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Redox imbalance links COVID-19 and myalgic
encephalomyelitis/chronic fatigue syndrome
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Although most patients recover from acute COVID-19, some experience postacute sequelae of severe
acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called
“long COVID-19,"” reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS
is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debili-
tating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits,
and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying
biological abnormalities. However, in this review, we summarize the evidence that people with acute
COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflamma-
tion and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypo-
metabolic state. These phenomena have not yet been well studied in people with long COVID-19, and
each of them has been reported in other diseases as well, particularly neurological diseases. We also
examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits,
and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, under-
standing the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel
therapeutics.
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Acute COVID-19, caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), can be a
severe and even fatal disease. Beyond the acute ill-
ness, some survivors of COVID-19, even those who are
only moderately ill during the acute infection, experi-
ence postacute sequelae of severe acute respiratory
syndrome coronavirus 2 infection (PASC). They report
persisting, debilitating symptoms that last for months
(1). In some people, these symptoms may be secondary
to COVID-19-induced damage to the lung (hypoxia)
and heart (reduced cardiac output) (2), skeletal muscle
(3), kidneys (abnormal acid-base or fluid balance), or
brain (small infarcts or hemorrhages) (4). However,
some of these PASC patients, without apparent organ
damage, also have persisting, debilitating symptoms
(an illness called “long COVID-19") that are similar to
myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS) (5).

ME/CFS is a complex, multisystem disorder leading
to debilitating symptoms including profound fatigue,
postexertional malaise, unrefreshing sleep, cognitive
deficits, and orthostatic intolerance. The US Centers
for Disease Control and Prevention and the US Na-
tional Academy of Medicine estimate that 836,000 to
2.5 million people have ME/CFS in the United States
alone (6). Many cases occur following what appears
to be a common, infectious-like illness. However, di-
agnostic tests are rarely performed to document the
responsible infectious agents. Postinfectious fatigue
syndromes also follow in the wake of well-documented
acute infections with multiple viruses, bacteria, and
even parasites (5).

In this review, we speculate that the symptoms of
both long COVID-19 and ME/CFS may stem from re-
dox imbalance—which in turn, is linked to inflamma-
tion and energy metabolic defects.
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Redox Imbalance Occurs in Both COVID-19 and ME/CFS
Oxidative and Nitrosative Stress. Oxidative and nitrosative
stress have been reported in both acute COVID-19 and ME/CFS.
Oxidative stress involves imbalance between reactive oxygen
species (ROS) and antioxidant defense mechanisms. Nitro-
sative stress is characterized by excess reactive nitrogen
species (RNS), such as peroxynitrite (ONOOT), generated by
reaction of nitric oxide (NO) with superoxide anions (O,-7).
NO has important physiological functions (including vasodi-
lation and neurotransmission). However, increased RNS with
excessive NO production can be at least as damaging as ROS
and also can directly attack several antioxidant enzymes, in-
cluding catalase (7). Thus, oxidative stress and nitrosative stress
are linked bidirectionally.

Like NO, ROS mediates physiologic cellular signaling and de-
fense against pathogens. However, excessive ROS, when not ad-
equately countered by antioxidants, damage cellular components
including proteins, lipids, and DNA (8, 9).

Redox Imbalance in Acute COVID-19. Multiple examples of
redox dysregulation have been reported in acute COVID-19, as is
typical of many viral infections (10, 11). Overall levels of serum
thiols are decreased in the serum of COVID-19 patients (12). As
depicted in Fig. 1A, COVID-19 induces redox imbalance, in part
because SARS-CoV-2 uses the angiotensin converting enzyme 2
(ACEZ2) receptor to enter cells (13, 14). This leads to accumulation
of Oz~ as well as ROS and RNS by inducing mitochondrial dys-
function and production of proinflammatory cytokines (15).

In a computational study, binding affinity was significantly
impaired when the disulfide bonds of both ACE2 and SARS-CoV-2
spike protein, which binds ACE2, were reduced to thiol groups
(16). The spike protein has 40 cysteine residues, some of which
contribute to the stability of interaction with the ACE2 receptor on
the host (17). Analysis of the crystal structure of the spike protein
with the ACE2 receptor revealed that the Cys480-Cys488 pair of
the spike protein participates directly in binding to the ACE2
(18, 19). Similarly, certain cysteine residues on the ACE2 protein of
the host play key roles in the interaction between the two pro-
teins. A disulfide bond between Cys133 and Cys141 is present at
the dimer interface, which has been linked to susceptibility to
COVID-19 (17). Cattle and swine have a leucine residue at position
133 and are resistant to SARS-CoV-2.

Elderly subjects are more vulnerable to severe COVID-19. A
linear oxidation of the plasma cysteine/cystine redox state over
the entire age span and that of reduced glutathione/oxidized
glutathione (GSH/GSSG) occur after ~45 y (20). The age-dependent
decrease in thiol/disulfide ratio of extracellular fluids could
modulate interaction of CoV-2 with the host cell in the airways.
This redox-modulated binding is expected to affect the risk of
severe infection in an age-dependent manner (21). Similarly, low
levels of the antioxidant enzyme, alveolar Type Il cell superoxide
dismutase 3 (SOD3), in the lungs of the elderly correlate with
severity of COVID-19 (12).

Redox Imbalance in ME/CFS. In people with ME/CFS, there are
multiple biomarkers of oxidative stress: reduced levels of antioxi-
dants (22); decreased levels of a-tocopherol (23); increased levels of
peroxides and superoxide that correlate with severity of symptoms
(24); increased levels of isoprostanes, both at rest and after exercise
(25); and reduced levels of thiobarbituric acid reactive substances
and malondialdehyde levels, as well as reduced ascorbic acid and
glutathione levels (26-30). These markers of redox imbalance also
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Fig. 1. Oxidative stress in COVID-19. (A) The ACE2 pathway.
SARS-CoV-2 infects cells harboring ACE2 and the protein
transmembrane protease, serine 2 (TMPRSS2); together, these
molecules prime the viral spike protein S, facilitating its entry by
endocytosis. ACE2 converts angiotensin Il (Ang Il) to angiotensin 1 to
7 (Ang 1-7). This decreases ACE2 and elevates Ang Il, which acts
through the angiotensin 1 receptors (AT1-Rs), causing accumulation
of superoxide radicals (O,°") leading to hypertension and inhibition
of vasodilation. Ang 1-7 binds the G-protein-coupled Mas receptor
MasR, mediates vasorelaxation, and decreases O,°~ production.
SARS-CoV-2 induces formation of reactive oxygen radicals (ROS)
and RNS by eliciting mitochondrial dysfunction and production

of proinflammatory cytokines. (B) The NETs. NETs are web-like
structures extruded from activated neutrophils, comprising proteins
assembled on a scaffold of decondensed chromatin, which target
invading pathogens. The component proteins include oxidative and
proinflammatory enzymes such as NADPH oxidase (Nox), neutrophil
elastase, myeloperoxidase (MPO), NOS, and peptidyl arginine
deiminase 4 (PAD4), which deaminates arginine to citrulline, resulting
in the formation of citrullinated proteins (such as histone H3, causing
its dissociation from DNA). Excessive accumulation of NETs causes
inflammation and damage in COVID-19.

correlate with severity of symptoms (24, 31, 32). Brain magnetic
resonance spectroscopy (MRS) reveals elevated levels of ventricular
lactic acid consistent with oxidative stress (33-35).

When compared with healthy control subjects, people with
ME/CFS also have multiple biomarkers of nitrosative stress: increased
inducible nitric oxide synthase (NOS) with consequent increased
NO, peroxynitrite, and nitrate, particularly following exercise (36, 37).

Immune responses to oxidized fatty acids (oleic, palmitic, and
myristic acids) and markers of lipid peroxidation (such as malon-
dialdehyde, acetylcholine, S-farnesyl-L-cysteine, and several
NO-modified amino acids) also are significantly greater in ME/CFS
patients as compared with controls (38, 39).

Metabolomic studies in plasma from ME/CFS subjects are
consistent with these findings, revealing altered plasma levels of
choline, carnitine, and complex lipid metabolites—consistent with
oxidative stress and mitochondrial dysfunction (40-43).
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Elevated Levels of Prooxidants in COVID-19 and ME/CFS
As summarized in Table 1, increased levels of prooxidants have
been reported in both acute COVID-19 and ME/CFS.

Dysregulated Heme and Iron Homeostasis. Increased levels of
free iron in cells (44) and increased ferritin levels (45) both can
cause oxidative damage (44). Iron stored in heme molecules is
degraded via the bilirubin pathway, an important component of
antioxidant defense (46, 47). Evidence of dysregulated heme and
iron homeostasis has been reported in acute COVID-19 and ME/
CFS (Table 1).

Homocysteine. Elevated levels of the amino acid homocysteine,
seen in both acute COVID-19 and ME/CFS (Table 1), cause in-
creased oxidative stress and are a risk factor for various cardio-
vascular diseases and dementia. Elevated homocysteine levels may
indicate suboptimal activities of reverse transsulfuration enzymes
or dysregulation of their cofactors and/or regulators (44, 48, 49).

Neutrophil Extracellular Traps. Neutrophils attack invading
pathogens by forming neutrophil extracellular traps (NETs) and
generating both ROS and RNS (50-53) (Fig. 1B). Abnormalities of

Table 1.

Redox-related

alteration COVID-19

neutrophil biology have been reported in both acute COVID-19
and ME/CFS (Table 1).

Abnormal Metabolism Involving the Gaseous Signaling Molecules
NO and Hydrogen Sulfide. The major gaseous signaling molecules
include NO, carbon monoxide, and hydrogen sulfide (HS). They
play key roles in the regulation of blood pressure, inflammation,
and neurotransmission (54, 55). Under physiological conditions,
both NO and H,S have anti-inflammatory effects (48, 56). How-
ever, both deficient and excess production of these gaseous sig-
naling molecules can create brain pathology, immune dysfunction,
and redox imbalance (56, 57).

NO. NOS2 is significantly up-regulated in patients with severe
and critical COVID-19 (58). There is evidence of nitrosative stress
and disordered NO metabolism in people with ME/CFS (38).
Levels of NO are higher in ME/CFS patients, which can accelerate
nitrosative stress (27). Citrulline, a product of arginine metabolism
by NOS, also is increased in ME/CFS (59).

H2S. Normal H,S metabolism protects against inflammation and
redox imbalance (48, 60, 61). One of the modes by which HS
functions is by a posttranslational modification termed persulfidation
or sulfhydration (48, 62), which prevents irreversible oxidation of

Redox-related alterations shared by both COVID-19 and ME/CFS

ME/CFS

Iron and heme
metabolism

Hyperferritinemia (171-174)
Elevated biliverdin levels (175)
Decreased bilirubin (176)

Homocysteine Increased blood levels (177, 178)

Decreased serum transferrin, elevated heme (26, 43)

Increased cerebrospinal fluid levels (179)

Elevated superoxide
levels
Neutrophil response

NO

H.S

Tryptophan
metabolites

Glutathione

Cysteine

Selenium

Vitamin C/ascorbate
NAD metabolism

Vitamin E levels

Negative correlation between decreased SOD3 in lungs of
elderly patients with COVID-19 and disease severity (12)

In severe disease, elevated numbers of neutrophils and a
high neutrophil to lymphocyte ratio; high ratio positively
correlated with mortality (90, 120, 181); NETs observed

NOS?2 is significantly up-regulated in patients with severe
disease (58)

Survivors have higher serum levels of H,S and higher numbers
of circulating lymphocytes (70), perhaps because H,S
stimulates T cell proliferation (71)

Decreased tryptophan, serotonin, and indolepyruvate levels
and increased kynurenine, kynurenic acid, picolinic acid,
and nicotinic acid (183)

NAD metabolome depressed in SARS-CoV-2-infected cells
and patient samples, and levels of NAD biosynthetic
enzymes also are elevated in SARS-CoV-2-infected cells,
possibly as a compensatory mechanism (184)

Low blood levels of GSH in severe disease (185); severity of
COVID-19 linked to decreased levels of vitamin D (185, 186)

Cysteine levels decreased in serum, while levels of oxidized
cysteine are higher (183)
Cystine and methionine (methionine sulfoxide) increased (183)

Selenium levels low (189) and negatively correlated with
recovery (189-191)

Low plasma levels (192)

Nicotinamide phosphoribosyl transferase and nicotinamide
riboside kinase increased (194)

Low serum levels in pregnant women (195)

Decreased expression and activity of SOD (27, 180)

Neutropenia and a reduced oxidative burst (182), possibly
secondary to an initially aggressive neutrophil response,
had led to neutrophil exhaustion, similar to lymphocyte
exhaustion seen (182)

High levels of NO (27, 38); citrulline, a product of arginine
metabolism by NOS, also increased (59)

Dysregulation of H,S may play a role in ME/CFS (73)

H,S can induce a torpor-like state in mice (74)

No studies yet of H,S regulation in humans

Nicotinamide phosphoribosyl transferase levels altered
in peripheral blood mononuclear cells from ME/CFS
patients (129)

Low GSH levels in the cortex of the brain and plasma (33, 187)

Decreased SOD, catalase, glutathione peroxidase, and
glutathione reductase activities in erythrocytes (27)

Low levels of cystine, the oxidized form of cysteine, and
increased levels of cystine and methionine (methionine
sulfoxide) in the peripheral blood mononuclear cells of
people with ME/CFS (188)

Unstudied

Low plasma levels (31, 193)
Nicotinamide phosphoribosyl transferase levels increased (97)

Decreasing serum levels correlate with severity of symptoms
and levels increase in remissions (23, 196)
Also, decreased levels in pediatric cases (193)
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proteins (63, 64). H,S metabolism is disrupted in Alzheimer's
disease, Parkinson's disease, and Huntington’s disease and also,
during aging (63, 65-67). H.S inhibits tau-phosphorylation, which
may explain, in part, its role in protecting against Alzheimer’s disease
(68, 69).

Dysregulated H,S metabolism has been reported in acute
COVID-19. Survivors reportedly exhibit higher serum levels of
H,S and higher numbers of circulating lymphocytes (70); HS
stimulates T cell proliferation (71). Indeed, exogenous H,S therapy
may be beneficial in mild to moderate COVID-19 disease (72).

Dysregulation of H,S may play a role in ME/CFS since the gas
can affect adenosine triphosphate (ATP) production from oxidative
phosphorylation (73). H,S can induce a torpor-like state in mice
(74). However, studies of H,S regulation in people with ME/CFS
have not yet been reported.

Altered Levels of Tryptophan Metabolites. Tryptophan serves
as a precursor for nicotinamide adenine dinucleotide (NAD*) bio-
synthesis, making it important in redox balance. Abnormalities in the
pathways by which tryptophan is transformed into serotonin or
kynurenine pathway metabolites (75) have been reported in both
acute COVID-19 and ME/CFS (Table 1), and can cause both oxida-
tive stress and excitotoxicity (27).

Reduced Levels of Small Molecule Antioxidants in Acute
COVID-19 and ME/CFS

As summarized in Table 1, decreased levels of antioxidants have
been reported in both acute COVID-19 and ME/CFS. Foremost
among these small molecules is glutathione, which helps modulate
immune activation (76, 77). Glutathione also enhances vitamin D
metabolism (78) and vitamin D, in turn, reciprocally increases glu-
tathione and decreases oxidative stress and levels of inflammatory
cytokines and chemokines (79). The antioxidant small molecules
also include cysteine, a semiessential amino acid synthesized en-
dogenously via the reverse transsulfuration pathway (80) (SI Ap-
pendix, Fig. S1); selenium, an essential micronutrient incorporated
into various selenoproteins which have antioxidant roles; vitamin
C/ascorbate, which exerts antiviral and immunomodulatory effects
(81) and vitamin E compounds, which have free radical scavenging
and antiinflammatory activities (82).

Impaired Energy Metabolism in COVID-19 and ME/CFS
Impaired Energy Metabolism in Acute COVID-19. Mitochondrial
dysfunction has long been associated with fatigue (83), causes el-
evated oxidative stress, and could contribute to the symptoms of
fatigue found in both acute COVID-19 and ME/CFS (84).
Mitochondrial dysfunction also has been linked to the patho-
genesis of COVID-19. SARS-CoV-2 hijacks mitochondrial function
and alters host metabolic pathways and immune response to fa-
cilitate pathogenesis. For instance, mitochondrial dysfunction trig-
gered by SARS-CoV-2 causes accumulation of mitochondrial DNA
(mtDNA) in the cytosol, leading to mtDNA-induced inflammasome
activation and suppression of innate and adaptive immunity (85).
The virus interferes with the RIG1-MAVS pathway to decrease type |
interferon (IFN) production (86). SARS-CoV-2 infection of white
blood cells leads to elevated glycolysis, increased mitochondrial
reactive oxygen species (MtROS) production, and dysregulated
mitochondrial bioenergetics (87, 88). In this study, the role of redox
imbalance secondary to mitochondrial dysfunction in SARS-CoV-2
pathology was apparent; two potent antioxidants reduced viral
load and proinflammatory cytokines. Elevated levels of lactate
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dehydrogenase (LDH) were also reported in COVID-19 (89, 90),
which could reflect mitochondrial dysfunction.

Impaired Energy Metabolism in ME/CFS. Metabolomic studies
have reported evidence of impaired ATP production from oxygen,
glucose, fatty acids, and amino acids in multiple cell types (41, 42,
91-94). Not just oxidative phosphorylation but also glycolysis—
and possibly, the citric acid and urea cycles—are incriminated. In
people with ME/CFS, there also is a more general hypometabolic
state as previously proposed (73), characterized by depressed
levels of most metabolites, as occurs in hibernating animals
(41). Later, we speculate as to the cause of this hypometabolic
state.

Both structural and functional mitochondrial abnormalities
have been found in ME/CFS. Branching and fusion of mitochon-
drial cristae are observed in muscle biopsies of some patients (84).
Although some studies have reported deletions of mtDNA genes,
the most extensive controlled study using contemporary tech-
nology did not find mtDNA variants that correlated with suscep-
tibility to ME/CFS—although it did find a correlation between
specific haplogroups and mtDNA single-nucleotide polymor-
phisms and specific symptoms (95). Other reports have identified
a deficit in Complex V (ATP synthase) activity of the electron
transport chain (ETC) in lymphocytes, with a compensatory up-
regulation of respiratory capacity (96, 97), and a decrease in mi-
tochondrial membrane potential in CD8+ T cells (98). Serum from
ME/CFS patients reportedly contains a factor that induces mito-
chondrial fragmentation (99).

Clinical studies also indicate mitochondrial dysfunction. Peo-
ple with ME/CFS have significantly higher blood lactate levels
after exercise as compared with controls, indicative of reduced
oxidative phosphorylation and a switch to anaerobic glycolysis
(100-102). Elevated lactate levels also have been reported in the
ventricles of ME/CFS patient brains (33-35, 103). As in COVID-19,
elevated serum LDH levels also are seen (104). LDH is a critically
important enzyme in energy metabolism, catalyzing the bidirec-
tional conversion of lactate to pyruvate and NAD* to reduced

Impaired TCA cycle, OXPHOS, fatty
acid metabolism, urea cycle,
mitochondrial bioenergetics.

Increased ferritin, homocysteine,
superoxide. Dysregulated NAD*,
NO and H,S metabolism. Decreased
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Vitamin Cand E.
Hypoxia.
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Fig. 2. The interactions between redox imbalance, mitochondrial
dysfunction, chronic inflammation, and related symptoms. As
explained in the text, redox imbalance, mitochondrial dysfunction,
and inflammation are bidirectionally related to each other and may
cause some of the symptoms of both long COVID-19 and ME/CFS.
The bidirectional connections mean that an initial abnormality in one
component can trigger abnormalities in other components and can
precipitate a persistent, self-reinforcing pathological process.
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NAD* (NADH). Thus, an elevated level in the blood of subjects in
a resting state could indicate a system struggling to generate
energy. Alternatively, the elevated blood levels of LDH could
indicate tissue destruction, such as occurs in malignancies or red
blood cell hemolysis.

Finally, people with ME/CFS reportedly have significantly decreased
levels of plasma coenzyme Q10 (CoQ10), whose levels correlate in-
versely with the degree of fatigue, impaired concentration and
memory, and symptoms of autonomic dysfunction (105, 106). CoQ10/
ubiquinone, a component of the ETC, can have both prooxidant
and antioxidant effects, as well as anti-inflammatory effects (107).

The causes of mitochondrial dysfunction in people with ME/CFS
remain speculative. Viral infection surely can cause impairment of
mitochondrial structure (99) and function (97, 108), and impairment
of mitochondrial function, in turn, encourages viral replication and
T cell exhaustion (108). Immune activation, with the generation of
proinflammatory cytokines, also can cause mitochondrial frag-
mentation, hyperpolarization of the mitochondrial membrane, and
the generation of ROS (109).

Connecting Redox Imbalance to Inflammation in COVID-19
and ME/CFS

Connections between Inflammation and Redox Imbalance.
Systemic inflammation and neuroinflammation are seen in both
acute COVID-19 and ME/CFS. Inflammation, in turn, is bidirectionally
linked to redox imbalance (110); inflammation generates ROS and
RNS, and redox imbalance causes cellular damage that evokes
an inflammatory response, leading to vicious cycles (111, 112).

Glutathione plays a particularly important role in enabling and
modulating the immune response (76). It is vital for proliferation of
T lymphocytes; T cell activation, in turn, generates glutathione,
which counters ROS levels and mediates a metabolic shift toward
aerobic glycolysis and glutaminolysis (113)

Other connections between inflammation and redox imbalance
exist as well. Higher interleukin-2 (IL-2) levels stimulate NO pro-
duction (114, 115), and IL-6 and tumor necrosis factor-a (TNF-o)
stimulate cells to produce O,°~ (116, 117). Mitochondrial dys-
function also leads to increased proinflammatory responses and
increased ROS levels.

Inflammation in COVID-19 and Redox Imbalance. The cytokine
storm seen in severe cases of COVID-19 has been well character-
ized (118, 119). The nucleotide-binding oligomerization domain-
like receptor containing pyrin domain 3 (NLRP3) inflammasome
plays a key role in the effects of the cytokine storm; NLRP3, in
turn, is activated by oxidative stress (118). Increased levels of the
proinflammatory markers, C-reactive protein and IL-6, were as-
sociated with the disease (120).

Immunologic factors that correlated with more severe disease
and higher mortality include neutrophilia, lymphocytopenia, low
CD4+ T cells, decreased C3, very low human leukocyte antigen
D-related expression, and low numbers of CD19 lymphocytes
and natural killer (NK) cells (121). In addition to these changes,
COVID-19 is associated with inadequate Type | and Type Il IFN
responses and elevated chemokine expression (122-124). Finally,
T cell exhaustion is commonly seen in COVID-19 and could be
explained by low levels of glutathione (125).

Inflammation in ME/CFS and Redox Imbalance. The fatigue and
cognitive deficits in people with ME/CFS are associated with
neuroinflammation; positron emission tomography imaging re-
veals increased activation of microglia, astrocytes, and elevated
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levels of cytokines in the brain and spinal cord (126, 127). Increased
levels of various cytokines can trigger many of the symptoms of ME/
CFS (and post-COVID-19 syndrome), as became clear in the 1980s
when various cytokines were synthesized and used as treatments.
For example, when IFN - is given as antiviral therapy, it induces per-
sistent fatigue in patients with chronic hepatitis C virus infection (128).

In ME/CFS, the systemic circulation often contains elevated
levels of inflammatory biomarkers—proinflammatory cytokines like
IL-1 and TNF-a (106). Also, circulating lymphocytes often produce
increased transcripts of these cytokines (129). Both COVID-19 and
ME/CFS are associated with activation of the protein kinase R and
2- to 5A synthetase antiviral IFN response pathways (130-132).

People with ME/CFS often have increased numbers of CD8+
T cells bearing activation antigens (133), although persistent T cell
activation then may lead to exhaustion (134). Another character-
istic finding in people with ME/CFS is impaired NK cell function
(135). Redox imbalance leading to increased levels of L-kynur-
enine and lactate can impair NK cell function (136).

Connecting Redox Imbalance, Inflammation, and Energy
Metabolism

Viral infection triggers increased mitochondrial function and some-
times, mitochondrial damage. In either case, increased ROS are
produced. ROS, in turn, damage mtDNA and proteins, including
those comprising the ETC, causing a decrease in ATP production
(137, 138). In COVID-19, damage to endothelial cells results in chronic
inflammation, thrombosis, atherosclerosis, and lung injury. Endo-
thelial mitochondria modulate these inflammatory pathways via
redox signaling, involving mtROS. However, continued elevation
of mtROS leads to senescence, promoting inflammation and chronic
endothelial dysfunction, culminating in vicious cycles that involve
ROS, inflammation, and mitochondrial dysfunction (139, 140).

A mode by which mitochondrial dysfunction causes inflam-
mation is by activating the NLRP3 inflammasome in immune cells.
The NLRP3 inflammasome participates in the processing and re-
lease of inflammatory cytokines, such as IL-1p and IL-18 (141).
Damaged ROS-generating mitochondria can elicit persistent in-
flammation via NLRP3 inflammasome-dependent  inflammatory
pathways (142). Additionally, damaged mitochondria mount inflam-
matory responses by releasing mtDNA into the cytosol; the DNA and
its purinergic components function as a damage-activated molecular
pattern to trigger the innate immune system (143, 144). Finally, mi-
tochondria also modulate both adaptive and innate immune re-
sponses (143, 145, 146). In COVID-19, a dysregulation of the innate
immune system has been observed, causing aberrant engagement
of antiviral signaling cascades, which facilitates evasion of the host
immune system and which is linked to mitochondrial function as
described earlier (85, 86, 147). Thus, infection and inflammation are
intimately linked to energy metabolism and redox imbalance (Fig. 2).

Hypometabolic State, the Cell Danger Response, and
Integrated Stress Response

What might cause the hypometabolic state reported in ME/CFS?
Dysregulated H,S production can induce a hypometabolic, torpor-
like state in mice (73, 74). In addition, any of several stressors, including
viral infection and oxidative stress, can trigger evolutionarily conserved
protective responses that operate at the level of both the cell (the cell
danger response) (148) and the whole organism (the integrated stress
response, hibernation, and the state of dauer in Caenorhabditis
elegans) (121, 149, 150). These protective responses generally are
reversible when the stressor no longer is present. Since dysregulated
H,S production can induce a hypometabolic, torpor-like state in mice
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(74), HS production may be one potential switch (73). Since protein
translation consumes considerable ATP, a reduction in protein
translation thereby makes ATP available for repair of injury and
preservation of vital functions.

The hypometabolic state seen in ME/CFS (and that may be
seen in PASC) could be secondary to a persisting stressor (such as
redox imbalance or viral infection), or it could result from a defect
in the “switch” that turns off the protective state. Abnormalities in
purinergic signaling secondary to mitochondrial damage (151,
152) and mitochondrial dysfunction of any cause (153) are often
associated with cellular and organism stress responses, and each
has been linked to a wide variety of neurological disorders.

Potential Redox-Based Therapeutics

Several therapies targeting redox imbalance already have been
utilized or proposed for the treatment of disease. NO inhibits the
replication of SARS-CoV-2 in vitro (154) and improves oxygenation
in people with COVID-19 when administered by inhalation (155).
Small studies of ubiquinol (156) and of a combination of NADH and
CoQ10 (157) have reported clinical benefit. Many other potential
treatments targeting redox imbalance also deserve consideration:
for example, glutathione (and glutathione donors), N-acetyl cysteine,
cysteamine, sulforaphane, ubiquinol, nicotinamide, melatonin, sele-
nium, vitamin C, vitamin D, vitamin E, melatonin plus pentoxyfylline,
disulfiram, ebselen, and corticosteroids. In two cases of acute
COVID-19, glutathione administered therapeutically counter-
acted dyspnea associated with COVID-19 pneumonia and re-
duced pulmonary inflammation (158).

In rodents, administering H,S donors reduced inflammation
and oxidative stress and attenuated ventilator-induced lung injury
as well as injury induced by pneumonia (159, 160). In addition, the
HS donor, GYY4137, suppressed replication of enveloped RNA
viruses like SARS-CoV-2 (161-163). Additionally, the H,S donor,
sodium hydrosulfide, inhibits platelet activation, NET formation,
DNA, and ROS levels while decreasing SOD in the hyper-
homocysteinemia (HHcy) group (164). Thus, treatment of acute
COVID-19 with H,S donors may be efficacious (165).

A screen for inhibitors of the main protease of SARS-CoV-2
identified ebselen, an organoselenium compound, as a potential
inhibitor for the protease, MP™ or NSP5, and a therapeutic agent
for COVID-19 (166, 167).

In general, however, oral therapies directed at restoring redox
balance have not produced dramatic improvements in conditions
associated with redox imbalance (168). No single antioxidant can
scavenge or neutralize the wide variety of ROS and RNS single-
handedly. Hence, up-regulating pathways that counteract multiple
abnormalities and bolster antioxidant defense and balance may be
more beneficial. The timing of intervention may also be critical.

Concluding Remarks

People with acute COVID-19 and people with ME/CFS share redox
imbalance, systemic inflammation and neuroinflammation, im-
paired production of ATP and other abnormalities in common
(Fig. 2), abnormalities that have bidirectional connections (169).

The syndrome of long COVID-19 that can develop in some
COVID-19 survivors (people called “long haulers”) is very similar
to ME/CFS, so it may well be that the group of abnormalities
seen in acute COVID-19 and in ME/CFS also will be seen in long
COVID-19. Presumably, redox abnormalities in COVID-19 are
secondary to the infection with SARS-CoV-2. The same may be
true among those ME/CFS patients whose illness began with an
“infectious-like” illness.

Clearly, COVID-19-induced permanent damage to the lungs
(chronic hypoxia), heart (congestive failure), and kidneys (fluid and
acid-base abnormalities) could cause some of the persisting
symptoms seen in long COVID-19. In both long COVID-19 and
ME/CFS other symptoms (e.g., fatigue, brain fog) may be gen-
erated by neuroinflammation, reduced cerebral perfusion due to
autonomic dysfunction, and autoantibodies directed at neural
targets, as summarized elsewhere (170).

As many as 2.5 million people suffer from ME/CFS in the
United States (6). The COVID-19 pandemic may generate a similar
number of cases of long COVID-19 in the coming 1 to 2y (5). It
therefore is imperative that increased research be focused on
both long COVID-19 and ME/CFS. Fortunately, the United States
and several other countries have committed substantial funding to
study chronic illnesses following COVID-19, one of which is long
COVID-19. Two registries and associated biobanks of people with
long COVID-19 and/or ME/CFS are available to aid research.* We
suggest that the study of the connections between redox imbal-
ance, inflammation, and energy metabolism in long COVID-19 and
in ME/CFS may lead to improvements in both new diagnostics
and therapies.

Data Availability. There are no data underlying this work.
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