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Abstract
The central question of systems biology is to understand how individual components of
a biological system such as genes or proteins cooperate in emerging phenotypes result-
ing in the evolution of diseases. As living cells are open systems in quasi-steady state
type equilibrium in continuous exchange with their environment, computational tech-
niques that have been successfully applied in statistical thermodynamics to describe
phase transitions may provide new insights to the emerging behavior of biological
systems. Here we systematically evaluate the translation of computational techniques
from solid-state physics to network models that closely resemble biological networks
and develop specific translational rules to tackle problems unique to living systems.
We focus on logic models exhibiting only two states in each network node. Motivated
by the apparent asymmetry between biological states where an entity exhibits boolean
states i.e. is active or inactive, we present an adaptation of symmetric Ising model
towards an asymmetric one fitting to living systems here referred to as the modified
Ising model with gene-type spins. We analyze phase transitions by Monte Carlo sim-
ulations and propose a mean-field solution of a modified Ising model of a network
type that closely resembles a real-world network, the Barabási–Albert model of scale-
free networks. We show that asymmetric Ising models show similarities to symmetric
Ising models with the external field and undergoes a discontinuous phase transition
of the first-order and exhibits hysteresis. The simulation setup presented herein can
be directly used for any biological network connectivity dataset and is also applicable
for other networks that exhibit similar states of activity. The method proposed here is
a general statistical method to deal with non-linear large scale models arising in the
context of biological systems and is scalable to any network size.
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List of symbols
Ai j Adjacency matrix
hc Critical magnetic field
β Inverse of temperature
J Coupling constant
γ Scale-free exponent

0, 1 Modified Ising spins
heff Effective magnetic field
h Magnetic field
H Hamiltonian

HMF Mean-field hamiltonian
kB Boltzmann constant
k Node degree
M Order parameter
k̄ Mean degree
m Number of preferentially attached links

−1, 1 Classical spins
N Network size
pi j Probability that new node is linked to existing node
T Temperature
Z Partition function

1 Introduction

Biological networks are multi-dimensional complex systems whose collective inter-
action in response to perturbations may lead to critical transitions from one stable
state to another. Acute asthma attacks, clinical depression, diabetes mellitus, inflam-
mation, and epileptic seizures, amongmany others, are examples of such sudden shifts
in the state of the system, from healthy to diseased states (Trefois et al. 2015; Wolf
et al. 2018). Such “phase transitions” are common in other complex systems such
as ecological systems (for example, spontaneous extinction of species in response to
gradual changes in external conditions) (Capitan and Cuesta 2010) or the evolution
of human language (for example, the formation of Zipfian properties) (DeGiuli 2019;
Vera et al. 2020). However, the idea that a system consisting of simple interacting units
may exhibit phase transition was initially motivated by a seminal model of magnetic
systems called the Ising model.

The Ising model is one of the simplest and most frequently studied models of
cooperative phenomena in statisticalmechanics (Ising 1925). The classical Isingmodel
is a discrete, pairwise interacting two-state system proposed to explain the structure
and properties of ferromagnetic materials and has been solved exactly for one- and
two-dimensional lattices (Onsager 1994). In the Ising model of a two-dimensional
lattice, each site carries a spin which may be up or down, and neighboring spins prefer
to be parallel to each other. The external field prefers to orient the spins in the direction
of the field. The spins align in the same direction at low temperature, and the system
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exhibits spontaneous magnetization. At high temperatures, the spins align randomly,
and the system is paramagnetic.

Since then, Ising models have been extended to study phase transitions occurring
in more complicated topologies such as random, small-world and scale-free networks
(Albert and Barabasi 2002; Bianconi 2002; Barrat andWeigt 2000; Dorogovtsev et al.
2002; Ferreira et al. 2010; Gitterman 2000; Herrero 2002, 2008; Lopes et al. 2004;
Pekalski 2001). For example, Isingmodels of networks can explain how the opinion of
the individual is influenced by their contacts on opinions of people on a given subject
(Aleksiejuk et al. 2002; Bartolozzi et al. 2006; Castellano et al. 2009; Contucci 2007;
Redner 2017). Further real-world applications of Ising models of networks include
socioeconomic problems such as racial segregation in the US, group herding, human
culture (Stauffer and Hohnisch 2006); phase transitions in neural networks (Aldana
and Larralde 2004); communication in the World Wide Web (Kumar et al. 2000); and
systems biology (May and Lloyd 2001; Pastor-Satorras et al. 2015; Pastor-Satorras
and Vespignani 2001).

In this regard, the analogy between phase transitions occurring in living systems
(such as normal to diseased state transition) andphysical systems (such as condensation
ofwater) has beenwell-motivated (Davies et al. 2011;Holstein et al. 2013; Trefois et al.
2015; Smith 2010). The normal state to cancer state transition has been described as a
process similar to the first-order irreversible discontinuous phase transition occurring
in physical systems (Facciotti 2013; Jin et al. 2017; Liu et al. 2013; Mojtahedi et al.
2016; Torquato 2010). The central idea is that living systems are open systems in quasi-
steady state type equilibrium in continuous exchange with their environment wherein
cells behave like a network in heat bath under external perturbations (Pastor-Satorras
et al. 2015; Scheffer et al. 2012). They survive by exporting entropy to the environment
in exchange for structural order. When a control parameter increases entropy, it causes
collective flipping of states, which drives the system to an unstable critical state (or
diseased state), thereby leading to phase transitions in living systems. In an Isingmodel,
an analog for such a control parameter could be temperature or magnetic field, which,
after a particular critical value, may cause the system to undergo a phase transition
(discussed in detail in Sect. 2).

An integral part of such living systems is the biological networks that they are com-
posed of—for example, the gene regulatory networks, protein interaction networks,
among many others. A gene regulatory network represents a network of genes that can
activate or suppress each other’s expression levels owing to the interaction between the
genes or due to the influence of agents external to the cell. One of the widely accepted
method and a powerful tool for qualitative analysis of dynamics in gene networks is
the Boolean dynamic modeling method. In a Boolean model of a network, nodes may
be gene or protein and may either take on or off, indicating their expression levels,
concentration, or activity. The relationships between the states of nodes are updated by
logical functions or truth tables such as AND, OR, or NOT. Though this is a powerful
tool, it requires that all possible states of the system i.e. 2N (where N is the network
size) be explicitly calculated for the time evolution of the network.

Further, most complex step scales as O(N 2) in the update schemes, and to our
knowledge, the model is usually applied to networks whose sizes are of the order of
hundred nodes (Campbell and Albert 2014; Wang et al. 2012; Zhang et al. 2008).
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This is because building such state transition graphs gets computationally expensive
as network size increases due to the exponential dependence of the size of state space
on network size, thereby making it challenging to analyze large-scale interconnected
biological networks such as, for example, the complete human genome. As a conse-
quence of this, when Boolean models are used for constructing signaling pathways
on large and dense networks, the number of optimal solutions explodes, which neces-
sitates alternative techniques from statistical physics and graph theory (Alexppoulos
et al. 2010; Mitsos et al. 2009).

For large scale simulations, a simplermodel that considers gene network as a system
in continuous fluctuation that takes into account the current state of the nodes; and
does not depend very much on the microscopic details or specific genomic features
and is scalable to large sizes would be appropriate. In the method we propose, we
overcome the issue with the scale by changing the way we update the state of nodes
in response to external perturbations (such as temperature or magnetic field). Firstly,
we consider the gene regulatory network as a system that exists in a quasi-steady
state in thermal equilibrium with the environment, which aims to conserve energy as
a whole whenever it changes its configuration. We establish an initial configuration
for all nodes in the network, which may be all zeros or all ones or a combination
of zeros and ones based on prior information. Then we perform a random walk over
the configuration space. Specifically, this means that we randomly pick a node and
calculate the energy cost for the system if this node were to change its state. The
walker then hops from the initial configuration to this new configuration only if the
transition probability is energetically favorable for the whole system, else the system
retains its initial configuration ((Metropolis et al. 1953) summarized in “Appendix”).
Such “clever moves” are repeated multiple times to obtain averages to get the behavior
of the system to the external perturbation. The behavior of the system is characterized
by the mean of the summed states of the system, referred to as magnetization in the
context of the classical Ising model.

This method is an abstraction of the gene network and, therefore, only requires
the initial configuration of all nodes of the network and network connectivity. It can
calculate large scale response features, interpret gene expression of cells in large
repositories, and is scalable to network size. This is a qualitative method that can give
insights into overall organizing principles in the network and is capable of predicting
coherently working clusters in the network. However, it is important to note that,
in essence, the model we propose and the Boolean network model are not directly
comparable since the former is a thermodynamic model, and the latter is a logical
model. They are merely different ways to look at the same system. In the following
Sect. 2, we introduce the modified Ising model and motivate the biological analogs of
the Ising model by drawing parallels between physical and biological systems.

2 Model description and biological motivation

To describe phase transition in a system, we need to take into account interactions
between its parts (Goldenfeld 1992; Kardar 2007). Since systems exhibit universal
behavior near the critical point (Torabi and Davidsen 2019; Torabi and Rezaei 2016),
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a variety of statistical mechanical systems can be simulated by Ising-like models
provided that the symmetry properties of the system, the pattern of interaction, and
the dimensionality of the system is considered (Landau and Lifshitz 1980).

Given that the Ising model is simple and can predict cooperative behavior wherein
each element has two states where the energy of each element depends on its state and
that of its neighbors, it has found itself wide applications in addressing complexity in
biology in the last century. The central aspect of these studies is that usually, the control
parameters and physical properties of the Ising model are amenable to a biological
interpretation depending on the target biological system being modeled.

In protein science, for example, a relatively popular adaptation of the Ising model,
specifically the one-dimensional variant, is the homozipper, which is used as a simpli-
fied statistical thermodynamicmodel for protein folding.Thehomozipper is a sequence
of multiple repeat proteins where each element of a repeat protein is an identical and
independently folding unit that interacts with each other in a nearest-neighbor pair-
wise manner. The sequence can then be pulled apart like a zipper by mechanical force
modeled by temperature. The folding is then a process constrained by the number of
identical repeats, the energy of the repeated unit, and the interaction energy between
the folded units given by the Hamiltonian of the Ising model (Aksel and Barrick 2009;
Millership et al. 2016). This proposition of the Ising model to study order-disorder
transitions in protein science extended from one-dimensions to higher dimensions for
studying helix to coil transitions, beta-hairpin formation, hydrophobicity in protein
chains and downhill folding (Garcia-Mira et al. 2002; Kubelka et al. 2004; Kubelka
and Kubelka 2014; Lai et al. 2015; Naganathan and Munoz 2014; Munoz et al. 1997;
Irback et al. 1996; Irback and Sandelin 2000; Lobanov and Galzitskaya 2011; Zimm
and Bragg 1959).

In immunology, an Ising spin-model equivalent of the idiotypic-anti-idiotypic
immunological networks has been shown to exhibit self-organization i.e. formation of
large homogeneous domains at high temperatures. In such a system, each spin inter-
acts with its mirror-image spin and the neighbors of the image. In the Ising model of
such a system, spin up is synonymous to a proliferation of lymphocytes in an ocean
of virgin states while spin-down represents a challenge to the immune system. Thus
at low temperatures where there are few challenges and low noise, the system exhibits
order. While at high-temperature i.e. lots of diseases, a disordered system is formed
wherein the net magnetization synonymous to the activity level of lymphocytes is
close to zero (Sahimi and Stauffer 1993).

The applications of the Ising model to study genome organization is not new.
Ignoring the unique attributes of individual genes, (Baran and Ko 2006) has shown
that transcription polarity in a bacterial chromosome i.e. the preference of genes to
be coded in the leading strand of replication and their nature to form co-organized
clusters can be modeled by a one-dimensional Ising model. Like the magnetic forces
that align adjacent spinswhen the externalmagnetic field is applied, one could imagine
adhesive pseudo-forces such as nearest-neighbor interaction that cause transcription
orientation. The chromosome is then simply a series of spin-like indicator variables
like that of the 2N configurations that of the one-dimensional Ising lattice. Each gene
is oriented negative or positive, depending on the sign of the open reading frame from
which it is transcribed. Such models also allow themselves to be analytically tractable
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for the study of the effects of gene insertion and deletion. A one-dimensional long-
range Ising model has been shown to be a rather robust description of long-range
correlations in DNA sequences (Colliva et al. 2014).

Ising models have been used to analyze genetic data from affected sib-pair (ASP)
where a data point can be represented as ±1 corresponding to an allele being shared
or not by a sib-pair. The nearest neighbor interaction between adjacent dipoles is
analogous to the interaction between adjacent genetic markers on a chromosome.
The effect of an applied magnetic field i.e. a point field acting on a given particle
is analogous to the effect of a disease gene, causing an increase in allele sharing
at nearby locations. For example, in the ASP analysis, the coupling constant and
magnetic field are interpreted as the strength of genetic linkage between markers and
the effect of disease locus in distorting allele sharing in response to random genetic
and environmental effects (Majewski et al. 2001).

Furthermore, Ising-and Potts-based models have been proposed for studying phase
transitions occurring in more complicated topologies e.g., conformational restructur-
ing affected by temperature. Here a single DNA strand is modeled as a system if
interacting bases with short- and long-range interactions. Further, a set of such DNA
strands live on a Cayley tree, which is a tree-like graph where each node has an equal
number of branches. The edges of this graph may then take multiple spin values say,
±1, 0 where the former shows the existence of a Holliday junction, and zero means
vacant or no edge. The response of the system to temperature is then analyzed based on
a Translation Invariant Gibbs Measure (TIGM) (Rozikov 2017, 2018). To our knowl-
edge, these studies do not find any direct mapping between the Ising parameters such
as the temperature, magnetic field, or Boltzmann constant to genetic parameters. For
an excellent review of similarities between physical and biological systems, we point
the interested reader to (Davies et al. 2011).

More examples of applications of Ising models to biological systems include, but
is not limited to, a four-dimensional cellular automaton-like Ising model in which
cells transition between normal, proliferative, hypoxic and necrotic states has been
used to model the tumorigenesis process which involves a transition between these
pre-malignant and malignant cell states (Durrett 2013; Torquato 2010); estimating
information transfer between spins occurring in human connectome (Marinazzo et al.
2014); the transition of B-DNA to S-DNA (Ahsan et al. 1998); estimation of differ-
entially expressed genes in cancer patients (Xumeng et al. 2011); and approximation
of join expression profiles of genes using a small number of observations (Santhanam
et al. 2009).

However, to our knowledge, these models do not take into account two aspects
of modeling phase transitions in biological networks that we address in this study.
Firstly, the discovery of almost scale-free topologies of biological networks in the
last couple of decades (Albert and Barabasi 2002). Secondly, the asymmetric i.e. 0, 1
states of activity that has provided a reasonable approximation of the reality of states
in single cells (Cesar-Razquin et al. 2018; Wang et al. 2012). In this study, we address
these aspects by proposing a modified Ising model for scale-free networks with gene-
type spins. The modified Ising model is an arrangement of genes or proteins in a cell
where the interaction between the units could be short-range or long-range given by
the connectivity matrix of the network. Each unit can interact with their connections

123



Amodified Ising model of Barabási–Albert network with… 775

in a pairwise manner. These units may activate or suppress each other, given by the
binary state variable. A cell can survive in a healthy state if the majority of the units
are in an active state, and if it gains energy from the external environment. However,
external perturbations may slowly switch the cell to diseased states where the majority
of the units may be inactive. Cell survival is, therefore, dependent on conserving
energy and changing configurations only if it has a low cost. The Ising analogs for
these external variables—energy and entropy are magnetic field and temperature,
respectively. Broadly, these control parameters drive the phase transitions process
occurring in the living systems.

In this paper, we establish a numerical and theoretical framework on a simulated
scale-free network whose nodes exhibit binary states of activity. We show the condi-
tions underwhich this network of gene-type spins undergoes phase transition due to the
influence of temperature and magnetic field. This framework serves as a benchmark
for future studies that aim to test dynamics of the Ising model of biological networks
with gene-type spins from public databases. We refer to the model that comes out of
this as the modified Ising model; a comparison of this model to the classical Ising
model (Ising 1925) is summarized in Table 1.

Concretely, the Hamiltonian of the Ising model of such a network reads,

H = −1

2

N∑

i, j=1

Ji j si s j − h
N∑

i=1

si Ji j = J Ai j (1)

where J is the coupling constant specifying the strength of interactions; Ai j is the adja-
cency matrix; h indicates the constant external field; Ai j si s j is the coupling energy
arising due to the interaction between nodes and shows the effect of cooperative behav-
ior; h

∑
i si is the energy arising due to the effect of magnetic field. The Hamiltonian

so formed from these two terms is the total energy of the system. If J > 0, neigh-
boring spins prefer to take the same values (referred to as ferromagnetic exchange
interaction in a classical Ising model); when J < 0, neighboring spins prefer to take
opposite values (referred to as anti-ferromagnetic exchange interaction in a classical
Ising model). Spins, si , s j can take values ±1 in the classical Ising model; and 0 and
1 in the modified Ising model.

In contrast, in the modified Ising model, the system is a cell containing interacting
genes with a scale-free network topology. It is an open system receiving energy from
the environment. The first term in the Hamiltonian (Eq. 3), is the two-body interaction
term exhibiting pair-wise interaction between genes. Spin values can take 0 or 1
representing the state of gene sitting on a node in the Barabási–Albert network. If the
gene is active, it takes value 1, otherwise their contribution in interactingHamiltonian is
zero. Therefore, only if both genes in a pair-wise connection are active, they contribute
to this term. Considering that spin values in the biological model are dimensionless
Boolean values, this would be the interacting energy between genes at nodes i and
j . The second term in the Hamiltonian is a one-body interaction term exhibiting the
interaction of genes with the environment. The critical point in living systems, as open
systems, is their interactions with the environment. Therefore, h in the modified Ising
model represent this interaction and is the interaction energy between genes and the
environment.
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The higher h it is, the higher the interaction of the cell with the environment.
This parameter (which corresponds to the magnetic field in the ferromagnetic Ising
model) tries to retain active genes based on its interactions outside the cell.Minimizing
energy in Eq. 3 corresponds to having active genes or healthy state as a result of those
mentioned above pair-wise and environmental interactions. The temperature, on the
other hand, induces fluctuation that results in randomness in the state of genes. The
order parameter is then defined as the number of active genes in the cell,

M = 1

N

n∑

i=1

si (2)

In the next sections, we will see how this system experiences a first-order phase
transition due to the change in the parameter h whose critical value influence on the
properties of the connectivity structure of the genes in the cell. Though the modified
Ising model is proposed here with an eye on gene and protein interaction networks,
the observations made here, in principle, hold for other similar real-world networks as
well. Preliminary results of this work have been presented in the form of a poster and
talk (Krishnan et al. 2018, 2019; Krishnan 2019). The paper is organized as follows:
Sect. 2 provides a short overview of the Ising model and terminologies used in the
subsequent sections of the paper along with biological motivation; in Sect. 3 we show
the conditions under which the modified Ising model can undergo phase transitions
for different initial configurations of the system (for positive and negative coupling
constants) using Monte Carlo simulations; Sect. 4 presents the mean-field solutions
and shows a mapping between classical Ising model of scale-free networks and the
modified Ising model.

3 Numerical simulations

As motivated in Sect. 1 the focus of this paper is to study the system in Eq. 3 for
modified Ising spins of the Barabási–Albert network. Such a network is constructed
based on two main properties of a real-world network - linear growth and preferential
attachment (Albert and Barabasi 2002). The network is initialized with m0 nodes that
are not connected. Subsequently, new nodes with m edges are added by an iterative
growth process to the existingm0 nodes. The resultant network has a power-law degree
distribution and is characterized by a degree exponent, 2 < γ < 3 that resembles real-
world biological networks.

We now put modified Ising spins on nodes of a Barabási–Albert network of size,
N = 5 × 103 and preferentially attached links, m = 5. We choose this network size
since it lies in a similar order of magnitude (≈ 103), such as that of gene regulatory
network of standardized datasets such as S. cerevisiae or E. coli (Balaji et al. 2006;
Gama-Castro et al. 2008). The number of links attached to grow the Barabási–Albert
network is a free parameter and cannot, to our knowledge, be directly compared to
real-world networks. Nevertheless we show the effect of the Barabási–Albert model
parameters on the modified Ising model in the subsequent sections (cf. Fig. 8).
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Fig. 1 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network at magnetic
field, h = 0. Figure shows evolution of order parameter, M as a function of Temperature, T . Top panel:
modified Ising model of Barabási–Albert network with positive coupling constant, J (indicated by black
dots). Bottom panel: modified Ising model of Barabási–Albert network with negative coupling constant,
−J (indicated by black stars). Simulation parameters: network size, N = 5 × 103, preferentially-attached
links to construct Barabási–Albert network m = 5, magnitude of coupling constant, |J | = 1

Then with the standard heat bath Monte Carlo algorithm, we do a spin search for
thermal equilibrium at temperature T (cf. algorithm in “Appendix”). The number of
equilibration and sampling steps is proportional to the size of the network and has
been chosen such that the system has had sufficient time to evolve from its initial
configuration and reach a steady state. In other words, the system has visited different
states in the phase space and can now generate states that are consistent with the
parameters controlling the system. This can be verified by plotting properties of the
system, such as magnetization, until it plateaus at a fixed value. We equilibrate the
system for 2 × 104 MC steps and after this temporary period, we simulate for 3 ×
104 MC steps. This allows for an average 10 spin flips per spin. We then sample at
the end of every step and perform simulations for both ferromagnetically and anti-
ferromagnetically coupled networks, under the influence and absence of the magnetic
field.

Under no influence of themagnetic field and ferromagnetic exchange interaction, all
nodes in the network start at an active state where the order parameter, M = 1. At T <

1, the system favors order as seen in the top panel of Fig. 1. As the thermal fluctuations
in the system increases, the disorder in the system increases. The order parameter
reaches 1

2 asymptotically as T → ∞. Similarly, when the system is initialized with an
anti-ferromagnetic exchange interaction, the order parameter asymptotically reaches
1
2 as thermal fluctuations increases (as can be seen in the bottom panel of Fig. 1 at
T < 1).

Under the influence ofmagnetic field, the systembehavior changes as seen in Figs. 2
and 3. Consider the ferromagnetically coupled modified Ising model of Barabási–
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Fig. 2 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network in the presence
of a positive magnetic field, h > 0 of different magnitudes. Figure shows evolution of order parameter, M
as a function of Temperature, T for n = 20 realizations of the Barabási–Albert network. (a)modified Ising
model of Barabási–Albert network with positive coupling constant, J (indicated by dots). (b)modified Ising
model of Barabási–Albert network with negative coupling constant, −J (indicated by stars). Simulation
parameters: network size, N = 5×103, preferentially-attached links to construct Barabási–Albert network,
m = 5 and magnitude of coupling constant, |J | = 1

Albert network influenced by positive magnetic field (Fig. 2a). The field term in the
Hamiltonian is effectively a constant holding the network above the mean of two
states at 1

2 . As the magnitude of the magnetic field increases, the network takes longer
to reach the asymptotic state. For an anti-ferromagnetically coupled modified Ising
model of Barabási–Albert network, it can be observed for that for small magnitudes
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Fig. 3 Monte Carlo simulations of the modified Ising model of a Barabási–Albert network in the presence
of a negative magnetic field, h < 0 of different magnitudes. Figure shows evolution of order parameter, M
as a function of Temperature, T for n = 20 realizations of the Barabási–Albert network. (a)modified Ising
model of Barabási–Albert network with positive coupling constant, J (indicated by dots). (b)modified Ising
model of Barabási–Albert network with negative coupling constant, −J (indicated by stars). Simulation
parameters: network size, N = 5×103, preferentially-attached links to construct Barabási–Albert network
m = 5, magnitude of coupling constant, |J | = 1

of the positive magnetic field (h << 1), the asymptotic property of order parameter
vanishes as in the case of a ferromagnetically-coupled system [Fig. 2b].

However, for higher magnitudes of the magnetic field, it can be seen that the field
term can trigger activity in the network i.e. switch from M = 0 to M = 1 at 0 < T <

1 and subsequently follow the dynamics of a ferromagnetically-coupled system. A
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Fig. 4 The modified Ising model of a Barabási–Albert network exhibits phase transition under the influence
of magnetic field at a fixed Temperature, T = 0.1 for n = 20 realizations of the Barabási–Albert network.
Black dots indicate the order parameter trend for a modified Ising model of Barabási–Albert network with
positive coupling constant, J = 1. Black stars indicate the order parameter trend for a modified Ising model
of Barabási–Albert network with negative coupling constant, J = −1

negativemagnetic field, on the other hand, inverts the dynamics of a ferromagnetically-
coupled modified Ising model instead. As can be seen in Fig. 3a, at −2.5 < h < 0
there is an abrupt drop in the order parameter to 0 and for lower values the network
remains inactive (as can be verified from our observations in Figs. 2 and 3). An anti-
ferromagnetically coupled network has order parameterM = 0 at h = 0. Lower values
of themagnetic field keep the network in the inactive state. For a positivemagnetic field,
the network undergoes a relatively smooth (almost abrupt) phase transition to the active
state. Owing to this, unlike in a ferromagnetically coupled network, it can be observed
that intermediate values of order parameter and M → 1 as h increases, confirming
our observations in Figs. 2 and 3. Thus it can be inferred that the modified Ising model
of a Barabási–Albert network undergoes phase transition due to the magnetic field as
shown in Fig. 4.

It can be observed that the transition has a discontinuity in order parameter, and
hence this may be a first-order phase transition. Hysteresis loops characterize systems
that undergo a first-order phase transition. It implies that the network may show more
than one value of order parameter for a given magnetic field, h. The hysteresis loop
shows the dependence of the state of the systemon its history, and it is this phenomenon
that forms memory in a hard disk drive.

The procedure to investigate the existence of hysteresis has been well-established,
particularly in the context of magnetic materials. We apply the same method for the
modified Ising model of a Barabási–Albert network summarized shortly here. Starting
with a high negative magnetic field, h, and a stable configuration of the system, we
increase themagnitude of themagnetic field slowly. For some value of h, the local field
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Fig. 5 The modified Ising model of a Barabási–Albert network exhibits hysteresis: ferromagnetically cou-
pled, J = 2 (indicated by dots). Simulation parameters: N = 5 × 103 and preferentially attached links,
m = 5. The gray curve indicates order parameter as the system is driven forward from h0 = 10 to hn = −10
and the black curve as the system is driven backward from h0 = −10 to hn = 10

for a node flips. This causes changes in the effective field of the nodes connected to this
node, thereby causing them to flip. Once the flipping in the system has thermalized,
the order parameter of the system is measured. Subsequently, the magnetic field is
increased slightly, and the process repeated until the order parameter attains a stable
state. This way, one can obtain one half of the hysteresis loop (for h from −∞ to
∞). The other half of the hysteresis loop is obtained when the magnetic field, h is
decreased (for h from ∞ to −∞).

A typical hysteresis loop takes the form of a sigmoid; however, in the case of a
ferromagnetically coupled modified Ising model the loop is almost a rectangle, as
can be seen in Fig. 5a. We will analyze these observations and discuss the asymptotic
behavior in detail using analytical approaches in Sect. 4.

4 Analytical methods

4.1 Mean field approximation

One of the most important analytical tool to study disordered systems is represented
by mean-field theories. Mean field theory is frequently used due to its conceptual
simplicity, as a useful tool, especially when there is no exact solution for the problem.
This approximation is used to reduce an interacting problem to a non-interacting one
which is easier to solve.
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Theorem 1 The critical magnetic field of the modified Ising model of a Barabási–
Albert network scales linearly with coupling constant and preferentially attached
links used to construct the network.

Proof Let us consider the modified Ising model of a Barabási–Albert network treated
numerically in Sect. 3. Rewriting the Hamiltonian of the ferromagnetically-coupled
system with gene-type spins 0, 1,

H0,1 = −1

2

N∑

i, j=1

Ji j si s j − h
N∑

i=1

si si = 0, 1 J > 0 (3)

where Ji j = J Ai j . Since the adjacency matrix Ai j is symmetric, the factor 1
2 is

included so as not to count any pairs twice. We can write the interactions between
neighboring spins in terms of their deviations from the average spin M as,

si s j = [(si − M) + M][(s j − M) + M]
= (si − M)(s j − M) + M(s j − M) + M(si − M) + M2 (4)

where M = 1
N

∑N
i=1 si is the order parameter. Assuming that the fluctuations around

the mean spin is small, the Hamiltonian can be rewritten as,

HMF = −1

2

N∑

i, j=1

Ji j [M(s j − M) + M(si − M) + M2] − h
N∑

i=1

si

= −
⎡

⎣ Jm

2

N∑

i=1

N∑

j=1

Ai j si + JM

2

N∑

i=1

N∑

j=1

Ai j s j − JM2

2

N∑

i, j=1

Ai j

⎤

⎦ − h
N∑

i=1

si

(5)

Consider the second term in the right hand side of Eq. 5. This can be written as
(i → j):

JM

2

N∑

i=1

N∑

j=1

A ji si = JM

2

N∑

i=1

N∑

j=1

Ai j s j (6)

since Ai j = A ji , A is symmetric. Therefore from Eqs. 5 and 6,

HMF = JM2

2

N∑

i, j

Ai j − JM
N∑

i, j

Ai j si − h
N∑

i=1

si (7)
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This is the mean-field Hamiltonian for a chosen realization of the network. So the
ensemble average of the Hamiltonian of the system is,

〈HMF 〉 = JM2

2

N∑

i, j

〈Ai j 〉 − JM
N∑

i, j

〈Ai j 〉si − h
N∑

i=1

si (8)

For a Barabási–Albert network,

〈Ai j 〉 = pi j = 1

2mN
kik j (9)

where ki is the number of links of the i th node of the network Bianconi (2002) (cf.
“Appendix”). From Eqs. 8 and 9, using the relation

∑N
i=1 ki = ∑N

j=1 ≈ 2mN ,

〈HMF 〉 = JM2

2

N∑

i, j=1

1

2mN
kik j − Jm

N∑

i, j=1

1

2mN
kik j si − h

N∑

i=1

si

= JM2

4mN

N∑

i=1

ki

N∑

j=1

k j − JM

2mN

N∑

j=1

k j

N∑

i=1

ki si − h
N∑

i=1

si

= JM2

4mN
× 2mN × 2mN − JM

N∑

i=1

ki si − h
N∑

i=1

si

= JM2mN − (h + Jmki )︸ ︷︷ ︸
heffi

si

〈HMF 〉 = JM2mN −
N∑

i=1

heffi si , heffi = (h + Jmki )

(10)

Hence the modified Ising model of a Barabási–Albert network reduces to a system
of non-interacting spins in an effective local field, heffi = (h + Jmki ). The partition
function can be evaluated as,

Z =
∑

config

e−β〈HMF 〉

=
∑

si=0,1

. . .
∑

sN=0,1

e
−β

[
JM2mN−∑N

i=1 h
eff
i si

]

= e−β JM2mN
∏

i

( ∑

0,1

eβheffi si
)

(11)

Z = e−β JM2mN
∏

i

(
1 + eβheffi

)
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The mean spin, M can be calculated from the partition function using the following
relation:

M = 1

N

N∑

i=1

si

= 1

Nβ

∂ ln Z

∂h

(12)

From this, evaluating ln Z ,

ln Z = −β JM2mN +
∑

i

ln
[
1 + eβ(h+JMki )

]
(13)

Therefore from Eqs. 12 and 13,

M = 1

N

N∑

i=1

eβ(h+JMki )

1 + eβ(h+JMki )
(14)

��
Therefore the central mean-field equation for ferromagnetically coupled Barabási–
Albert network with asymmetric spins takes the implicit form,

M = 1

N

N∑

i=1

1

1 + e−β(h+JMki )
(15)

Similarly for anti-ferromagnetically coupled Barabási–Albert network (J → −J ) the
central mean-field equation is,

M = 1

N

N∑

i=1

1

1 + e−β(h−JMki )
(16)

Note that the order parameter depends on the coupling constant, J and node degree, ki .
Let us first study the behavior of the system in the absence ofmagnetic field. Themean-
field equation for ferromagnetically coupled Barabási–Albert network with gene-type
spins and no external field is,

M = 1

N

N∑

i=1

1

1 + e±β JMki
(17)

where ± stands for ferromagnetically and anti-ferromagnetically coupling respec-
tively. From Eq. 17 we can investigate the asymptotic behavior for ferromagnetically
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and anti-ferromagnetically coupled modified Ising model of a network. For a fer-
romagnetically coupled Barabási–Albert network when T → ∞, β JMki → 0, so
exp(−β JMki ) → 1 	⇒ M → 1

2 . As T → 0, β JMki → ∞, so exp(−β JMki ) →
0 	⇒ M → 1. These confirm the observations in the top panel in Fig. 1. Simi-
larly for an anti-ferromagnetically coupled modified Ising model of a Barabási–Albert
network we can verify the limit cases: as T → ∞, β JMki → 0, exp(β JMki ) →
1 	⇒ M → 1

2 . On the other hand, as T → 0, exp(β JMki ) → ∞ 	⇒ M → 0.
These validate the observations in the bottom panel of Fig. 1. In order to compare the
results of mean-field approximation with Monte Carlo simulations, we have plotted
the results using these two different approaches in Fig. 6 which also shows a slight
discrepancy between the numerical simulations and the mean-field ansatz. This arises
because we neglect the spin product term in the mean-field approximation with the
assumption that the fluctuations around the mean spin is small (Eq. 4).

For T >> 1, using Taylor expansion M can be approximated as, M ≈ 1
2±β Jm . We

can conclude that, for a fixed large T in ferromagnetically coupled systems, those with
larger J and M have larger M and vice versa. This investigation predicts the behavior
of the system presented in Fig. 7 and validates Monte Carlo simulations. The situation
is reversed for an anti-ferromagnetically coupled system due to the presence of plus
sign in the denominator. Eqs. 15 and 16 indicates that at T >> 1,

M ≈ 1

2

[
2 + βh

2 ± β Jm

]
(18)

However, in both cases, the asymptotic behavior of the system is preserved, for
T → ∞ (or β → 0), M → 1

2 (cf. Eq. 18). In the case where T not tending to
∞, the value of M depends on the magnitude and direction of magnetic field, h. This
implies that for an anti-ferromagnetically coupled system, when h > Jm thenm > 1

2 ;
however, for h < Jm we have m > 1

2 . Similar conclusions can be made when h is
negative in a ferromagnetically coupled system. Therefore, the behavior of the system
changes at |hc| = Jm.

Getting back to our biological model, with J > 0, when the majority of the genes
are active above the critical h(hc), this represents a healthy state. On the other hand,
when themajority of cells are inactive below the critical h(hc), this represents a disease
state. This different behaviour is also illustrated in Fig. 2.

In other words, consider the limit of small T where we can neglect fluctuations.
In this case, our biological system, have an order parameter 1 for hc > JM and 0
for hc < JM . Therefore, above critical parameter hc, all the genes are active while
they suddenly become inactive below hc as a result of a first-order phase transition.
This critical external energy interaction depends on the strength of internal interaction
(coupling constant J in gene-gene interactions) as well as the parameter m of the
Barabási–Albert network.

This approximates the critical magnetic field, hc ≈ 5 for the choice of simulation
parameters, which is very close to our observations from numerical simulations as can
be verified in Figs. 2 and 3. Although the analytical results predict that the network
size does not influence phase transition in the modified Ising model of the Barabási–
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(a)

(b)

Fig. 6 Mean-field theory validates observations from numerical simulations for a modified Ising model of
a Barabási–Albert network in the absence of magnetic field. Figure shows evolution of order parameter, M
as a function of Temperature, T : (a) for a modified Ising model of Barabási–Albert network with positive
coupling constant, J . Black dots indicate Monte Carlo sampling points for n = 20 realizations of the
Barabási–Albert network. Black curve indicates the trend predicted by the central mean-field equation.
(b) for a modified Ising model of Barabási–Albert network with negative coupling constant, −J . Black
stars indicate Monte Carlo sampling points for n = 20 realizations of the Barabási–Albert network. Black
curve indicates the trend predicted by the central mean-field equation. Simulation parameters: network size,
N = 5 × 103, preferentially-attached links to construct Barabási–Albert network m = 5, magnitude of
coupling constant, |J | = 1
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(a)

(b)

Fig. 7 Monte Carlo simulations of modified Isingmodel of a Barabási–Albert network of size, N = 5×103

at h = 0 and positive coupling constant, J for n = 20 realizations of the Barabási–Albert network. (a) for
coupling constants, J = 1 and J = 5 with m = 3. (b) for different choice of preferentially attached links,
m = 3 and m = 7 with J = 1. Simulation parameters: network size, N = 5× 103, preferentially-attached
links to construct Barabási–Albert network m = 5, magnitude of coupling constant, |J | = 1

Albert network, the numerical results predict a weak dependence of hc on network
size (Fig. 8c), which appears in systems with large network sizes. The dependence on
parameters J and m is over-estimated by the mean-field calculations as can be seen
in Fig. 7. In the next Sect. 4.1 we will derive the expression for the critical magnetic
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(a) (b)

(c)

Fig. 8 Dependence of critical magnetic field, hc on network parameters for a modified Ising model of a
Barabási–Albert network of size N = 5 × 103 with positive coupling constant, J for n = 20 realizations
of the Barabási–Albert network. (a) Coupling constant, J with fixed m = 5. (b) Number of preferentially
attached links to construct Barabási–Albert network,m with fixed J = 1. (c) on network size, N with other
simulation parameters fixed to J = 1 and m = 5. Blue dots indicate results from Monte Carlo simulations
and black line indicates analytical results

field by mapping the modified Ising spin system to the classical spin system on a
Barabási–Albert network.

Theorem 2 There exists a transformation between a modified Ising model and the
classical Ising model.

Proof The numerical and analytical observations presented in Sects. 3 and 4 can be
validated bymapping the Hamiltonian of the modified Isingmodel of Barabási–Albert
network H0,1 to the well-established classical Ising spin system on Barabási–Albert
network H−1,1. Rewriting the modified Ising model Eq. 3,

H0,1 = −1

2

N∑

i, j

Ji j si s j − h
N∑

i=1

si si = 0, 1 (19)
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This can be mapped to the Hamiltonian of the classical spin system by introducing
new spin variables as,

s′
i = 2

(
si − 1

2

)
(20)

For si = 0 → s′
i = −1 and for si = 1 → s′

i = 1. Substituting the spin variables in
the Hamiltonian Eq. 19 we make the H0,1 → H−1,1 transformation,

H0,1 = −1

2

N∑

i, j

Ji j si s j − h
N∑

i=1

si si = 0, 1

H−1,1 = −1

2
Ji j

( s′
i + 1

2

)( s′
j + 1

2

)
− h

N∑

i=1

( s′
i + 1

2

)
s′ = −1, 1

= −1

2

N∑

i, j

Ji j
4
s′
i s

′
j − 1

2

N∑

i, j

Ji j
4

(s′
i + s′

j ) − 1

2

N∑

i, j

Ji j
4

− h

2

N∑

i=1

s′
i − h

2

(21)

Since Ji j = J ji ,
∑N

i, j (s
′
i + s′

j ) = 2
∑N

i, j s
′
i , eq. 21 can be re-written as,

H−1,1 = −1

2

N∑

i, j

Ji j
4
s′
i s

′
j −

N∑

i, j

Ji j
2
si −

N∑

i, j

Ji j
8

− h

2

N∑

i=1

s′
i − h

2

= −1

2

N∑

i, j

Ji j
4︸︷︷︸

new coupling,J′ij

s′
i s

′
j −

N∑

i=1

[h
2

+
N∑

j=1

Ji j
2

]

︸ ︷︷ ︸
new local magnetic field, h′

s′
i −

[ N∑

i, j

Ji j
8

+ h

2

]

︸ ︷︷ ︸
constant,E0

(22)

So the problem of an Ising model with gene-type spin system is mapped on to a
problem of Ising model with classical spin system as,

H−1,1 = E0 − 1

2

N∑

i, j

J ′
i j s

′
i s

′
j −

N∑

i=1

h′
i s

′
i (23)

where constant E0 = −∑N
i, j

Ji j
8 − h

2 , new coupling J ′
i j = Ji j

4 and new local magnetic

field, h′ = h
2 + ∑N

j=1
Ji j
2 . The fact that even in the absence of magnetic field there is

an intrinsic local magnetic field, a
∑N

i, j
Ji j
2 in the system reflects the asymmetricity
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of the spins present in the problem. In principle, any physical quantity of the system
of modified Ising model of a interaction can therefore be derived from the system of
Ising spins,

Z0,1(Ji j , h) = eβE0 Z−1,1(J
′
i j , h

′
i ) (24)

However we are interested in the critical magnetic field as derived in Sect. 4.1. Note
that, the first term of the right hand of Eq. 23 is a constant and by redefinition of the
zero of energy we have,

H = −1

2

N∑

i, j

J ′
i j s

′
i s

′
j −

N∑

i=1

h′
i s

′
i (25)

This is the Hamiltonian for a chosen realization of the network. So the ensemble
average of the system Hamiltonian is,

〈HMF 〉 = −1

2

N∑

i, j

〈J ′
i j 〉s′

i s
′
j −

N∑

i=1

〈h′
i 〉s′

i (26)

where,

〈h′
i 〉 = h

2
+ −J

2

N∑

j=1

Ai j

= h

2
− J

2

N∑

j=1

ki k j
2mN

〈h′
i 〉 = h

2
− J

2
ki

(27)

��
Remark 1 From the above transformation to the classical Ising model, the average
critical field for the modified Ising model can be verified.

The average critical field for the system hc can be derived by,

hc
2

− J

2
k̄ = 0 (28)

where ki is approximated by the average number of links, k̄. Note that k̄ =
1
N

∑N
i=1 ki ≈ 1

N × 2mN = 2m, thus,

hc ≈ Jm (29)
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This validates our results presented in Sect. 4.1. Eq. 29 predicts that the critical mag-
netic field depends linearly on J and m. The numerical simulations confirms the
analytical predictions on critical magnetic field (Fig. 8a and b).

5 Conclusions

In living systems, collective flipping of coherently expressed genes is associated with
disease progression. This flipping causes the step by a step-change in the phenotype
of the cell, causing it to transition from normal phase to diseased phase. Similarly, in
magnetic systems, collective flipping of spins is associated with the loss of sponta-
neous magnetization. Therefore it is intuitive to consider gene networks as two-state
thermodynamic systems in a heat bath obeying Boltzmann statistics.

On the one hand, in the statistical physics community, there have been extensive
studies on phase transitions occurring in Ising models of scale-free networks with
classical spins (discussed in Sect. 1). These methods are analytically tractable and
applicable to very large sizes. On the other hand, in the systems biology community, a
wealth of literature exists that motivates the modeling of networks with binary states
for small to medium sizes (discussed in Sect. 2). This work on modified Ising model
lies at the intersection of statistical physics and network biology and is presented with
an intention to bring the two schools of thought together.

In this regard, we have proposed here an adaptation of a well-established model in
statistical mechanics that could be used to study phase transitions in living systems.
This model allows simplification of interactions in complex systems; can be stud-
ied analytically; and renders itself adaptable to the representation of complex genetic
systems, thereby allowing testing of the diverse hypothesis that may cause complex
disorders. The modified Ising model is an adaptation of the classical Ising model con-
structed for networks with a scale-free-like structure and whose activity is described
by a binary random variable. This is a general statistical method to deal with poorly
understood non-linear large scale models arising in the context of biological networks.

We have presented a basic numerical and theoretical framework to investigate
phase transitions using modified Ising model where the control parameters energy
and entropy are modeled by the magnetic field and temperature, respectively. Tak-
ing the Barabási–Albert model as the toy model, we have shown that such a system
undergoes phase transition owing to the influence of the critical magnetic field. This is
synonymous to a simple Mendelian disease where there is a strong field near the dis-
eased gene. In complex diseases, the influence of the magnetic field is spread among
different genes with different strengths.

The critical magnetic field of the system scales linearly as a function of the number
of preferentially attached links and coupling constant. Further, we have shown that
the modified Ising model can be mapped to a classical Ising model of a Barabási–
Albert network. The simulation setup presented herein can be directly used for any
biological network connectivity dataset and is also applicable to other networks that
exhibit similar states of activity. The model can be adapted for directed or weighted
networks and could also take a continuum of activity states such as in a Potts model.
Additional interaction terms may be added to the Hamiltonian to model epistatic
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interactions between genes. Further, the modified Ising model is capable of predicting
the existence of structurally or functionally organized clusters in the network.

We have shown that a purely qualitative model such as the modified Ising model
is capable of predicting phase transitions given only the connectivity without logical
rules or kinetic parameter data. This indicates that dynamics on these networks may
depend more on structure than on the specific details of the processes. The modified
Ising model is capable of scaling to networks of sizes up to tens of thousands and can
potentially predict similarities between apparently unrelated complex systems.
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Appendix

A. Metropolis algorithm

• A random node in the network is picked.
• A trial flip of its spin, is performed and energy cost to the system to change its
configuration is then calculated.

• If energy difference is less than zero, it leads to a lower energy state, and hence
the network is updated to the new configuration.

• Else, if energy difference is greater than zero, a random number is generated.
• The system is allowed to move to a higher energy state only if the random number
is greater than the energy difference.

B. Approximation of ensemble average of adjacencymatrix by network
parameters

Here we summarize the approach from Bianconi (2002) to reduce mean adjacency
matrix over many realization of Barabási–Albert network to network parameters. Let
us consider a Barabási–Albert network of N nodes. Starting from a small number of
nodes n0 and linksm0 (where n0,m0 << N ), the network is constructed iteratively by
the constant addition of nodes with m links. The new links are preferentially attached
to well connected nodes in such a way that at time t j , the probability pi j that the new
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node j is linked to node i with connectivity ki (t j ) is given by,

pi j = m
ki (t j )

∑ j
α=1 kα

(30)

is proportional to the number of links ki at time t j , and number of preferentially
attached links m. The dynamic solution of connectivity at time ti is,

ki = m

√
t

ti
(31)

From Eqs. 30 and 31 we have,

pi j = m
m

√
t
ti

∑ j
α=1 kα(t)

(32)

If N is large we can approximate the total number of edges in the network at time
t j , given by the sum

∑ j
α=1 kα as,

j∑

α=1

kα = m0 + 2mt j ≈ 2mt j (33)

becausem0 << N . The factor 2 comes from the fact that as we create a link which
connects two nodes, the number of links of each of them increases by 1. Substituting
Eq. 33 in 32,

pi j =
m2

√
t j
t1

2mt j

= m

2

1√
ti t j

(34)

The adjacency elements of the network Ai j are equal to 1 if there is a link between
node i and j and 0 otherwise. Consequently the mean over many copies of a Barabási–
Albert network

〈Ai j 〉 = pi j = m

2

1√
ti t j

(35)
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From Eq. 31 we can re-write for t = N steps,

ki (t) = m

√
t

ti

ki (N ) = m

√
N

ti

ti = m2N

k2i

(36)

and similarly,

t j = m2N

k2j
(37)

From Eqs. 36 and 37,

〈Ai j 〉 = m

2

1
√

m2N
k2i

√
m2N
k2j

= 1

2mN
kik j

(38)

The average of the adjacency matrix over many realizations can be approximated
by the network parameters as,

〈Ai j 〉 = 1

2mN
kik j (39)
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