterize mainly asymptomatic and mild cases [12,22]. The absence of humoral immu-
nity has been attributed to various factors including variability in disease severity and
host-related characteristics [23]. With regards to the latter, augmented innate over adaptive
immune responses and/or a robust T-cell-mediated viral clearance are proposed as possible
explanations [24]. However, this notion was disputed by recent studies demonstrating
presence of dominant B-cell over T-cell responses irrespective of disease severity along
with longitudinal persistence in memory specific T- and B-cells in mild cases [25,26]. This
emphasizes the importance of humoral immunity in viral clearance and points towards
a different explanation, whilst raising an important question: does the phenomenon of
non-responders reflect a true immunobiological event or a limitation of currently available
diagnostic tools in precisely portraying the immune landscape?

According to a study comparing different antibody detecting assays, this observation
was reproducible by all methods, implying that absence of seroconversion represents a
biological rather than a technical issue [23]. To the contrary, serum of presumably non-
responders inhibited cell line infection upon culture with viable SARS-CoV-2, as assessed
by a neutralization assay, the gold standard for antibody efficiency [12,24]. The latter
supports that a technical limitation of the currently available diagnostic tools might be
at play [12].

Our findings offer, for the first time, a possible explanation for the phenomenon of
non-seroconversion, observed in a proportion of COVID-19 patients. Herein, we present
evidence suggesting that delayed and/or absent antibody kinetics could probably be
due to the prolonged and increased presence of viral constituents or even the virus in
serum, saturating the antibodies, thus rendering their detection feasible only when anti-
genemia/viremia drops below a certain threshold (Figure 2B). Similar to the prolonged
shedding seen in nasopharyngeal and gastrointestinal tract secretions, it is likely that such
an event could take place in the blood stream, as well [27]. A probable source of antigene-
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mia/viremia could be PANoptosis (pyroptosis, apoptosis, necroptosis), whereby cellular
contents are released into the circulation [28]. A similar explanation has been proposed for
the presence of viral RNA in the blood, reflecting a wash-out phenomenon from primary
sites of infection [9,29].

The presence of viral RNAemia, detected by PCR assays, has beenexamined in several
studies, especially in critical ill patients but the rate of detection is generally low and highly
variable amongst them [8–10]. The different PCR protocols used (different primer sets,
different target-gene amplification, etc.) and serum handling might explain such result
heterogeneity. On the other hand, its low detection rate in the blood likely represents
an underestimation as nucleic acids are inherently labile structures and thus, prone to
degradation. Opposingly, detection of viral proteins in the bloodstream is an attractable
target as they are more stable and degradation resistant; as such, coidentification of viral
antigens and RNA is confirmed only in a subgroup of COVID-19 patients [30].

The take home message from the current effort is that antigenemia/viremia may
affect SARS-CoV-2 antibody test results, possibly resulting in characterization of certain
COVID-19 cases as non-responders [24]. In this context, such a phenomenon may lead
to delay in or absence of seroconversion secondary to immune interference/competition
due to immunocomplexes formation (Supplementary Figure S3) [31]. It is shown that the
ratio between antigens and immunoglobulins, rather than the absolute values thereof, at
a given timepoint during propagation of immune responses determines the result of the
immunodiagnostic method (Figure 2B). As a result, such a confounding factor should
be taken into consideration when interpreting test results. Moreover, it could serve as a
partial explanation in discrepancies observed between various diagnostic tools monitoring
antibody kinetics, as they could be variably affected by such a confounder. This variability
is also demonstrated through head-to-head comparison of a lateral flow antibody test and
our ‘in-house’ ELISA in the presented case (Figure 2B) [24,32]. Both assays, despite being
subjected to the same masking effect imposed by antigenemia, have contradictory results
(negative and positive, respectively) for the same sample tested. Specifically, in the case
of lateral flow antibody test, it is likely that the antibody/antigen ratio exceeds assay’s
free-antibody detection limit, not allowing adherence of antigen-unbound antibody to the
strip, sufficient enough to produce a detectable signal (negative result).

Although the observed data come from prolonged follow-up (approximately 2 months)
of a single case and may have limited generalizability, it should act as springboard for further
investigation. We challenge the scientific community to examine the role of antigenemia as
a confounding factor in immunodiagnostic assays. As such, immune response monitoring
should be evaluated in longer intervals to better estimate population seroprevalence, thus
designing tailored public health strategies (diagnostic algorithms). Such strategies, within
the context of vaccine shortage, could potentially include vaccination prioritization of most
vulnerable groups lacking antibody protection against SARS-CoV-2 re-infection [33].
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