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1  |   INTRODUCTION

Major depressive disorder (MDD) is a severe psychiatric dis-
ease with high morbidity and mortality worldwide (Culpepper, 
Lam, & McIntyre, 2017). This growing recognition of the 

public health burden has led to the development of depres-
sion detection and treatment. However, novel interventions 
of depression are still hindered by a limited understanding of 
the neurobiological mechanisms (Bayes & Parker, 2018). The 
efforts to clarify this biology through common or rare variant 

Received: 23 November 2018  |  Revised: 30 January 2019  |  Accepted: 4 March 2019

DOI: 10.1002/mgg3.659  

O R I G I N A L  A R T I C L E

Prioritization and comprehensive analysis of genes related to 
major depressive disorder

Yi Liu1*  |   Pengfei Fan2*  |   Shiyuan Zhang1   |   Yidan Wang3  |   Dan Liu4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

*Equal contribution. 

1ICU, First Teaching Hospital of Tianjin 
University of Traditional Chinese Medicine, 
Tianjin, P.R. China
2Organ Transplant Center, Tianjin First 
Central Hospital, Tianjin, P.R. China
3Clinical Practice Teaching Center, Tianjin 
University of Traditional Chinese Medicine, 
Tianjin, P.R. China
4Acupuncture Department, First Teaching 
Hospital of Tianjin University of 
Traditional Chinese Medicine, Tianjin, P.R. 
China

Correspondence
Shiyuan Zhang, ICU, First Teaching 
Hospital of Tianjin University of 
Traditional Chinese Medicine, Tianjin, P.R. 
China.
Email: zhangshiyuan17249@outlook.com

Funding information
Not applicable.

Abstract
Background: Major depressive disorder (MDD) is a serious mental health problem 
in modern society, which is difficult to identify and diagnose in the early stages. 
Despite strong evidence supporting the heritability of MDD, progresses in large‐
scale and individual genetic studies remain preliminary.
Methods: In this study, a multi‐data source‐based prioritization (MDSP) method 
was proposed, and an appropriate threshold was determined for the optimization of 
depression‐related genes (DEPgenes). Analyses on Gene Ontology biological pro-
cesses, KEGG pathway and the specific pathway crosstalk network were further 
proposed.
Results: A total of 143 DEPgenes were identified and the MDD‐specific network 
was constructed for the pathogenesis investigation and therapeutic methods develop-
ment of MDD. Comparing with existing research strategies, the genetic optimization 
and analysis results were confirmed to be reliable. Finally, the pathway enrichment 
and crosstalk analyses revealed two unique pathway interaction modules that were 
significantly enriched with MDD genes. The related core pathways of neuroactive 
ligand‐receptor interaction and dopaminergic synapse supported the neuropathology 
hypothesis of MDD. And the pathways of serotonergic synapse and morphine addic-
tion indicated the mechanism of drug addiction caused by serotonin used in the 
treatment.
Conclusions: This work provided a reference for the study of MDD, although future 
validation by extensive experimentation is still required.
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association studies seemed to be unsuccessful with the lack 
of distinct understanding of heterogeneity and absence of a 
biological gold‐standard diagnosis (Krystal & State, 2014). 
Nowadays, strong shreds of heritability evidence of mental 
diseases have been revealed (Alnaes et al., 2018; Pain et al., 
2018), which attracted the studies on the generation of nu-
merous genetic and genomic datasets in MDD studies.

During the past decade, rapid advances in high through-
put technologies have helped investigators, aiming to uncover 
disease causal genes and their actions in complex diseases. 
Specifically, in psychiatric genetics, there have been numer-
ous datasets from different platforms or sources such as asso-
ciation studies, including genome‐wide association studies, 
genome‐wide linkage scans, microarray gene expression, 
and copy number variation (Michaelson, 2017). Large‐scale 
and individual genetic studies revealed various polymor-
phisms and overexpression of certain genes in patients pre-
senting with depressive symptoms (Lacerda‐Pinheiro et al., 
2014; Milanesi et al., 2015). Zhang's group has found that, 
increased 5‐HT1A expression inversely correlated with 5‐HT 
activity via a negative feedback mechanism (Zhang et al., 
2014). Moreover, HPA axis hyperactivity was reported as a 
trigger of MDD due to findings of GR and mineralocorti-
coid receptor dysfunction in depressed patients (Pariante & 
Lightman, 2008). However, a pervasive limitation in the ex-
isting research is the inherent heterogeneity in MDD studies, 
which impacts the validity of biomarker data (Young et al., 
2016). Thus it is still necessary to simplify these depression‐
related candidate genes to an optimal set for the subsequent 
biological experiments. Moreover, the incompletion of infor-
mation resources used in existing calculation and the fixed 
screening threshold of corresponding online tools also result 
in arbitrarily preferred results and lower reliability.

In this study, gene information from multiple sources (in-
cluding OMIM, Phenolyzer, GeneCards and GLAD4U) were 
integrated and analyzed for MDD. A multi‐data‐source based 
prioritization (MDSP) was proposed and an appropriate thresh-
old was determined for the optimization of depression‐related 
genes (DEPgenes). Finally, the acquired genes which were sig-
nificantly related to depression (DEPgenes) were verified by the 
receiver operating characteristic (ROC) curve and functional 
and pathway enrichment analysis. Our work demonstrated a 
practical framework for complex disease candidate gene analy-
sis, which is of great significance for the comprehensive func-
tional assessment of optimized pathogenic genes.

2  |   MATERIALS AND METHODS

2.1  |  MDD candidate genes and optimizing 
process
OMIM (www.omim.org), which provides vast repositories 
of rich clinical and genetic knowledge, was considered as a 

core gene database in this study. For association studies, the 
susceptibility genes were retrieved by searching all human ge-
netic association studies deposited in Phenolyzer (phenolyzer.
usc.edu), GeneCards (www.genecards.org) and GLAD4U 
(bioinfo.vanderbilt.edu/glad4u), which used as training gene 
categories. However, the background information of the data-
set‐related patients is not provided in the database. For all the 
genes collected, genes presented in a certain training category 
were assigned a score of 1 point; otherwise, 0 was assigned. 
Thus, a gene could be represented by a vector of three ele-
ments, with each element being 1 or 0. When a gene showed 
up in all the training categories, all the elements in the vec-
tor would be 1’s; on the other hand, a gene had at least one 
element being 1. For each training category, a weight was as-
signed to measure the category's reliability. A combined score 
derived from the category‐specific weight and gene score in 
the corresponding category was adopted to measure the cor-
relation between a gene and the phenotype. All the candidate 
genes were ranked by their combined scores computed from 
their scores corresponding to the categories and the optimal 
weights. The combined scores were calculated by equation 1:

where i was the training category index, N = 3, Wi was 
the corresponding weight of categoryi, and Scorei and was 
equal to 1 when a gene showed up in categoryi; otherwise, 
Scorei=0.

The combined score of a gene depends on its score from 
each training category and the corresponding weight value. In 
order to prioritize the genes collected so that the genes more 
likely correlated with MDD can be ranked higher in the list, 
a suitable weight for each training category needs to be de-
termined. In this study, the following procedure was adopted:

1.	 Randomly selecting weight value between 0 and 1.0 
for each training category and normalizing the weight 
matrix (consisted of the three weights) to have a sum 
of 1;

2.	 Calculating the combined score S for all genes by equa-
tion 1 and ranking all genes according to their combined 
scores;

3.	 Calculating ratio R: calculating the proportion k of core 
genes known to be related to MDD selected from OMIM 
in the top 3% of all candidate genes and R = k/23;

4.	 Reallocate values into the weight matrix and keeping the 
weight matrix to have a sum of 1.

5.	 Calculating ratio R after obtaining the new score S and 
ranking of all candidate genes;

6.	 Repeating steps 2–5 until no larger R can be found, and 
then the weight matrix obtained is the optimal weight 
matrix.

(1)SCombined =

N∑

i=1

w
i
×Score

i

http://www.omim.org
http://phenolyzer.usc.edu
http://phenolyzer.usc.edu
http://www.genecards.org
http://bioinfo.vanderbilt.edu/glad4u
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2.2  |  Evaluation of genetic optimizing results
The ROC curve was employed to assess the discrimination ca-
pability of the classifiers proposed in this study. ROC curves 
represent the performance of a classifier without taking into 
consideration class distribution or error overheads. And the 
classification success is then calculated by area under ROC 
curve (AUC) (Wray, Yang, Goddard, & Visscher, 2010). 
When the ROC curve deviated from the diagonal, i.e. the 
AUC value was close to 1, the verified method was evaluated 
as better reliability.

2.3  |  Functional and pathway enrichment  
tests
The relation of the prioritized genes with MDD was evaluated 
by analyzing the Gene Ontology (GO) biological processes or 
biochemical pathways enriched in these genes. The Database 
for Annotation, Visualization, Integration and Discovery 
(DAVID, david-d.ncifcrf.gov) was used for GO term enrich-
ment analysis, followed by the correction of multiple testing 
using the Benjamini & Hochberg (BH) method. And the bio-
logical processes (BP) term was considered as significantly 
enriched with a cutoff of PBH < 0.01. In addition, KEGG 
pathway analysis was performed by WebGestalt online 
tool (www.webgestalt.org) (Wang, Vasaikar, Shi, Greer, & 
Zhang, 2017) and PBH < 0.05 was set as the cutoff criterion.

2.4  |  Pathway crosstalk
The pathway crosstalk analysis was performed to further inves-
tigate the interactions of significantly enriched pathways of op-
timized MDD‐related genes. Two pathways are considered to 
crosstalk if they share a proportion of DEPgenes. Two measure-
ments were introduced to computationally indicate the overlap 

of a pair of pathways: Overlap coefficient (OC) =  �A⋂
B�

min(�A�,�B�)
 and 

Jaccard coefficient (JC) = �A
⋂

B�
�A⋃

B�, where A and B denote the 

number of DEPgenes in the two pathways, respectively. The 
averages of OC and JC were calculated to reflect the overlap 
degree between pairs of pathways. And the crosstalk results 
were visualized by Cytoscape (Uzoma et al., 2018).

2.5  |  Depression‐specific network and 
cluster analysis by Cytoscape
To construct a depression‐specific network, the DEPgenes 
were imported into the STRING (string-db.org). The infor-
mation on gene interaction was extracted and used to form a 
specific network. Module cluster analysis of the depression‐
specific network was performed using the MCODE plug‐in 
in Cytoscape. Besides, to verify the nonrandomness of the 
obtained depression‐specific network, the following verifica-
tion steps were performed:

1.	 Random network generation: generating 1,000 random 
networks which had the same node and interaction 
numbers as the depression‐specific network using Erdos‐
Renyi model in an igraph package of R software;

2.	 Calculating the average shortest path distance (SPD) and 
average clustering coefficient (CC) of all the random net-
works, respectively.

3.	 Statistics: Calculating the number of the random networks that 
have shorter SPD than MDD‐specific network and the num-
ber of random network that have higher CC than MDD‐spe-
cific network, which denoted as ND and NC, respectively.

4.	 Calculating the experience p‐value: PD = ND/1,000 and 
PC = NC/1,000, which should reflect the significance of 
nonrandomness of MDD‐specific network.

3  |   RESULTS

3.1  |  Collection of MDD candidate and core 
genes
A total of 23 genes were collected from OMIM (Table 1), 
which were regarded as core genes. Besides, 14,144 genes from 
Phenolyzer, 5,358 genes from GeneCards and 149 genes from 
GLAD4U were collected regarded as MDD candidate genes. 
These genes were collected from multi‐source, and each gene is 
showed up in a certain source in Figure 1a. MDSP was proposed 
and an appropriate threshold was determined for the optimiza-
tion of MDD candidate genes. As the optimization algorithm 
flow chart of MDD candidate genes shown in Figure 1b, when 
a gene shows up in a certain training category, a score of 1 point 
is assigned; otherwise, 0 is assigned. Each of the four categories 
has a weight value, which is determined by the optimization 

T A B L E  1   Major depressive disorder core genes collected from 
OMIM

Gene symbol MIM ID Gene symbol MIM ID

MDD1 608516 DRD4 608516

MDD2 608516 TPH1 608516

FKBP5 608516 HTR2C 608516

TPH2 608516 HTR1D 608516

HTR2A 608516 HTR1B 608516

CALCA 608516 MAOB 608516

DUSP1 608516 SLC6A4 608516

MTHFR 608516 BCR 608516

CREB1 608516 PER3 608516

HSP90AA1 608516 APAF1 608520

CHRM2 608516 SLC6A15 608520

TOR1A 608516    

http://david-d.ncifcrf.gov
http://www.webgestalt.org
http://string-db.org
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algorithm as described in the "Material and Methods" section. 
The genes are ranked by their combined scores computed from 
scores of three training categories and their weights. Genes are 
ranked and prioritized by their combined scores, and further 
analysis is performed for the selected genes.

3.2  |  Optimization and evaluation of MDD 
candidate genes

The combined scores of all candidate genes were calculated 
based on the optimal weight matrix and the candidate gene 

F I G U R E  1   Overview of gene 
prioritization method. (a) Venn diagram of 
major depressive disorder (MDD)‐related 
candidate genes collected from different 
sources; (b) The flow chart for MDD‐related 
genes prioritization
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score in each source. The MDD candidate genes were ranked 
according to the combined scores. The gene list and the 
combined scores distribution of core genes and all candidate 
genes optimized by our process are shown in Figure 2a. Most 
of the core genes with higher combined scores appeared in 
front of the sorted list, and only several appeared in the poste-
rior position, indicating that the distribution of the candidate 
genes' combined scores was in line with our expectations.

From Figure 2b, it was inferred that, the score drops quickly 
from 1.0 to about 0.848 and then drops to about 0.604; after 
that, the combined scores decrease slowly. Such a distribution 
indicated that a relatively small number of genes have higher 
combined scores, while the majority of genes has moderate or 
small scores. With a threshold of 0.848, 65.2% of the core genes 
(15/23) were contained. Although with a threshold of 0.604, 
95.7% of the core genes (22/23) could be contained, the number 

of selected candidate genes would also dramatically increase to 
4,105. As the smaller the comprehensive score was, the higher 
the false positive rate of the prioritized gene was, 143 DEPgenes 
were identified with a threshold of 0.848 (Table S1).

Finally, the reliability of our method for prioritizing MDD 
candidate genes was compared with Phenolyzer, GeneCards 
and GLAD4U through ROC curve. As a result, AUC of 
MDSP (0.944) is the largest followed by GeneCards (0.893) 
and Phenolyzer (0.888), and GLAD4U had the smallest AUC 
value (0.490), which indicated that the results of the MDSP 
optimization were the best.

3.3  |  GO enrichment analysis
To explore specific functional features of the 143 DEPgenes, 
GO enrichment analysis was performed using DAVID. 

F I G U R E  2   Optimization and evaluation of MDD candidate genes. (a) Distribution of the combined scores of all candidate genes and the 
core genes. The percentage of each histogram bin is measured by the genes with scores falling in the bin divided by the total number of candidate 
genes or the number of the core genes; (b) The distribution of the combined scores of the candidate genes. The genes are ranked by their combined 
scores. The x‐axis is the order of the candidate genes. The y‐axis on the left side is the combined score of the candidate genes, and the y‐axis on the 
right side is the number of core genes with higher combined score. (c) ROC curve of different prioritization tools. MDD: major depressive disorder; 
ROC: receiver operating characteristic
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Seventy‐two biological processes (BP terms) which related 
to synaptic transmission, neurodevelopment and drug reac-
tion were significantly enriched in DEPgenes (Table 2). The 
GO terms related to synaptic transmission included synaptic 
transmission, regulation of synaptic transmission, positive 
regulation of synaptic transmission and negative regulation of 
synaptic transmission. The GO terms related to nerve signal 
transduction included second‐messenger‐mediated signaling, 
regulation of transmission of nerve impulse, cell surface re-
ceptor linked signal transduction, G‐protein coupled receptor 
protein signaling pathway and glutamate signaling pathway. 
The GO terms related to neurotransmitter, such as regulation 
of neurotransmitter levels, regulation of neurotransmitter 
transport, regulation of neurotransmitter uptake, regulation 
of catecholamine secretion, regulation of dopamine secretion 
and regulation of glutamate secretion, while that related to 
drug reaction (response to tropane, response to cocaine, re-
sponse to amphetamine and response to histamine) and learn-
ing or memory were also significantly enriched.

3.4  |  Crosstalk among significantly 
enriched pathways
Since abundant genes and pathways seemed to be involved 
in MDD, a pathway crosstalk analysis was performed to 
deeply investigate the relationship between the pathways. 
As shown in Figure 3a, 16 significantly enriched pathways 
were identified, including nervous system pathways, such 
as Dopaminergic synapse, serotonergic synapse, gluta-
matergic synapse, retrograde endocannabinoid signaling 
and GABAergic synapse. Besides, the pathways related to 
drug addiction (cocaine addiction, amphetamine addiction, 
nicotine addiction, alcoholism and morphine addiction), 
signal transduction (cAMP signaling pathway, taste trans-
duction and calcium signaling pathway) were enriched. 
Interestingly, the environmental adaptation processes (circa-
dian entrainment and circadian rhythm) were also involved in 
the DEPgenes’ pathways. In Figure 3b, it was clear that the 
significantly enriched pathways were clustered into a mod-
ule which was relevant to the pathogenesis of neurological 
diseases.

3.5  |  MDD‐specific networks
The information on gene interaction was extracted from 
the STRING database and used to form a specific network 
(Figure 4a). To test nonrandomness of the MDD‐specific 
network, we generated 1,000 random networks with same 
node and edge number with MDD‐specific network and 
compared their SPD and CC. As a result, the average SPD 
of these random networks was 3.4, which was significantly 
larger than that of the MDD‐specific network with an SPD 
of 2.5, PD < 0.001. Meanwhile, the CC of random networks 

was 0.1, which was significantly smaller than that of the 
MDD‐specific networks with a CC of 0.5 (PC < 0.001). So, 
the nonrandomness of the MDD‐specific network could be 
inferred. Furthermore, two modules were identified by the 
modular cluster analysis of MDD‐specific networks (Figure 
4b,c). KEGG pathway analysis of genes contained in Figure 
4b indicated significantly enriched pathways of neuroac-
tive ligand‐receptor interaction, dopaminergic synapse and 
morphine addiction. For genes contained in Figure 4c, the 
serotonergic synapse was the most significantly enriched 
pathway.

4  |   DISCUSSION

Drug therapy is still the preferred current clinical treatment 
for MDD. The most widely used antidepressant drugs are 
selective serotonin reuptake inhibitors (SSRIs), includ-
ing fluoxetine, citalopram, and sertraline, which can sig-
nificantly improve cognitive function of MDD patients 
(Jakubovski, Varigonda, Freemantle, Taylor, & Bloch, 
2016). However, current antidepressant drugs used clini-
cally bring lots of adverse reactions, such as xerostomia, 
constipation, drowsiness, obesity, cardiotoxicity, and drug 
withdrawal (Fava, Gatti, Belaise, Guidi, & Offidani, 2015; 
Hieronymus, Emilsson, Nilsson, & Eriksson, 2016). The 
lack of approaches on early identification and interven-
tion of MDD patients limits the establishment of safe and 
effective individualized treatment (Duman, Aghajanian, 
Sanacora, & Krystal, 2016). Although numerous reports 
of susceptibility genes or loci to MDD have been reported 
previously, no disease causal genes and therapeutic target 
genes were confirmed (Rao et al., 2016). Thus, it is impor-
tant to reduce the data noise and prioritize candidate genes 
from multiple datasets and then explore their functional re-
lationships for further validation (Jia, Kao, Kuo, & Zhao, 
2011).

In this study, we presented a complete process to col-
lect large‐scale genotypic data on MDD from different 
sources, and provided optimization and comprehensive 
analyses for the exploration of the pathogenesis and treat-
ment of depression. Twenty‐three DEPgenes from OMIM, 
14,144 DEPgenes from Phenolyzer, 5,358 DEPgenes from 
GeneCards and 149 DEPgenes from GLAD4U were col-
lected and optimized for further analyzation. MDSP was 
proposed and an appropriate threshold was determined for 
the optimization of MDD‐related genes. One hundred and 
forty‐three DEPgenes were identified and used for additional 
functional and pathway enrichment analyses. Most of these 
genes, such as PCDH9, MDD1, MDD2, CREB1 and DISC1, 
have been identified to be associated with MDD (Cacabelos, 
Torrellas, & Fernandez‐Novoa, 2016; Xiao et al., 2018), and 
some of them (e.g. TPH1, GRIN2B and MAOA) were also 
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T A B L E  2   Significantly enriched BP terms of the 143 DEPgenes

GO terms Biological process No. of genes p‐value PBH

GO:0007268 Synaptic transmission 36 1.24E‐32 1.02E‐29

GO:0019932 Second‐messenger‐mediated signaling 22 5.46E‐17 2.25E‐14

GO:0030808 Regulation of nucleotide biosynthetic process 16 4.37E‐15 1.19E‐12

GO:0050804 Regulation of synaptic transmission 17 5.37E‐15 1.10E‐12

GO:0006140 Regulation of nucleotide metabolic process 16 9.79E‐15 1.61E‐12

GO:0051969 Regulation of transmission of nerve impulse 17 1.89E‐14 2.60E‐12

GO:0031644 Regulation of neurological system process 17 3.56E‐14 4.21E‐12

GO:0007166 Cell surface receptor linked signal transduction 46 8.23E‐14 8.49E‐12

GO:0045761 Regulation of adenylate cyclase activity 14 3.60E‐13 3.30E‐11

GO:0007186 G‐protein coupled receptor protein signaling pathway 33 2.50E‐11 2.06E‐09

GO:0051046 Regulation of secretion 16 3.56E‐11 2.67E‐09

GO:0001505 Regulation of neurotransmitter levels 11 8.09E‐11 5.57E‐09

GO:0051952 Regulation of amine transport 9 1.12E‐10 7.10E‐09

GO:0031280 Negative regulation of cyclase activity 10 3.17E‐10 1.87E‐08

GO:0051350 Negative regulation of lyase activity 10 3.17E‐10 1.87E‐08

GO:0007611 Learning or memory 12 8.15E‐10 4.49E‐08

GO:0051050 Positive regulation of transport 15 1.55E‐09 8.01E‐08

GO:0014073 Response to tropane 7 4.54E‐09 2.21E‐07

GO:0042220 Response to cocaine 7 4.54E‐09 2.21E‐07

GO:0051940 Regulation of catecholamine uptake during transmission of 
nerve impulse

5 1.66E‐08 7.64E‐07

GO:0051588 Regulation of neurotransmitter transport 7 3.69E‐08 1.61E‐06

GO:0051580 Regulation of neurotransmitter uptake 5 4.96E‐08 2.05E‐06

GO:0007242 Intracellular signaling cascade 29 1.45E‐07 5.70E‐06

GO:0009712 Catechol metabolic process 7 2.05E‐07 7.70E‐06

GO:0006584 Catecholamine metabolic process 7 2.05E‐07 7.70E‐06

GO:0006576 Biogenic amine metabolic process 9 7.77E‐07 2.79E‐05

GO:0014059 Regulation of dopamine secretion 5 1.06E‐06 3.65E‐05

GO:0051047 Positive regulation of secretion 9 1.89E‐06 6.25E‐05

GO:0051954 Positive regulation of amine transport 5 3.16E‐06 1.00E‐04

GO:0030003 Cellular cation homeostasis 12 3.99E‐06 1.22E‐04

GO:0001662 Behavioral fear response 5 4.28E‐06 1.26E‐04

GO:0031281 Positive regulation of cyclase activity 7 4.80E‐06 1.37E‐04

GO:0006939 Smooth muscle contraction 6 4.96E‐06 1.37E‐04

GO:0001964 Startle response 5 5.68E‐06 1.51E‐04

GO:0050806 Positive regulation of synaptic transmission 6 5.78E‐06 1.49E‐04

GO:0051349 Positive regulation of lyase activity 7 5.89E‐06 1.47E‐04

GO:0008306 Associative learning 5 7.38E‐06 1.79E‐04

GO:0015844 Monoamine transport 5 7.38E‐06 1.79E‐04

GO:0051971 Positive regulation of transmission of nerve impulse 6 8.89E‐06 2.10E‐04

GO:0043269 Regulation of ion transport 8 1.10E‐05 2.52E‐04

GO:0014075 Response to amine stimulus 6 1.16E‐05 2.59E‐04

GO:0031646 Positive regulation of neurological system process 6 1.16E‐05 2.59E‐04

GO:0008217 Regulation of blood pressure 8 1.17E‐05 2.55E‐04

(Continues)
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related to other mental disorders (van Donkelaar et al., 2017; 
Perlis, 2016; Tovilla‐Zarate et al., 2014). This indicated that 
our preferred solution designed was able to be utilized to get 
the expected data.

So far, the study of the pathogenesis of depression mainly 
focuses on the biological mechanisms, such as autophagy and 
apoptosis of nerve cells, neurotransmitter secretion disorders, 
immune inflammatory reactions, dysfunction of hypothala-
mus pituitary adrenal axis, and other biological mechanisms 
(Cattaneo et al., 2015; Menard, Hodes, & Russo, 2016; 
Smith, 2015). With functional enrichment analysis, a more 
specific functional pattern implicated in these DEPgenes 
was revealed. In this study, 72 GO BP terms and 16 KEGG 
pathways were identified to be significantly enriched. The 
terms related to synaptic transmission, nerve signal transduc-
tion, neurotransmitter and learning or memory reflected the 

pathogenesis of MDD, which was consistent with the litera-
ture reports. Interestingly, the BP term of drug reaction and 
the KEGG pathway of drug addiction were both enriched, 
indicating that the key requirement of avoiding drug depen-
dence in MDD drug development and clinical treatment.

The occurrence and development of MDD involve 
complex biological processes, which is the result of a 
combination of multiple genes and environmental factors. 
Therefore, the study of the interactions between DEPgenes 
from the perspective of networks can provide insights into 
the pathogenesis of depression and contribute to the discov-
ery of new drug targets. Thus, the network information on 
MDD was mined from the STRING database which con-
tains experimental data, the PubMed abstract text database 
and results predicted by bioinformatics methods for spe-
cific analysis. Besides, applied bioinformatics methods in 

GO terms Biological process No. of genes p‐value PBH

GO:0050433 Regulation of catecholamine secretion 5 1.19E‐05 2.51E‐04

GO:0001975 Response to amphetamine 5 1.19E‐05 2.51E‐04

GO:0050805 Negative regulation of synaptic transmission 5 1.81E‐05 3.74E‐04

GO:0044106 Cellular amine metabolic process 12 2.24E‐05 4.52E‐04

GO:0042053 Regulation of dopamine metabolic process 4 2.44E‐05 4.79E‐04

GO:0055082 Cellular chemical homeostasis 13 3.46E‐05 6.65E‐04

GO:0042069 Regulation of catecholamine metabolic process 4 3.63E‐05 6.82E‐04

GO:0010959 Regulation of metal ion transport 7 3.70E‐05 6.79E‐04

GO:0007215 Glutamate signaling pathway 5 3.74E‐05 6.71E‐04

GO:0051970 Negative regulation of transmission of nerve impulse 5 3.74E‐05 6.71E‐04

GO:0060134 Prepulse inhibition 4 5.16E‐05 9.06E‐04

GO:0060191 Regulation of lipase activity 7 5.55E‐05 9.54E‐04

GO:0031645 Negative regulation of neurological system process 5 5.95E‐05 1.00E‐03

GO:0050801 Ion homeostasis 13 7.05E‐05 1.16E‐03

GO:0032309 Icosanoid secretion 4 7.06E‐05 1.14E‐03

GO:0050482 Arachidonic acid secretion 4 7.06E‐05 1.14E‐03

GO:0007632 Visual behavior 5 8.98E‐05 1.43E‐03

GO:0014048 Regulation of glutamate secretion 4 1.21E‐04 1.88E‐03

GO:0033238 Regulation of cellular amine metabolic process 4 1.21E‐04 1.88E‐03

GO:0034776 Response to histamine 3 1.76E‐04 2.70E‐03

GO:0046717 Acid secretion 4 3.35E‐04 5.03E‐03

GO:0048699 Generation of neurons 14 3.51E‐04 5.17E‐03

GO:0015909 Long‐chain fatty acid transport 4 5.38E‐04 7.76E‐03

GO:0019614 Catechol catabolic process 3 5.82E‐04 8.26E‐03

GO:0015718 Monocarboxylic acid transport 5 5.87E‐04 8.19E‐03

GO:0032102 Negative regulation of response to external stimulus 5 5.87E‐04 8.19E‐03

GO:0010648 Negative regulation of cell communication 9 6.57E‐04 9.01E‐03

GO:0022008 Neurogenesis 14 6.97E‐04 9.39E‐03

GO:0043271 Negative regulation of ion transport 4 7.08E‐04 9.39E‐03

DEPgenes: depression‐related genes; GO: gene ontology.

T A B L E  2   (Continued)
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this process included gene adjacency, gene fusion, phyloge-
netic profiles, and gene co‐expression based on chip data. A 
comprehensive score was calculated with the weight matrix 
of these different methods determined by a scoring mech-
anism demonstrated above. Finally, the core pathways in-
volved in MDD were shown in the module. The pathways 
of neuroactive ligand‐receptor interaction, dopaminergic 
synapse and morphine addiction are presented in Figure 
4b. And as shown in Figure 4c, the serotonergic synapse 
seemed to be higher specificity than other pathways. From 
these results, we inferred that the drug addiction caused by 
serotonin used in the treatment of MDD might relate to the 
mechanism of morphine addiction.

The main problems that limit the development of a reli-
ably viable MDD biomarker are the heterogeneity of depres-
sive disorder pathophysiology, etiology, and study designs, 
which may bring in conflicting data. In this study, a systems 
biology framework for the genetic information collection, 
advanced function and pathway analyses for MDD was de-
veloped. A total of 143 DEPgenes were identified and the 
MDD‐specific network was constructed for the pathogenesis 
investigation and therapeutic methods development of MDD. 
Comparing with existing research strategies, the genetic op-
timization and analysis results were confirmed to be reliable. 
As most studies collected data from small samples sizes 
often consisting of fewer than 100 subjects, this study would 

F I G U R E  3   KEGG pathway 
enrichment analysis of DEPgenes. (a) 
Significantly enriched KEGG pathways of 
DEPgenes. The abscissa GeneRatio was 
the ratio of DEPgenes mapped to a KEGG 
pathway to the total number of genes in 
the pathway; (b) Visual crosstalk of KEGG 
pathways. The nodes size represented the 
number of DEPgenes contained in the 
pathway. The larger the node was, the more 
DEPgenes were included. The width of 
the edge indicated the overlapping degree 
of genes contained in two pathways. 
DEPgenes: depression‐related genes
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contribute to improving the precision and generalizability 
of MDD‐related genes in these three databases. However, 
although this computational framework applied quantity of 

valuable information that required future validation by exten-
sive experimental, it still provided a reference for the study of 
other complex disease.

F I G U R E  4   MDD‐specific network analysis. (a) The specific network of MDD; (b and c) Module Cluster analyses by MCODE. MDD: major 
depressive disorder
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