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Most mortality studies usually attribute death to single disease, while various other diseases could also act in the same individual or
a population at large. Few works have been done by considering HIV, Tuberculosis (TB), and Hepatitis B (HB) as jointly acting in a
population in spite of their high rate of infections in Ghana. This study applied competing risk methods on these three diseases by
assuming they were the major risks in the study population. Among all opportunistic infections that could also act within HIV-
infected individuals, TB has been asserted to be the most predominant. Other studies have also shown cases of HIV and Hepatitis
B coinfections. The validity of these comorbidity assertions was statistically determined by exploring the conditional dependencies
existing among HIV, TB, and HB through Bayesian networks or directed graphical model. Through Classification tree, sex and age
group of individuals were found as significant demographic predictors that influence the prevalence of HIV and TB. Females were
more likely to contract HIV, whereas males were prone to contracting TB.

1. Introduction

Human immunodeficiency virus (HIV) and acquired im-
mune deficiency syndrome (AIDS) are a variety of disorders
caused by infections with the human immunodeficiency
virus [1, 2]. The human body might, therefore, experience
challenges in fighting off the disease if the immune system is
not strong enough. WHO [3] emphasized that as the viral
infection advances, it targets the immune system thereby,
intensifying the risk of usual infections such as Tuberculosis
as well as other predominant infections and tumours that
hardly affect people with working immune systems. Tu-
berculosis generally affects the lungs, but it is also possible to
affect other parts of the body. Infection of other organs can
result in different forms of symptoms according to Mandell
et al. [4]. Hepatitis B (HB) is also an infectious disease caused
by HB virus (HBV) that affects the liver of an individual or
causes inflammation of the liver. Consequently, coinfections
among these underlying diseases on an individual can be

very disastrous since the immune system is greatly affected
by both viral and bacterial infections.

Deaths from diseases are mostly attributable to a single
cause, while more than two of these underlying infections
could act on the same individual. In view of that, several
researchers have consequently devised or developed
methodologies through competing risks to solve this
problem by estimating relevant epidemiological quantities
including crude, net, and partial probabilities of death. In
addition, Tuberculosis has been confirmed by WHO [3]
and other health organizations as the leading cause of
death among patients infected with HIV as opposed to
Hepatitis B. This study seeks to confirm the conditional
dependencies that exist among these three underlying
diseases statistically through directed graphical models.
Furthermore, the Classification tree model was used to
assess significant demographic variables (sex, educational
level, age, and marital status) on the prevalence of the three
diseases.
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2. Materials and Methods

The data used for the study were collected from a regional
hospital in Ghana since it serves as a major referral
center. Competing risk methods were applied on a
mortality data extracted from a cohort study of the three
underlying diseases (HIV, HB, and TB) across age groups.
The data used for the directed graphical model and
Classification tree models were obtained from a random
sample of 201 patients (with demographic information
recorded) who were tested of HIV, TB, and HB,
respectively.

2.1. Competing Risk. From competing risks, there are three
probabilities of deaths which would be estimated using the
mortality data across age with respect to HIV, TB, and
Hepatitis B. These probabilities are the crude, partial crude,
and net probability of death. The terms “risk” and “cause”
are synonymous but are slightly different depending on the
time of occurrence of the condition. Before death, the
condition is considered as a risk, but after death, that same
condition can be classified as a cause. The definitions of the
underlying mortality probabilities as used in this study are as
follows:

Crude probability is the probability of death from a
specific cause in the presence of all other risks acting in
a population.
Partial crude probability is the probability of death from
specific cause when another risk(s) is eradicated or
eliminated from the population.
Net probability is the probability of death if a specific
risk is the only risk in effect in the population.

2.2. Application of Competing Risks to Mortality Data. In a
human population, estimation of the net and partial crude
probabilities is difficult, so they are computed using their
relationship with the crude probability of death. The major
assumptions were made such that the individuals who died
were able to live at least a fraction of 0.5 within the study
period and these three underlying diseases were the main
risks in the study population. Also, an important infor-
mation about the proposed Competing risk method by
Chiang [5] is that the method is applicable on uncensored
mortality data.

Now, let ni � xi+1 − xi be the length of study period, Pi
be the midyear population, Di be the number of deaths
occurring during the study period, ai denote the average
fraction of the interval lived by each of the Di individuals,
and Ni represent the number of individuals alive at xi
among whom Di deaths occurred.

Then, the age-specific death rate is given by

Mi �
Di

Pi
. (1)

The probability of dying in the interval (xi, xi+1) is es-
timated as follows:

qi �
Di

Ni

, (2)

Ni �
Di + 1 − ai( niDi 

ni
. (3)

Hence, it can be inferred from equations (1)–(3) that

qi �
niMi

1 + 1 − ai( niMi

, (4)

pi �
1 − ainiMi

1 + 1 − ai( niMi

. (5)

Since qi + pi � 1, the number of deaths occurring during
the study period (Di) can be categorized according to the
cause (HIV, TB, and HB) with Diσ dying from cause Rσ ,
σ � 1, 2, 3. This implies

Di � Di1 +Di2 +Di3, (6)

so

Miδ �
Diδ

Pi
, (7)

is the cause-specific death rate such that

Diδ �Miδ × Pi. (8)

Hence, the crude probability of death is estimated as

Qiσ �
niMiσ

1 + 1 − ai( niMi

, (9)

and the net probability of dying is given as

qiσ � 1 − pi
Diσ /Di( ). (10)

The partial crude probability is given by

Qiσ·1 �
Diσ

Di − Di1
1 − pi

Di − Di1/Di( ) . (11)

2.3. BayesianNetworks. Bayesian network learned via score-
based methods (Hill climbing algorithm) was used to de-
termine the joint distribution, marginals, as well as the
conditional dependencies that exist among these three
underlying diseases. Bayesian network is a probabilistic
graphical model that represents a set of random variables
and their conditional dependencies via directed acyclic
graphs.

Theorem 1. Let G � (V, E) be directed acyclic graph (DAG)
and let X� (Xv)vεV be a set of random variables indexed by V.
X is said to be a Bayesian network with respect to G if it
satisfies the local Markov property such that each variable is
independent of its nondescendants given its parent.

Given any set of random variables (X1, X2, . . . , Xn) that
satisfies the local Markov property, then its Bayesian net-
work can be represented generally in probability settings as
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P X1, X2, . . . , Xn(  �
n

i�1
P Xi Xpa(i)

 , (12)

where pa(i) are the parents of node i. From the joint dis-
tribution, the marginal distribution or any conditional
probability can be estimated using either the Naive method
or Belief Propagation method.

2.4. Classification Tree. The Classification (decision) tree is a
type of controlled learning algorithm (having a predefined
target variable) that is frequently implemented in problems
of classification. It operates on either categorical or con-
tinuous variables (both outcome and predictor variables).
With this technique, splittings are done by dividing un-
derlying variable into two or more homogeneous sets (or
subpopulations) based on most significant variable or
splitter. In summary, the decision tree is fitted through
supervised learning algorithms by first overfitting the tree,
after which it is been pruned using the required complexity
parameter associated with the number of nodes with the
least relative error if necessary. The relevant terminologies
for the Classification Tree method are as follows.

2.4.1. Terminologies of the Decision or Classification Tree

Node. It denotes a variable in the tree model.
Root Node. It represents the most significant variable
among all predictor variables, splitting into two ho-
mogeneous sets starting at this node.
Splitting. It is a process of dividing a node into two or
more subnodes.
Decision Node. It is a node that can further be split into
subnodes.
Leaf or terminal Node. A node that cannot split or
divide further into subnodes.
Pruning. It is the removal of subnodes of decision nodes
after overfitting into relatively smaller size so as to
achieve a better predictive power.
Branch or SubTree. A subsection of full tree upon
splitting of the root node is called branch or subtree.
Parent and Child Node. A node which is divided into
subnodes is called parent node, whereas the subnodes
are called the children of parent node. Figure 1 is a
general representation of a decision tree model.

3. Result and Discussion

3.1. Crude, Net, and Partial Probability Estimation across Age.
Table 1 presents estimation of the crude, net, and partial
probabilities of death generated from the uncensored
mortality data.

The crude probability of death was estimated from
equation (9). For instance, in estimating the crude proba-
bility of dying from HIV 20–34 age group (as presented in
Table 1), n2 � 15, a � 0.5, D2σ � 9, D2 � 14, P2 � 464, and
M2 � 14/464 such that the crude probability is estimated

from (9) as 0.2373. Figure 2 is a diagrammatic representation
of the estimates of the crude probability of deaths for each
disease.

It can be observed from Figure 2 that the probability of
an individual dying from Hepatitis B in the presence of all
other diseases was relatively higher than that of Tuberculosis
within the study population across age groups except at the
age interval of 70 to 79 years (represented as 6). However, the
crude probability of death from HIV was only higher than
that of TB and HB at age group 20–34 years (represented as
2) and generally lower than the crude probability estimates
for HB at higher age intervals. Also, the probability of dying
from HIV was found to be higher than that of TB at age
interval 60 to 69 years, but averagely lower at all other age
intervals. It can be inferred that the probability of an in-
dividual dying from Hepatitis B across age was compara-
tively higher on the average than dying from either HIV or
TB when all other diseases acting in the study population or
cohort of individuals considered.

Also, the net probability of death was considered as the
probability death if a specific risk (HIV, TB, or HB) was the
only risk acting in the study population. Equation (10) was
used to compute the estimates of the net probabilities of
death. For instance, to estimate the net probability of dying
from HIV for age group 2 (20–34 years), n2 � 15, a � 0.5,
D2σ � 9, D2 � 14, P2 � 464, M2 � 14/464, and from equa-
tion (5), p2 � 359/569. Hence, from equation (10), the net
probability is estimated as 0.1717. Figure 3 shows a com-
bined graph of the net probabilities for each disease.

From Figure 3, the net probability of deaths from HIV
and TB were higher than that of Hepatitis B at age intervals
20–34 years (denoted as 2) and 70–79 years (denoted as 6),
respectively. However, the probability of an individual dying
from Hepatitis B if it was the only risk in effect was higher
than that of HIV and TB at all other age intervals. Addi-
tionally, the net probability of deaths from TB was also
higher than that of HIV at all age intervals except at 20–34
years and 60–69 years. These findings suggest that Hepatitis
B was on the average more infectious followed by Tuber-
culosis. It can also be inferred that the probability of dying
from a specific risk or disease (HIV, TB, or HB) is contingent
on the age of the infected individual.

The partial probability of death was computed for each
disease from equation (11) upon eliminating HIV, TB, or HB
from the study population. The estimates of the partial
probability of death from HIV, TB, and HB are presented by
Figures 4–6, respectively.

It can be deduced from Figure 4 that the probability of
an individual dying from HIV if Hepatitis B is eliminated
from acting in the study population is relatively higher than
when Tuberculosis is eliminated at all age intervals. Also, it
can be seen from Figure 5 that the probability of an in-
dividual dying from Tuberculosis if Hepatitis B is elimi-
nated as a risk is higher for age group 35 to 49 years. On the
contrary, Figure 6 revealed that the partial probability of
dying from Hepatitis B if HIV or Tuberculosis was removed
from acting in the study population was higher at age
interval 20–34 years and 35–49 years, respectively. Gen-
erally the partial probabilities of deaths were relatively
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higher at age intervals 20–34 years and 35–49 years. This
means, on the average, individuals between the ages 20 and
50 years were at a greater risk of dying from any of these
three underlying diseases within the study population as
opposed to other age intervals.

3.2. Bayesian Network Application. Bayesian network
learned via score-based methods (Hill climbing algorithm)
was used to determine the joint distribution, marginals, as
well as the conditional dependencies that exists among these
three underlying diseases. Positive and negative test results
were quantified as {1} and {0}, respectively.

3.3. Structure Learning. The directed paths (arcs or edges)
between any pair of nodes (diseases) were found by de-
termining any node that d-separates one node from the
other. However, the node that d-separate the two other
nodes simply blocks every undirected path between the two
nodes, thereby making the underlying two nodes condi-
tionally independent of each other. It was realized that HIV
and Tuberculosis are conditionally dependent or related
given Hepatitis B and can be inferred that individuals with
HIV mostly contract Tuberculosis as opposed to Hepatitis B.
This statistically confirmed why TB is predominant among
HIV patients as opposed to Hepatitis B. Figure 7 shows the
Bayesian network of HIV, TB, and HB.

Table 1: Current mortality data of the three diseases across age.

Age Cases diagnosed Total deaths HIV deaths TB deaths HB deaths
15–19 58 8 0 0 3
20–34 464 14 9 2 5
35–49 499 26 6 10 11
50–59 184 16 2 2 3
60–69 34 10 1 0 2
70–79 16 8 0 2 1
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Figure 2: Crude probability of death from the underlying diseases.
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Figure 1: General representation of decision tree.
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Table 2 presents the estimates of the marginal distri-
bution for HIV and Hepatitis B.

It can be seen from Table 2 that the probability of an
individual getting infected with HIV is approximately 0.61,

whereas the probability of that same individual experiencing
Hepatitis B infection is approximately 0.13.

Figure 8 presents the conditional distribution of TB
given HIV. It was discovered that an individual with HIV has

HB eliminated
TB eliminated

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rt

ia
l p

ro
ba

bi
lit

y 
(H

IV
)

2 543 61
Age groups

Figure 4: Partial probability of death from HIV.
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Figure 5: Partial probability of death from Tuberculosis.
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Figure 3: Net probability of death from the underlying diseases.
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a probability of 0.69 of not contracting TB and a probability
of 0.31 of contracting TB. It is also certain that an individual
without HIV can easily contract TB.

3.4. Classification Tree Model. The effects of sociodemo-
graphic characteristics on the prevalence of these diseases
within the study population were, respectively, assessed. In

HIV TB

HB

Figure 7: Directed acyclic graph of the three diseases.

Table 2: Marginal probability distributions.

Variable No Yes
HIV 0.3880597 0.6119403
Hepatitis B 0.8656716 0.1343284
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Figure 8: Graph of conditional distribution of TB infection given HIV.
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Figure 6: Partial probability of death from Hepatitis B.
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determining the significant demographic factors, the Clas-
sification tree model was employed. Sex (p< 0.001) and age
(p< 0.001) of patients were found to be the most significant
demographic factors that influenced the prevalence of dis-
eases (HIV and TB) from both models within the cohort.

3.4.1. Fitting the Classification Tree Model. In identifying the
best size of the tree, the model was overfitted first using the
most significant variables at each stage of splitting, after
which it was pruned. The tree model using Hepatitis B as a
dependent variable was not presented since none of the
independent variables had significant effect on the preva-
lence of HB. Figures 9 and 10 show the fitted tree model for
the prevalence of HIV and TB, respectively.

It can be inferred from the fitted tree model that male
patients whose age was 46.5 years and above were likely to be
infected with HIV, while female patients who were 21 years
and above were more susceptible to HIV infection. In ad-
dition, the tree model classified approximately 51.7% of

females of at least 21 years within the study population to be
HIV positive, whereas 15.4% of males at least 46.5 years were
classified HIV positive. Hence, it can be inferred that females
are likely to contract HIV than males at early age. The high
incidence of HIV among women is mostly due to intimate
partner violence or sexual abuse [6]. Also, females above 20
years also contract HIV as opposed to those less than 20
years. According to UNAIDS [7], this could be due to fi-
nancial disparities and intimate partner violence in rela-
tionships which often prevent women (especially in Africa)
from negotiating on condom use.

Also, it can be deduced from Figure 10 that males de-
veloped TB at any time irrespective of their age. The tree
model classified about 44.3% of males to be TB positive.
Females were more likely to contract TB at ages either less
than 21 years or at least 52.5 years. Among females less than
21 years, approximately 4.0% were classified by the tree
model as TB positive, whereas 3.5% of females at least 52.5
years were found to be TB positive. However, females be-
tween 21 and 52.5 years were likely to be free from
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Figure 9: Fitted tree model for the prevalence of HIV.
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Figure 10: Fitted tree model for the prevalence of Tuberculosis.
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Tuberculosis within the study population. Males found to be
more likely to develop TB relative to females and are in
consonance with findings from other studies [8]. In their
study, they found out that nearly twice as many men as
women have been diagnosed with TB globally and the
imbalance in incidence is usually attributed to social, cul-
tural, and economic factors. Responsibility of men in the
community may also require them to have more social
contact, thereby increasing the risk of TB exposure as
asserted by Liefooghe et al. [9] and Vlassoff and Moreno
[10].

4. Conclusion and Recommendation

The competing risk methods revealed that individuals of the
study population between the ages of 20 and 50 years had
greater chance of dying from these three HIV, HB, and TB.
In addition, the Classification tree discovered that females
were likely to contract HIV relative to males, whiles males
were rather prone to contracting Tuberculosis compara-
tively. Also, TB was found to be very prevalent among HIV-
infected individuals compared with Hepatitis B from the
fitted directed graphical model.

Sex and age of patients were found to be the significant
demographic variables that contributed to the prevalence of
HIV and TB in the study population as opposed to marital
status and educational level. But, none of the demographic
characteristics influenced Hepatitis B prevalence unlike HIV
and TB. It was also found that 51.7% of females at least 21
years within the study population were HIV positive,
whereas 15.4% of males at least 46.5 years were classified
HIV positive. Also, it categorized about 44.3% of males to be
TB positive. Among females less than 21 years, approxi-
mately 4.0% were classified by the tree model as TB positive,
whereas 3.5% of females at least 52.5 years were found to be
TB positive.

From these findings, it was recommended that public
health education and other symposiums should be organized
for both males and females on the prevalence of these
underlying diseases so as to create high level of awareness
about them. Frequent immunization against Tuberculosis
among HIV patients is also recommended.
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