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Translating polygenic risk scores for clinical use by
estimating the confidence bounds of risk prediction
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A promise of genomics in precision medicine is to provide individualized genetic risk pre-
dictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic
variants, have been developed as a useful tool in complex disease research. However, the
application of PRS as a tool for predicting an individual's disease susceptibility in a clinical
setting is challenging because PRS typically provide a relative measure of risk evaluated at the
level of a group of people but not at individual level. Here, we introduce a machine-learning
technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence
bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional
probability value for each individual and give a prediction at a desired error level. Moreover,
with a user-defined prediction error rate, MCCP can estimate the proportion of sample
(coverage) with a correct prediction.
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ARTICLE

he last decade has witnessed the tremendous success of

genome-wide association studies (GWAS), which have dis-

covered tens of thousands of common variants robustly
associated with a range of human complex traits and diseases!,
including cancers>3, cardiovascular diseases®, neuropsychiatric, and
neurodegenerative diseases®”. Although the identified variants
individually have small to modest effect sizes, polygenic risk scores
(PRS)3?, which summarize effects from large numbers of variants,
have proven to be a useful research tool. For example, PRS has been
used to investigate the genetic overlaps of neuropsychiatric
disorders®10-12, identify individuals of high risk for coronary artery
disease!3, predict the age of onset for Alzheimer’s disease!4, and
improve clinical diagnoses of cancers!>1® and type 2 diabetes
mellitus!”. Compared with environmental risk factors, PRS has
many advantages. As an individual’s DNA is largely stable after
conception, PRS for complex disorders is also stable. Therefore, it is
unlikely that non-genetic factors can cause large numbers of
changes to DNA, i.e., inverse causations. In addition, PRS is easy to
compute. Thus, there is little doubt that the implementation of PRS
will be an integral part of the field of precision medicine!3-20.

However, there are several technical obstacles to using PRS in
clinical settings. In contrast to rare disease-causing mutations, which
have large penetrance, PRS are continuous measures of the liability
to disease as well as probabilistic measures of the risk of developing a
condition?122. Thus, it is unclear what thresholds of PRS should be
used by clinicians to assess an individual’s risk to develop a disease.
To mitigate this, standard statistical models in the field divide the
sample into different strata based on arbitrary PRS thresholds and
evaluate the effect of PRS on disease risk within and across strata by
several statistical metrics, for example, area under the receiver
operating curve (AUC), the proportion of risk variation explained
(R?), odds ratio, and hazard ratio. The deciles, quintiles, top 10%,
5%, and even 1% versus bottom 10%, 5%, and 1%, respectively, are
frequently used thresholds in the literature>10:14-16, As the perfor-
mance of PRS is intimately related to genetic architectures of
complex disorders?2, which vary for different disorders and in dif-
ferent populations, a systematic strategy for choosing these risk
stratifying thresholds is imperative. In addition, the prediction
accuracy per individual has rarely been investigated in PRS studies.

Here, we introduce a machine-learning technique, Mondrian
Cross-Conformal predictor (MCCP), to complement the current
state-of-the-art PRS methodology. In contrast to arbitrary PRS
thresholds used in the literature, MCCP, functioning as a calibrator
(Fig. 1) for PRS prediction in a test sample, is able to compute the
proportion of the sample (termed coverage hereafter) for which the
prediction of case-control status is reliable, i.e., below a pre-specified
prediction error rate. For an individual with a predicted status,
MCCP can estimate the confidence bound of the prediction. We
evaluated the performance of MCPP on a range of simulated
genetic architectures that are frequently observed in empirical stu-
dies. We applied MCCP on coronary artery disease (CAD), type 2
diabetes mellitus (T2D), inflammatory bowel disease (IBD), and
breast cancer (BRCA) using the UK Biobank resource?324 and on
two additional population-based data sets, the Integrative Psychia-
tric Research (iPSYCH) schizophrenia (SCZ)2°> sample and the
Malmé Diet and Cancer (MDC) T2D2° sample.

Overall, we show that at the individual level, MCCP reports
well-calibrated prediction probabilities, systematically estimates
confidence bounds of PRS-to-risk prediction of human complex
diseases. At the group level, MCCP outperforms standard
methods in accurately stratifying individuals into risk groups.

Results
Overview of the method. MCCP is a special implementation of
conformal prediction (CP) in classification that can guarantee the

validity of the conformal predictor for each class (here, case and
control separately)2”28, MCCP splits the sample by their
respective classes and then estimates confidence levels for each
class. Here, we implemented MCCP to estimate the confidence
levels of risk prediction in a sample for which genetic and disease
status information was available (Fig. 1; target sample). Our
implementation first computed PRS for each individual in the
target sample. We, then, divided the target sample into two
subsets: the training and the testing set. The training set was
further randomly partitioned into nequal-sized subsets, one of
which was retained as the calibration subset for calculating the
MCCP probability value described by Eq. (1), and the remaining
n—1 subset was used as the proper training set for model
building. We fitted a logistic regression model on the proper
training set and made predictions on both the calibration and the
testing sets. A nonconformity measure (NCM; Fig. 1 and Meth-
ods) was calculated for every individual in the calibration and
testing sets. Assuming that the training and the calibration sets
were independent and identically distributed, we ranked the
NCMs in the calibration set for both the case and control groups,
respectively. Based on NCMs in the calibration set, probability
values for assigning case or control labels to reach individuals in
the testing set were then computed (equation [1]). We repeated
this procedure n times, using each of the n subsamples exactly
once as the calibration set. The n probability values were averaged
to produce a single estimation for the final prediction region of
predicted subjects.

' Hi=1, ... ,N_caly Y=Y, NCMjZNCMi}|

1

Py (Ncal, +1:y,=y)

M

wherep; is the probability value of individual i to be in class y and

N_cal,, is the sample size of class y in the calibration set.

In binary classifications, the probability values for assigning an
individual as a case (p;) and a control (py) are obtained from the
MCCP, respectively. Given a prediction error rate of «, a subject
can be predicted by MCCP as a case (p;>a and py<a) or a
control (po>a and p;<a), uncertain (p;>a and py>a) or
unpredictable (p; < a and po < &) with a confidence level of 1—a.

The prediction coverage is defined as the proportion of samples
predicted as case or control at the given error rate a. To assess the
clinical significance of the MCCP results versus standard
methods, we computed the AUC, positive predictive value
(PPV), and negative predictive value (NPV) restricted to
predicted cases and controls at an error rate a.

Prediction error and coverage of MCCP. We examined the
calibration property of MCCP on prediction error for PRS across
a range of simulated genetic architectures and case-control
GWAS designs based on real genotypes (Methods and Supple-
mentary Figure 1). For each simulated data set, MCCP and a
simple logistic regression (LR) model were applied to the proper
training and calibration sets. The predicted errors for the two
models were compared in the hold-off testing set (Methods). In
line with previous studies on CP27:2, the prediction errors from
MCCP were perfectly aligned with those expected across all
simulated scenarios (Fig. 2 and Supplementary Figures 1-4).
However, the naively implemented LR model underestimated the
error rate when it was small; but, tended to overestimate when it
was large (Fig. 2). Moreover, such biases varied with different
genetic architectures. For example, for a fixed polygenicity of 0.01
and prevalence of 0.01, the LR models consistently under-
estimated the true error rate for heritability of 0.8, and, for a fixed
heritability of 0.5 when the true error rate was < 0.5. A similar
finding was found for cases with a low polygenicity (i.e., 0.001).
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Fig. 1 Schema of the MCCP for the PRS-to-trait prediction. Using summary statistics from a reference GWAS, PRS is obtained for the target population.
The calibration set includes individuals with known disease status. A model is built on the training set and nonconformity measures (NCM) can be
computed for both calibration and test sets, respectively. The NCMs distributions in the calibration set are obtained for case and control, respectively (blue
and red curves). The MCCP probability values for an individual to be the case (p;) or control (po) (gray vertical bar) are estimated, respectively. In principle,
population structures, age, sex, and other covariates can also be added to the model to increase its performance.

These results suggested that MCCP was superior in calibrating
PRS prediction compared with the naive LR model.

Next, we studied the coverage of MCCP—how many subjects can
be predicted at a given error rate—in our simulated data set
(Supplementary Fig. 5). We observed that, as expected, the
maximum coverage was achieved with a low error rate when the
heritability was high. This was also true for data sets with low
polygenicity for a fixed prevalence and heritability. Low prevalence
tended to achieve high coverage at a lower error rate compared with
high prevalence. This was mainly caused by the inherent imbalance
of case versus control in the data. Moreover, as expected, larger
GWAS discovery studies, which can generate more accurate effect
estimates than smaller ones, always showed better prediction
performance. Performance of MCCP using fivefold cross-validation
at an error rate of 0.05 is given in Table 1.

Applications of MCCP to complex diseases. We used MCCP to
evaluate the capacity of PRS in predicting risk for four common
complex diseases (CAD, T2D, IBD, and BRCA; N=276,299)
from the UK Biobank?324, and SCZ from a Danish population
study (iPSYCH, N =24,072)?> using MCCP (Table 2). As for
simulated data sets, MCCP predictions were well-calibrated
across all studied diseases (Supplementary Fig. 6).

A commonly used approach for making decisions in trait
prediction is contrasting the top x% with the bottom x% of PRS
(termed empirical method). We compared the performance of
MCCEP to that of the empirical method in disease risk prediction
with a fixed coverage, i.e., the number of predictable subjects in a
testing sample. As the empirical method does not formally use the
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concept of coverage, we defined it as two times the extreme x%.
Using PRS as the only predictor, we found that MCCP performed
marginally better than the empirical method in all studied
diseases at error rates ranging from 0 to 0.2 (Fig. 3). A key
advantage of using MCCP is that it can estimate confidence
bounds for individual prediction. Based on these individualized
predictions, MCCP can help clinicians make a decision at an
error rate «.

We, next, evaluated the performance of MCCP when age, sex,
and genetic ancestry information (computed by genetic principal
components PC1-6, see Methods) were included in model
building, calibration, and prediction steps. We found that MCCP
outperformed the empirical method in studied data sets, which
had varying case-control ratios from 1:4 to 1:111 (Fig. 4 and
Supplementary Fig. 7). Such excellent performances were
especially apparent for CAD, T2D, and SCZ. As expected,
AUC, PPV, and NPV from MCCP decreased with increased
coverage and with a decreasing preset confidence level. At an
error rate of 0.05, MCCP can predict 35.2% of subjects for CAD,
22.7% for T2D, 15.5% for IBD, 19.0% for BRCA from the UK
Biobank, and 31.4% of subjects of iPSYCH SCZ data set either as
cases or controls. The prediction accuracies measured by AUCs
were 0.865 (CAD, 95% CI 0.859-0.871), 0.788 (T2D, 95% CI 0.
779-0.796), 0.705 (IBD, 95% CI 0.678-0.732), 0.754 (BRCA, 95%
CI 0.742-0.766) and 0.842 (SCZ, 95% CI 0.828-0.856),
respectively (Supplementary Table 1). In contrast to MCCP, the
empirical method at a coverage of 10% (i.e., top 5% vs bottom 5%
of PRS), gave 0.01-0.11 less in AUCs. Importantly, the empirical
method cannot report confidence levels for risk prediction.
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Fig. 2 Calibration plots comparing observed and expected errors from
MCCP and the logistic regression model using PRS as a predictor on the
simulated data. a Curves for the prevalence of 0.01, polygenicity of 0.01,
and heritability (h2) of 0.3, 0.5, and 0.8 are shown. b Curves for the
prevalence of 0.01, the heritability of 0.5, and polygenicity of 0.001, 0.01,
and 0.1 are shown. The logistic regression is fitted on the combined proper
training and calibration sets and used to make predictions on the test set.
The observed error is measured as the proportion of incorrect predictions
against true cases or controls status at an expected error rate using the
estimated MCCP probability values and probabilities from the logistic
regression, respectively. Optimal calibration is shown as dashed gray line
that is largely overlapped with MCCP curves. Source data are provided as a
Source Data file.

Validation of MCCP prediction by a follow-up study. Because
complex diseases have different ages of onsets between indivi-
duals, some healthy controls at the time of prediction may
develop the disease later in life, we further examined the per-
formance of MCCP in prediction using the MDC T2D follow-up
data set?®. At baseline, median ages for men, women, and both
sexes were 59.1 years (interquartile range [IQR]: 53.1-64.6), 57.4
(IQR: 50.1-63.7), and 57.8 (IQR: 51.3-64.2). T2D status of sub-
jects in this data set was followed for 20 years and assessed at five
time points, i.e., baseline, year 5, 10, 15, and 20. We estimated the
prediction probability values at baseline using MCCP and the
empirical method, and then, evaluated the performance of these
predictions at each of the four follow-ups, using the corre-
sponding T2D status or censored. In line with the results for the
cross-sectional T2D data set from UK Biobank, MCCP slightly
outperformed the empirical method when using PRS as the only
predictor (Fig. 3 and Supplementary Fig. 8) but outperformed the

empirical method strikingly at baseline using MDC data set
(Fig. 4 and Supplementary Fig. 7) when age, sex, and genetic PC
were considered in MCCP. When these covariates were con-
sidered in MCCP, the improved performances of MCCP also hold
in the follow-up years 5, 10, 15, and 20 (Supplementary Fig. 9).
Not surprisingly, MCCP also showed improved PPVs and
decreasing NPVs along with follow-ups (Supplementary Figs. 10
and 11). Although a decreasing AUC with follow-up time was
observed for MCCP, it still performed better than the empirical
method at all studied time points (Supplementary Figs. 9a, 10a,
and 11a). We also trained and applied MCCP and the empirical
method at each time point of follow-ups. Results from these
models consistently suggested a better performance of MCCP
than that from the empirical method (Supplementary
Figs. 9b, 10b, and 11b).

Discussion

In the present study, we introduce the machine-learning method
MCCP as a calibration tool within the current polygenic risk
prediction methodology. As a proof of concept, we show that
MCCP is capable of estimating confidence levels for an indivi-
dual’s predicted risk. The estimates obtained with MCCP enjoy
the validity property, i.e., in long run, the prediction errors are
guaranteed to fall below a preset error rate?’. The estimated
probability values for hypothetically assigning an individual as a
case or control will have more direct utility in clinics than group-
wise estimates, which arbitrarily define the top 10%, 5%, or 1% of
samples as the high-risk group, and, similarly the bottom x% as a
healthy group. In addition, with a preset error rate, e.g., « = 0.05,
MCCP can systematically estimate the proportion of samples that
can be predicted with an error rate below a. Such functionality is
extremely valuable given that the performance of PRS depends on
genetic architectures of complex diseases, which are typically
unknown. For example, with a desired prediction error rate of
0.05, for one disease, 10% of samples can be reliably predicted by
MCCP; but for others, only 5% may be predictable. In its current
form, PRS is designed to predict risk at the population or group
level30, whereas ideally, one would want to know the individual’s
susceptibility to disease. Thus, MCCP could aid clinicians in
diagnosis by telling the prediction confidence for each individual.

Human diseases generally vary in prevalence, which in turn
vary in time and across populations. Differences in prevalence
between a reference GWAS sample and the tested population
need to be considered before choosing the approach to use, such
as defining the top x% of PRS in the tested population as the risk
group. Our MCCP model can systematically overcome a situation
where prevalence between GWAS sample and the tested popu-
lation is different. Using a calibration set, MCCP estimates per-
sonalized confidences of prediction being case and control status,
respectively. As such, MCCP can provide the users confidences
on how much of their sample can be accurately predicted, no
matter case or controls. Knowing the probability of being healthy
(low risk of developing a disease) is equally important for the sake
of public health management3!32. In the present analysis, we
observed a well-calibrated confidence level for predictions of
common disorders in UK biobank data sets, SCZ in a Danish data
set, and T2D in a Swedish data set. We also explored the pro-
portion of samples that can be predicted within a given error rate.
Thus, using confidence of prediction at various expected error
rates to make decisions seems feasible.

Another advantage of MCCP is that it is indifferent to the bias
of an imbalanced case-control study design?8. As the percentage
of years lived with disability (% YLDs) for most complex diseases
or conditions are <10%33, data imbalance is common in
population-based studies. Such study design typically results in a
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(proportion of discovery set for GWAS is 0.5).

Table 1 Performances of Mondrian cross-conformal prediction at an error of 0.05 on various genetic architecture by simulation

Heritability Polygenicity Prevalence AUC (95% CI) PPV (95% CI) NPV (95% CI) Coverage
0.3 0.001 0.01 0.84 (0.80-0.88) 0.48 (0.44-0.53) 0.96 (0.94-0.98) 0.18
0.05 0.81 (0.79-0.84) 0.76 (0.73-0.80) 0.81(0.77-0.84) 0.22
0.2 0.76 (0.73-0.79) 0.75 (0.72-0.81) 0.67 (0.61-0.72) 017
0.01 0.01 0.78 (0.71-0.84) 0.25 (0.19-0.35) 0.97 (0.95-0.99) 0.16
0.05 0.75 (0.71-0.79) 0.61 (0.57-0.65) 0.82 (0.79-0.85) 0.18
0.2 0.73 (0.70-0.77) 0.69 (0.66-0.73) 0.74 (0.71-0.78) 0.17
0.1 0.01 0.67 (0.58-0.76) 0.18 (0.13-0.33) 0.95 (0.92-0.99) 0.12
0.05 0.67 (0.62-0.7T) 0.57 (0.52-0.63) 0.74 (0.70-0.78) 0.14
0.2 0.59 (0.55-0.64) 0.65 (0.59-0.73) 0.56 (0.53-0.61) 0.12
0.2 0.01 0.68 (0.60-0.76) 0.24 (0.20-0.29) 0.94 (0.91-0.97) 0.1
0.05 0.70 (0.65-0.74) 0.61 (0.57-0.65) 0.76 (0.72-0.80) 0.15
0.2 0.62 (0.58-0.67) 0.65 (0.60-0.69) 0.62 (0.58-0.66) 0.16
0.5 0.001 0.01 0.91 (0.89-0.94) 0.57 (0.52-0.61) 0.98 (0.97-0.99) 0.32
0.05 0.88 (0.86-0.90) 0.81 (0.79-0.84) 0.88 (0.86-0.90) 0.30
0.2 0.83 (0.80-0.85) 0.82 (0.79-0.84) 0.78 (0.75-0.81) 0.24
0.01 0.01 0.85 (0.81-0.90) 0.39 (0.34-0.44) 0.98 (0.96-0.99) 0.23
0.05 0.84 (0.82-0.87) 0.72 (0.69-0.76) 0.88 (0.86-0.90) 0.26
0.2 0.80 (0.77-0.82) 0.77 (0.74-0.80) 0.79 (0.76-0.82) 0.21
0.1 0.01 0.75 (0.69-0.81) 0.28 (0.24-0.33) 0.96 (0.94-0.98) 0.15
0.05 0.80 (0.77-0.83) 0.69 (0.66-0.73) 0.83 (0.81-0.86) 0.21
0.2 0.70 (0.66-0.73) 0.68 (0.64-0.72) 0.71 (0.67-0.74) 0.15
0.2 0.01 0.79 (0.73-0.85) 0.20 (0.16-0.25) 0.98 (0.96-1.00) 017
0.05 0.75 (0.72-0.79) 0.64 (0.60-0.69) 0.83 (0.80-0.86) 0.19
0.2 0.68 (0.64-0.72) 0.65 (0.61-0.70) 0.68 (0.64-0.72) 0.14
0.8 0.001 0.01 0.93 (0.90-0.95) 0.50 (0.43-0.55) 0.99 (0.98-1.00) 0.42
0.05 0.92 (0.90-0.93) 0.82 (0.79-0.85) 0.94 (0.93-0.95) 0.46
0.2 0.91 (0.90-0.92) 0.88 (0.87-0.90) 0.87 (0.85-0.89) 0.39
0.01 0.01 0.91 (0.88-0.93) 0.50 (0.46-0.55) 0.98 (0.97-0.99) 0.31
0.05 0.91 (0.90-0.93) 0.83 (0.80-0.85) 0.93 (0.91-0.94) 0.4
0.2 0.89 (0.87-0.90) 0.85 (0.82-0.87) 0.86 (0.84-0.88) 0.33
0.1 0.01 0.84 (0.79-0.89) 0.36 (0.31-0.42) 0.98 (0.96-0.99) 0.21
0.05 0.86 (0.83-0.88) 0.75 (0.72-0.78) 0.89 (0.86-0.91) 0.28
0.2 0.82 (0.79-0.84) 0.78 (0.75-0.81) 0.80 (0.77-0.83) 0.22
0.2 0.01 0.75 (0.69-0.81) 0.35 (0.30-0.40) 0.94 (0.91-0.97) 0.14
0.05 0.84 (0.82-0.87) 0.72 (0.69-0.76) 0.88 (0.86-0.90) 0.26
0.2 0.78 (0.75-0.81) 0.73 (0.70-0.77) 0.78 (0.75-0.81) 0.20

as case or control, 95% Cl 95% confidence interval.

Polygenicity proportion of causal variants of all simulated variants, AUC area under the ROC curve, PPV positive predictive value, NPV negative predictive value, Coverage proportion of samples predicted

Table 2 Description of complex diseases.

Disease Discovery GWAS Discovery GWAS sample size Prevalence in testing data set #Polymorphisms used in PRS
(#case/#control) (#case/#total) construction

CAD Nikpay et al.43 60,801/123,504 13,689/276,299 (5.0%)3 9912

T2D Scott et al.44 26,676/132,532 15,006/276,299 (5.4%)? 19,054

IBD Liu et al.45 12,882/21,770 2471/276,299 (0.9%)?2 10,878

BRCA Michailidou et al.#6  122,977/105,974 9653/147,317 (6.6%)? 28,945

SCZz PGC> 35,642/111,748b 5125/24,072 (21.3%)¢ 31,755

T2D (MDC)  Mahajan et al.42 74,124/824,006 943/24,298 (3.9%)4 126,748

aRestricted to European unrelated participants from the UK biobank.
bParticipants from the Danish sub-cohorts were removed.

dEuropean unrelated participants from the Malmé Diet and Cancer (MDC) study at baseline.

from the MDC study at the baseline.

CEuropean unrelated participants from the Integrative Psychiatric Research (iPSYCH) schizophrenia sample.

CAD coronary artery disease, 72D type 2 diabetes mellitus, IBD inflammatory bowel disease, BRCA breast cancer, restricted to women in testing data set, SCZ schizophrenia, T2D (MDC) T2D data set

majority class and a minority class in the sample. In extreme
cases, even a simple predictor that treats all samples as the
majority class can have good accuracy but fail to predict in the
minority class. MCCP handles imbalanced data without the need
to consider explicit balancing measures, such as over- or under-
sampling. Our simulations and real data applications for complex
diseases showed that MCCP performs remarkedly well and its
validity was preserved even when the data were severely imbal-
anced, e.g., with prevalence ranging from 0.01 to 0.2, which
reflected an imbalance level ranging from 1:99 to 1:4.

We demonstrated that predictions made by MCCP reflected
the lifetime probability of being case or control using the MDC

follow-up studies. As individuals typically show varying ages of
onset for a specific disease, some healthy controls at the time of
recruitment in a study may later develop such disease. Assigning
probability values to an individual of being case or control at
baseline using MCCP allows us to identify high-risk individuals.
Meanwhile, such functionality automatically makes the MCCP
prediction testable in the future. Our application to the 20 years
follow-up data set from MDC showed that the prediction made
by MCCP became more accurate as follow-up continues, con-
firming the applicability of MCCP. In addition, directly applying
MCCP at each follow-up time point further improves the pre-
diction performance both in prediction error rate and sample
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Fig. 3 Comparison of the performance of MCCP and the empirical method on complex disease risk prediction using PRS as predictor. For MCCP,
sample coverage (x axis) indicates the proportion of samples predicted as cases or controls, whereas, for the empirical method, it indicates extreme PRS,
e.g., top and bottom x% of PRS. AUCs are computed from multivariate logistic regressions adjusted for age, sex, and PC1-6 on these samples stratified
from MCCP and empirical method, respectively. The expected error rates for MCCP are indicated by the size of data points up to 0.20. Vertical lines
correspond to an expected error of 0.05 from the MCCP. The solid lines and shades represent the median and 95% confidence intervals of AUCs. CAD
coronary artery disease, T2D type 2 diabetes mellitus, IBD inflammatory bowel disease, BRCA breast cancer, SCZ schizophrenia, T2D (MDC) T2D data set
from the MDC study at the baseline. Source data are provided as a Source Data file.

CAD T2D IBD
A 0.90
095 |*% \
% 0853 0.8 [+
0.90 i
0.80 5 Expected error
0.85
0.75 0.7 e 0.05
0.80 \\\\ e 010
0.70
e 0.15
O 0.0 0.2 0.4 0.6 0.8 00 02 04 06 0.00.10.20.30.40.5 e 020
= .
< BRCA scz T2D (MDC)
0.95
0.85
\“ oo \ 0.90 ,\
0.80 ’ 085 § -e- Empirical
7 0.80 -~ MCCP
0.75 08
0.75
0.7 0.70
00 02 04 06 02 04 06 00 02 04 06

Sample coverage

Fig. 4 Comparison of the performance of MCCP and the empirical method on complex disease risk prediction using PRS and additional information
(age, sex, and PC1-6) in MCCP. For MCCP, sample coverage (x axis) indicates the proportion of samples predicted as cases or controls, whereas, for the
empirical method, it indicates extreme PRS, e.g., top and bottom x% of PRS. AUCs are computed from multivariate logistic regressions adjusted for age,
sex, and PC1-6 on these samples stratified from MCCP and empirical method, respectively. The expected error rates for MCCP are indicated by the size of
data points up to 0.20. Vertical lines correspond to an expected error of 0.05 from the MCCP. The solid lines and shades represent the median and 95%
confidence intervals of AUCs. CAD coronary artery disease, T2D type 2 diabetes mellitus, /IBD inflammatory bowel disease, BRCA breast cancer, SCZ
schizophrenia, T2D (MDC) T2D data set from the MDC study at the baseline. Source data are provided as a Source Data file.
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coverage. Surprisingly, these crucial functions have not been
formally developed by the empirical method.

We implemented MCCP onto PRS as an extension to the
polygenic risk prediction paradigm such that advances in con-
structing PRS will also improve the performance of MCCP in
personalized risk prediction. It has been shown that directly
modeling linkage disequilibrium structure among SNPs and
combining PRS constructed from different diseases or traits may
improve the predictability of PRS34-30. Thus, we hypothesize that
incorporating these advanced PRS models into our implementa-
tion will further improve the performance of MCCP. Moreover,
the major improvement achieved by MCCP is the calibration
step. Thus, the performance of MCCP could also be improved by
constructing a disease risk score combining both genetic and
non-genetic factors, such as lifestyle, socioeconomic status, and
environmental exposures. We used logistic regression as our
underlying model to construct a nonconformal measure (NCM).
Other machine-learning models, such as k-nearest neighbors,
random forest, support vector machine, or deep neural networks,
can also be used to improve the overall power of MCCP in risk
prediction.

In this work, we evaluated the performance of MCCP on
samples of European ancestry. However, the application of our
method in trans-ethnicity (e.g., training on European population
and testing on Africa or Asian population) should be an inter-
esting next step.

In conclusion, we described an approach for personalized
genetic risk assessment of complex diseases. By estimating per-
sonalized confidences of risk prediction, it can help clinical pro-
fessionals to assess the value of genetic data in disease risk
prediction.

Methods

Samples for UK Biobank, iPSYCH, and MDC. The UK Biobank project is a
prospective cohort study, composing of ~500,000 individuals from the United
Kingdom aged between 40 and 69 at recruitment?324, Participants were genotyped
using the Affymetrix UK BiLEVE Axiom array and the Affymetrix UK Biobank
Axiom array, respectively. Quality control, ancestral origins, and cryptic related-
ness were described elsewhere?4, Phenotypes of CAD, T2D, IBD, and BRCA were
retrieved using ICD9/10 codes, operation and procedure codes from hospital
inpatient records (UK Biobank fields 41270, 41271, and 41272), as well as self-
reported medical conditions and procedures (UK Biobank fields 20001, 20002,
20004). After standard quality, 276,299 unrelated participants with European
ancestry remained for further analysis. The UK Biobank received approval from
the National Information Governance Board for Health and Social Care and the
National Health Service North West Center for Research Ethics Committee (Ref:
11/NW/0382). This research has been conducted using the UK Biobank Resource
under application number 32048.

A detailed description of the iPSYCH cohort has been reported elsewhere?5. In
brief, the iPSYCH is a representative sample of the entire Danish population born
between 1981 and 2005, including 1,472,762 subjects. Initial genotyping was
performed at the Broad Institute with amplified DNA extracted from dried blood
spots and assayed on the Infinium PsychChip v1.0 array. SNPs were phased into
haplotypes using SHAPEIT3 and imputed using Impute2 with European reference
haplotypes from the 1000 genomes project phase 33”. Individuals were censored to
ensure no pair has closer than third-degree kinship. In total, 5125 cases of SCZ
(ICD10 code F20) and 18,947 controls with imputed genotypes were used for the
present study. iPSYCH was approved by the Danish Scientific Ethics Committee,
the Danish Health Data Authority, the Danish Data Protection Agency, Statistics
Denmark, and the Danish Neonatal Screening Biobank Steering Committee. In
accordance with Danish legislation, this study has waived the need for informed
consent in biomedical research based on existing biobanks by the Danish Scientific
Ethics Committee.

The MDC study is a population-based prospective cohort study in southern
Sweden. Details of the cohort and the recruitment are described elsewhere26. All
participants were followed until incident diabetes, emigration from Sweden, death,
or the end of follow-up (31 December 2016), whichever came first. Information on
new diabetes cases was retrieved from both local and national registers®. To
include all-possible T2D participants, all cases that were specified as type 1, LADA,
secondary diabetes or others, were discarded from further analysis. Subjects
without screening date at baseline or diabetic patients with the first event of
diabetes before the age of 40 years were also excluded. The application of these
criteria resulted in 5647 cases of T2D and 24,011 non-diabetic controls.

Genotyping was performed on the Illumina GSA vl genotyping array with
amplified DNA extracted from the whole-blood sample. All procedures followed
the standard protocol. The genotyped SNPs were excluded for the probe to genome
mismatch, incorrect assignment of allelic variants in the array design, MAF < 0.01,
failed Hardy-Weinberg Equilibrium test at p <1 x 10713, call rate <99%, or failed
genotype calling. Samples were excluded if they showed evidence of gender
mismatch or had an overall sample call rate <90%. Kinship was estimated using
KING v2.2.4% and individuals were censored to ensure no pair had closer than
third-degree kinship. Imputation was performed using the Michigan Imputation
Server with the reference panel of Haplotype Reference Consortium®® (HRC r1.1).

We restricted our analysis to MDC European populations and censored non-
diabetic participants if they lost follow-up, emigrated, or died within follow-up
years 5, 10, 15, and 20. This resulted in 943, 1611, 2559, 3695, and 4277 cases of
T2D at each time point, and the total numbers of participants per time point are
24,298, 23,211, 21,936, 20,247, and 16,146, respectively. Here, we implemented
MCCP in two ways: (1) model building at baseline, and prediction at baseline and
re-examined at each of the four follow-ups with respective T2D status. (2) model
building and prediction at five time points, respectively.

MDC was approved by the Ethics Committee of Lund University (LU 51-90)
and all patients provided written informed consent. The use of data in this study
was approved by the MDC steering Committee.

Simulation of different genetic architectures. To examine the applicability of
MCCP in various situations of GWAS design, we simulated case-control pheno-
types based on real genotypes on chromosome 2 of 10,000 individuals from the
iPSYCH project. The synthetic phenotypes were generated by combinations of
varying polygenicity of 0.001, 0.01, 0.1, and 0.2, the heritability of 0.3, 0.5, and 0.8,
and prevalence of 0.01, 0.05, 0.1, and 0.2 using the GCTA software*!. The pre-
valence rate was chosen based on the reported prevalence of the considered
diseases’>. GWAS was performed using sample proportions of 0.2, 0.5, and 0.7 as
discovery data sets. Consequently, PRS was obtained by a thresholding (p < 0.05)
and pruning (LD r? < 0.1) approach. Logistic regressions within the MCCP setting
were performed in the calibration and testing samples.

PRS construction. PRS was computed as the weighted sum of effect for the pruned
SNPs (LD 72 <0.1) with MAF > 0.01 in the target individuals. Indels and variants in
the extended MHC region (build hgl9, chromosome 6: 25-34 Mb) were removed.
Effect sizes were taken from the reference GWAS or from the discovery set in
simulation studies. In this study, summary statistics were from Psychiatric Geno-
mics Consortium phase 2 without the Danish sub-cohorts® and DIAGRAM#*2
(2018) for iPSYCH SCZ and MDC T2D data sets (MAF > 0.05), respectively. For
CAD, T2D, IBD, and BRCA from UK Biobank, we used summary statistics from
respective GWAS studies*3-46 where UK Biobank samples were not included, same
to a recent study’. PLINK*’ was used to construct PRS with the following para-
meters: p value < 0.05 and r2 threshold of 0.1 within a window size of 100 kb and
step size of 50 bp. And the LD structure from the 1000 Genomes Project phase 3
European subpopulation was used for LD pruning.

Logistic regression. As proof of principle, we built models based on simple IR to
make a prediction. In simulation studies, LR was performed by simply using PRS
alone as an independent variable. In the real-world clinical studies, LR was per-
formed using PRS as an independent variable and age, sex, genotyping batches, and
the first six PCs of population structures as covariates.

CP and MCCP. CP estimates the confidence of predicting the class y; to a new
object x; given a training set of z;(xy, y1), 22(X2, ¥2)s ... 21(Xn, ¥n), Where x; is
generally a vector and y; is two-class labels indicating the class to which the x;
belongs. A measurable function (equation [2]) quantifies how unusual (non-
conformal) the x; is in comparison with the training set,

NCM,, = —y * d(x;) (2)

where NCM is nonconformity measure, y is the all-possible nonzero classes, e.g., (1,
—1) and d(x;) is the decision value obtained from the decision function of the fitted
model, e.g., LR in the present study. As in the definition of the inductive conformal
prediction of CP, the training set is further split into a proper training set (zi,...,2;)
and a calibration set (z...,z,) where i is less than n. NCM is calculated for both
calibration and test sets based on the model trained on the proper training set. We
assume that both training and calibration sets are independent and identically
distributed. Using the only calibration set alone, the probability value of an indi-
vidual i to be the class y is calculated as follows

_ =1, ... Ncal: NCM,,;>NCM, }|
(N_cal+1)

Note that all samples in the calibration set are included to compute the
probability values for all-possible classes. This may be problematic when the data
are imbalanced. To address this issue in the classification model, the MCPP was
introduced?8. As shown in Eq. (1), MCCP restricts NCM comparisons with the
calibration set within sample class (e.g., case or control alone in binary
classifications). By choosing an expected error a € [0, 1], for every test sample, a

i

Py 3)
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predicting region outputs the following:
IM={yeY:p,>a} (4)

where Y is the set of possible classes, p, is the probability value when an individual is
in a class. In the binary classification problem, we set p; as the probability value when
an individual is in one class, e.g., case, and p, as another class, e.g., control. Unlike
other classification frameworks, where a prediction is always provided and is a unique
class, the prediction region I'* is a set and it can be empty or contain one or two
classes. Confidence, credibility, and prediction of MCCP are defined as follows:

confidence: sup{l — «a : T* <1}, that is the greatest 1-« for which I'“ is a unique
class, e.g., case or control. In the problem of binary classifications, it is also equal to
1— min(pg, py).

credibility: {a : || = 0}, i.e., the smallest & for which I'* is empty. It is also
equivalent to max(po, p;) in the binary classifications.

prediction: I'* when 1—a is equal to the confidence, i.e., « = min(py, p;) in
binary classifications.

As an example of interpretation, given an output p, of 0.01 and p; of 0.8 for a
test individual, the individual will be predicted to be a case with a credibility of 0.8
and confidence of 0.99.

Calibration assessment. A reliability curve (observed error versus expected error)
was used to assess calibrations by MCCP and an LR model. First, we divided data
into five folds. MCCP and LR were built on four folds and used to make predictions
on the remaining fold. This procedure was repeated five times to make sure all
samples were covered. The observed error was measured as the proportion of
incorrect predictions against true cases or controls status at an expected error rate
using the estimated MCCP probability values and probabilities from the LR,
respectively. At a given error rate (so-called expected error rate) i, the observed
error for LR and MCCP was computed by Egs. (5) and (6), respectively.

Observed,,(LR) = >{p' >(1.0 —a) : y = 0|p < : y = 1} (5)

Observed,,.(MCCP) = Z{p} <a:y} (6)

Evaluation metrics. Performances of MCCP are measured by validity and cov-
erage (also termed efficiency). A valid prediction means that the frequency of errors
(i.e., the fraction of true values outside the prediction region) is no more than « at a
chosen error rate a. The validity can be calculated for all class objects as well as for
objects of one specific class. Coverage is defined as the percentage of unique class
T'%, which is also the proportion of samples predicted as case or control, as shown
in this study. Varying error rate o from 0 to 1, observed error, coverage, AUC, PPV,
and NPV are computed using LR adjusted for age, genetic sex, batches of geno-
typing arrays, and the first six PCs of population structures. Confidence intervals of
AUC, PPV, and NPV were calculated using the pROC package within R.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All GWAS summary statistics used in this study are publicly available in the following
repositories: Coronary ARtery DIsease Genome wide Replication and Meta-analysis plus
The Coronary Artery Disease Genetics consortium (coronary artery disease), http://www.
cardiogramplusc4d.org/data-downloads/; DIAbetes Genetics Replication And Meta-
analysis consortium (type 2 diabetes mellitus), https://diagram-consortium.org/
downloads.html; International Inflammatory Bowel Disease Genetics Consortium
(inflammatory bowel disease), https://www.ibdgenetics.org/downloads.html; Breast
Cancer Association Consortium (breast cancer), http://bcac.ccge.medschl.cam.ac.uk/
bcacdata/oncoarray/oncoarray-and-combined-summary-result/; Psychiatric Genomics
Consortium (schizophrenia), https://www.med.unc.edu/pgc/download-results/scz/. Data
from 1000 Genomes Project can be accessed at ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/.
UK Biobank data are available to registered investigators upon approval via http://www.
ukbiobank.ac.uk. Data from the MDC study can be applied for access through https://
www.malmo-kohorter.lu.se. In accordance with the consent structure of iPSYCH and
Danish law, individual-level genotype and phenotype data from the iPSYCH study are
not able to be shared publicly. Source data are provided with this paper.

Code availability

R codes for MCCP are made available for research use at GitHub (https://github.com/
sunjiangming/PRS_MCCP) and are archived in Zenodo (https://doi.org/10.5281/
2en0do.4661464)*8. Additional software PLINK v1.90b5.2, KING 2.2.4, GCTA v1.25.2
and R packages (glmnet_2.0-16, doParallel_1.0.14, foreach_1.4.4, caret_6.0-82,
impute_1.56.0, rms_5.1-2, pROC 1.16.2, Zelig 5.1.7) were used in this study.
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