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Abstract: A growing portfolio of research has been reported on the use of machine learning-based
architectures and models in the domain of healthcare. The development of data-driven applications
and services for the diagnosis and classification of key illness conditions is challenging owing to
issues of low volume, low-quality contextual data for the training, and validation of algorithms,
which, in turn, compromises the accuracy of the resultant models. Here, a fusion machine learning
approach is presented reporting an improvement in the accuracy of the identification of diabetes and
the prediction of the onset of critical events for patients with diabetes (PwD). Globally, the cost of
treating diabetes, a prevalent chronic illness condition characterized by high levels of sugar in the
bloodstream over long periods, is placing severe demands on health providers and the proposed
solution has the potential to support an increase in the rates of survival of PwD through informing
on the optimum treatment on an individual patient basis. At the core of the proposed architecture
is a fusion of machine learning classifiers (Support Vector Machine and Artificial Neural Network).
Results indicate a classification accuracy of 94.67%, exceeding the performance of reported machine
learning models for diabetes by ~1.8% over the best reported to date.

Keywords: diabetes prediction; machine learning; support vector machines; artificial neural net-
works; data fusion; healthcare applications; intelligent system

1. Introduction

Diabetes (DB) is a damaging health condition placing a significant treatment cost
burden on health service providers throughout the world. Beta cells in the pancreas
produce an insufficient amount of insulin with the resultant deficiency causing high levels
of glucose within the blood, classified as Type-1 DB (hyper-glycemia); in Type-2, the body
is unable to utilize the available insulin [1]. Moreover, DB gives rise to other clinical
complications such as neurological damage, retinal degradation, and kidney and heart
disease [2].

The treatment of DB is also an escalating challenge as more than 422 million adults
suffered from the condition in 2014 compared to 108 million in 1980; the ratio of people-with-
diabetes (PwD) referenced to the total adult population increased from 4.7% to 8.5% over the
same period. Furthermore, 1.6 million diabetic patients died in 2015, and in 2012, 2.2 million
further deaths were attributed to high blood glucose levels [3]. Projections indicate that DB
will be the 7th major illness condition causing deaths in the global population by 2030 [4].
The timely identification and the early detection of the onset of diabetes are, therefore, of
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potential value in the goal of optimizing treatment pathways, providing a better quality
of life for PwD, and reducing the number of deaths owing to the condition. Moreover, a
significant number of PwD remain unaware of the condition until a serious complication
event [4]; delays in the diagnosis of Type-2 DB during the early stages of onset increases
the risk of serious complications [1,4].

A range of Machine Learning (ML) methods such as Logistic Adaptive Network-
based Fuzzy Inference System (LANFIS) [5], Q-learning Fuzzy ARTMAP (FAM), Genetic
Algorithm (GA) (QFAM-GA) [6], Hybrid Prediction Model (HPM) [7], Artificial Neural
Network (ANN), and Bayesian Networks (BN) (ANN-BN) [8] have been used to develop
algorithms for the classification of DB [9,10]. However, reported machine learning-based
solutions have been limited in the accuracy of prediction, owing primarily to the lack of
the required scope and volume of data for the training and testing of models. Intuitively,
algorithms generated from large datasets yield more accurate performance as compared to
models trained with a small number of instances of the target output. Poorly performing
machine learning algorithms increase the barrier to adoption in operational settings, and
thus, there is a clear need to enhance the prediction accuracy given the limited availability
and accessibility of the required scope of data [11–16].

Here, core elements of a decision support system founded on the fusion of machine
learning algorithms are reported for the identification of diabetes. The proposed archi-
tecture comprises multiple layers segmented as Data Sources, Data Fusion, and Fusion
of Machine Learning techniques [17]. The Data Source layer receives and stores multiple
streams of data from different sources such as Electronic Health Records (EHR) in a format
suitable as an input to the development of the machine learning algorithms. Subsequently,
the Data Fusion layer fuses data from the Data Source layer, storing the outputs on a cen-
tralized database. K fold validation is then applied for the selection of hyper-parameters,
inputs to the training of the classification model. In the development reported here, Support
Vector Machine (SVM) and Artificial Neural Network (ANN) machine learning classifiers
have been fused using the posteriori probability method for the classification of diabetes.

A range of performance metrics, viz. Accuracy, Specificity, Sensitivity, and Precision,
are used in the evaluation of the performance of the proposed approach. Diabetic datasets
reported in [18,19] are used for the training and testing of the models.

The contributions of the reported research can be summarized as:

• A fusion-based machine learning architecture for the prediction of diabetes has been
proposed.

• Two machine learning classifiers Support Vector Machine (SVM) and Artificial Neural
Network (ANN) within the architecture have been evaluated.

The remainder of the paper is organized as follows. Section 2 summarizes related
research, Section 3 describes the methodology of the proposed architecture, the theoret-
ical and mathematical background of the selected machine learning classifiers, and the
approach to their fusion are also presented in this section. The details of the evaluation of
the performance of the approach are mapped and discussed in Section 4, and conclusions
are drawn in Section 5.

2. Related Research

Artificial Neural Networks (ANN) and General Regression Neural Networks (GRNN)
have been used to create algorithms for the diagnosis of diabetes [20]; the GRNN ap-
proach achieved an ~80% prediction accuracy, an improvement compared to Radial Basis
Function (RBF) and Multi-Layer Perceptron (MLP) based techniques. Temurtas et al. [21]
reported on a Multilayer Neural Network (MNN) implementation deploying a probabilis-
tic Neural Network and Levenberg–Marquardt Algorithm (LMA). A two-stage approach
proposed in [22] achieved a ~89.5% prediction accuracy; in Stage-I, a Principal Component
Analysis (PCA) algorithm is applied to reduce the dimension of input features and in
Stage-II, an Adaptive Neuro-Fuzzy Inference System generates the model. Further, an
Adaptive Network-based Fuzzy System (ANFS) and Levenberg–Marquardt Algorithm
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(LMA)-based solution achieved an 82.3% prediction accuracy [23]. Rohollah et al. report
on a Logistic Adaptive Network-based fuzzy system with 88% predictive accuracy [5] and
Kemal et al. [24] developed a Least Square Support Vector Machine (LS-SVM) and General-
ization Discriminant Analysis (GDA)-based cascade learning system. A k-means clustering
approach reported by Bankat et al. [7] successfully eliminates incorrect samples from the
dataset. Bayesian Network (BN) based diagnosis achieved a 72.3% prediction accuracy [25],
whilst a three-stage diagnosis system presented by Muhammad et al. [26] uses a Genetic
Algorithm (GA); several rule-based classification systems have been developed by the
same research team. The rule-based system of Wiphada et al. [27] comprises two stages;
in the first stage, the nodes of a neural network are pruned to determine their maximum
weights; in the second stage, the data are analyzed to identify the frequency content, and
then linguistic rules are created based on frequency intervals. The rule-based system has a
74% prediction accuracy. Mostafa et al. [28] present a Recursive Rule Extraction (Re-Rx)
framework to generate decision rules, achieving 83.8% accuracy. In [6], a two-stage hybrid
model was presented for decision rule extraction and classification. In stage-1, fuzzy logic
with Q-learning is used to create decision rules and in stage-2, a Genetic Algorithm (GA) is
used for the extraction of rules. Mohammad et al. [29] present a combination of Support
Vectors Regression (SVR) and an ANN-based model for the detection of diabetes with
86.13% accuracy. A Gaussian Hidden Markov Model (GHMM) technique is applied in [30],
achieving 85.69% accuracy; a Gaussian Hidden Markov Model (GHMM) reported in [31]
achieved 85.9% accuracy; and a Deep Extreme Learning Machine (DELM) based prediction
model is presented in [32] with 92.8% accuracy. A summary of the related research is
presented in Table 1.

Table 1. Summary of the recent development of Machine Learning for Diabetic Prediction.

Studies Proposed Methods Dataset Findings

[5] Logistic Adaptive Network Fuzzy Inference
System (LANFIS) Pima Indians diabetes

Prediction accuracy = 88.05%
Sensitivity = 92.15%
Specificity = 81.63%

[7] Hybrid Prediction Model (HPM)+ C 4.5 Pima Indian diabetes Prediction accuracy = 92.38%

[20] Artificial Neural Networks (ANN) + General
Regression Neural Networks (GRNN) Pima Indian diabetes Prediction accuracy = 80%

[22]
Principal Component Analysis

(PCA) + Adaptive Neuro-Fuzzy Inference
System (ANFIS)

Pima Indian diabetes Prediction accuracy = 89.47%

[23] Adaptive Network-based Fuzzy System
(ANFS) + Levenberg–Marquardt Algorithm Pima Indian diabetes

Prediction accuracy = 82.30%
Sensitivity = 66.23%
Specificity = 89.78%

[24]
Least Square Support Vector Machine

(LS-SVM) and Generalization Discriminant
Analysis (GDA)

Pima Indian diabetes
Classification accuracy = 82.05%

Sensitivity = 83.33%
Specificity = 82.05%

[25] Bayesian Network (BN) Pima Indian diabetes Prediction accuracy = 72.3%

[26]

(1) Genetic Algorithm (GA) + K-Nearest
Neighbors (GA-KNN),

(2) Genetic Algorithm (GA) + Support Vector
Machine (GA-SVM)

Pima Indian diabetes Prediction accuracy = 80.5%,
Prediction accuracy = 87.0%,

[31] Gaussian Hidden Markov Model (GHMM) CPCSSN clinical dataset Prediction accuracy = 85.9%
[32] Deep Extreme Learning Machine (DELM) Pima Indian diabetes Prediction accuracy = 92.8%

[33] Gradient Boosted Trees (GBTs)
Canadian AppleTree and the

Israeli Maccabi Health
Services (MHS)

Prediction accuracy = 92.5%

Proposed SVM-ANN
Prediction accuracy = 94.67%

Sensitivity = 89.23%
Specificity = 97.32%

In summary, a significant body of research has been reported over the recent past
detailing a range of machine learning approaches for the identification of diabetes and
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prediction of the onset of critical episodes in PwD. Informed by the reported advances to
date, the architecture detailed here implements a fusion-based approach to improve the
prediction accuracy.

3. Materials and Methods
3.1. Datasets

Two datasets are used in the training and testing of the proposed fusion-based machine
learning architecture. The first dataset is derived from the publicly available National
Health and Nutrition Examination Survey (NHANES) [18], consisting of 9858 records and
8 features. The second “Pima Indian diabetes ” [19] is acquired from the online repository
“Kaggle”, which comprises 769 records and 8 features. Both datasets, consisting of the
same features but comprising a different number of records, are detailed in Table 2. Thus,
the fused dataset has 10,627 records with 8 features with an age distribution between
21–77 years. The binary response attribute takes the values ‘1’ or ‘0’, where ‘0’ means a
non-diabetic patient and ‘1’ means a diabetic patient. There are 7071 (66.53%) cases in class
‘0’ and 3556 (33.46%) cases in class ‘1’.

Table 2. Diabetes Datasets—Features Description.

S# Feature Name Description Variable Type

1 Glucose (F1) Plasma glucose concentration at 2 h in an
oral glucose tolerance test Real

2 Pregnancies (F2) Number of times pregnant Integer
3 Blood Pressure (F3) Diastolic blood pressure (mm HG) Real
4 Skin Thickness (F4) Triceps skinfold thickness (mm) Real
5 Insulin (F5) 2-h serum insulin (mu U/mL) Real
6 BMI (F6) Body mass index (weight in kg/(height in)2 Real

7 Diabetes Pedigree
Function (F7) Diabetes Pedigree Function Real

8 Age (F8) Age (years) Integer

3.2. System Architecture

The architecture consists of the following layers designated as ‘Data Source’, ‘Data
Fusion’, ‘Pre-processing’, ‘Application’, and ‘Fusion’. The end-to-end process flow is
described in Table 3, and the system architecture is depicted in Figure 1. The following is
the methodology for the development of the algorithm.

Table 3. Steps for the Implementation of the Proposed Architecture.

1 Begin
2 Input Data
3 Apply Data fusion technique
4 Preprocess the data by different techniques
5 Data partitioning using the K-fold cross-validation method
6 Classification of diabetes and healthy peoples using SVM and ANN
7 Fusion of SVM and ANN
8 Computes performance of the architecture using a different evaluation matrix
9 Finish

3.2.1. Data Fusion

Data Fusion is a process of association and combination of data from multiple
sources [15,34], characterized by continuous refinements of its estimates, evaluation of
the need for additional data, and modification of its process to achieve improved data
quality. Hall et al. [35] state that the fusion of data enables the development of methods for
the semi-automatic or automatic transformation of multiple sources of information from
different locations and times to support effective decision-making.
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Several methods such as Luo and Key [36] and Dasarathy [37] have been reported
in recent years and here, the latter has been selected as it has been proven to be the most
efficient in fusing data [37]. Data In-Data Out (DAI-DAO), the most elementary function in
the fusion process, accepts data from the input layer and cleans the data to be more aligned
to the needs of the development of machine learning algorithms.
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Following the Dasarathy approach, Equation (1) represents the different data blocks
x1, x2, x3 . . . . . . . . . xn and the output X:

Set X = {x1, x2, x3 . . . . . . . . . xn} (1)

The degree of support, A, is indicated by the proposition of Basic Probability Assign-
ment (BPA); the greater the BPA, the greater the degree of support for A (Equation (2)). The
combination of different BPAs is used to reach decisions on the optimum fusion of data:

m(X) = m1 ⊗m2 ⊗m3 . . . . . .⊗mn =

{
1

1− k ∑ A1 ∩ A2 ∩ A3 . . . . . . ∩ An = Xm1(A1)m2(A2)...mn(An)

}
(2)

The probability of conflict—referred to as the minimum distance between data points—is
captured in Equation (3), where K represents the probability of conflict, which is computed as:

K = ∑
A1∩A2∩A3 ......∩An=∅

m1(A1)m2(A2) . . . mn(An) (3)

3.2.2. Pre-Processing

Pre-processing is initiated by the treatment of missing values (P) followed by stan-
dardization (S). Missing or null values are imputed; otherwise, the accuracy of prediction
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of the machine learning classifier is compromised [32]. Here, the mean method—instead of
dropping—is used to fill the missing values, formulated as in Equation (4):

P(x) =
{

mean(x), i f x = null/missing
x, otherwise

(4)

where x is the instances of the feature vector, which lies in n-dimensional space. The
imputation of missing values by the mean method is warranted as it produces the required
continuous data for the training of the algorithm without introducing outliers.

Standardization or Z-score normalization is used to rescale features, in so doing achiev-
ing a standard normal distribution with unit variance and zero mean. Standardization (S),
formulated as in Equation (5), also reduces the skewness of the data distribution:

S(x) =
x− x−

∝
(5)

where x is the n-dimensional instances of the feature vector, x ∈ Rn; x− ∈ Rn and ∝∈ Rn

are the standard deviation and mean of attributes.

3.2.3. Cross-Fold Validation

The K-fold Cross-Validation (KCV) is a common approach used for model selection,
error estimation of the classifiers, and splitting of data [38]. The dataset is partitioned into
5-folds; K-1 folds are used for the training and the fine-tuning of the hyper-parameters
in the inner loop where the grid search algorithm was deployed [39]. In the outer loop
(k times), the test data and optimum hyper-parameters were used for the evaluation of the
model. The raw dataset contains the imbalanced ratio of negative and positive samples;
a stratified KCV [40] has been used to maintain the same percentage of the samples for
each class as in the original percentage. Equation (6) is used for the estimation of the
final performance:

M =
1
K

K

∑
n=1

Pn ±

√
∑K

n=1 (Pn − P−)2

K− 1
(6)

where M is designated as the final performance metric for the classifier and Pn ∈ R
n = 1, 2, 3, . . . . . . K is the performance metric for each fold.

3.2.4. Support Vector Machines

The SVM algorithm has been used extensively for classification, regression, iden-
tification, density estimation, and time series analysis. SVM models segment the data
into different groups comprising data points with similar properties. Furthermore, the
fundamental principle of SVMs is to compute the optimal hyper-planes that generate the
best generalization of the dataset [41–43]. For example, in a linear SVM model, the inputs
are separated from the non-linear mapping into a high-dimensional space. The linear
model constructs a new space, which represents a nonlinear decision limit between the
original and the new space.

The SVM model predicts the classes for a new sample. Given a training dataset
S = {(x1, y1), . . . , (xn, yn)}, xi ∈ Rn and y {+1,−1} where xi represents the transferred
input vector and yi the target value, the SVM becomes a binary classifier in which the
class labels feature only two values +1 or −1. SVM draws an optimal hyper-plane H
that separates the data into different classes and the hyper-plane H from the inputs. The
objective function has convexity, a significant advantage as the solution of a quadratic
programming problem and the training of SVMs are equivalent, yielding a unique solution.
In contrast, the Artificial Neural Network (ANN) method requires nonlinear optimization,
which may result in the algorithm being held hostage to local minimums.

The precision of the SVM algorithm is greater than other reported forecasting methods.
The SVM minimizes the structural risk, while other machine learning methods focus on
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empirical risk minimization. In other words, the SVM method focuses on minimizing
the upper limit of the generalization error to reduce the training error. SVMs process a
large volume of data efficiently without overfitting. The SVM method also emphasizes
the establishment of optimal hyperplanes for the separation of data. The training points
( xi → yi ) that are closet to the optimal hyperplanes are referred to as support vectors
and also develop the limit of the decision planes. In general, in cases when the data are
not separated linearly, the SVM method uses non-linear machines to trace the optimal
hyperplanes that reduce the error rate in the training set of the data [44]. The core of the
SVM method theory for the solving of binary classification is described in [42,43].

Consider a set of training points, D = {xi, yi}N
i=1, where the input vectors are

xi = (x(1), . . . . . . .x(n)) E Rn and output vectors yi E {0, 1}, and where n represents the
amount of training data. Then, the optimal hyperplane used to separate the classes
of data points and these optimal hyperplanes are identified by solving the following
optimization problem:

Min
w,b

(
1
2

wtw) (7)

Subject : yi
(
wtΦ(xi ) + b ≥ 1), i = 1, 2, 3, . . . . . . ., n

where w is the Wright vector and b represents a bias variable. The non-linear function
Φ(.) : Rn → Rnk maps the given inputs into a high dimensional space.

However, numerous classification problems are linearly non-separable; thus, £i de-
notes a gap variable used for misclassification. Hence, the optimization problem with the
gap variable is written as:

Min
w,b,£

(
1
2

wtw + C
n

∑
i=1

£i) (8)

Subject :
{

yi
((

wtΦ(xi
)
+ b))+ £i ≥ 1, i = 1, 2, 3, . . . . . . ., n

£i ≥ 0, i = 1, 2, 3, . . . . . . ., n

where C is used as a penalty variable for the error.
The Lagrangian construction function is used to solve the primary problem, and linear

equality bound constraints are used to convert the primal into a quadratic optimization
problem:

Maxa

(
N

∑
i=0

ai −
1
2

n

∑
i=0

n

∑
j=0

aiajQij

)

Subject :


0 ≤ ai < C, i = 1, 2, 3, . . . . . . ., n
N
∑

i=0
aiyi = 0

where ai is known as Lagrange multiplier Qij = yiyj Φ(xi)
tΦ
(
xj
)
.

The kernel function not only replaces the internal product but also satisfies the Mercer
condition K(xi ,xj)

= Φ(xi)
tΦ
(

xj
)
, used for the representation of proximity or similarity

between data points. Finally, the non-linear decision function is used in the primal space
for the linearly non-separable case:

y(x) = sgn

(
N

∑
i=0

aiyiK
(
xi, xj

)
+ b

)

The kernel function maps input data into a large dimensional space, where hyper-
planes separate the data, rendering the data linearly separable. Different kernel functions
are potential candidates for use by the SVM method:

(i) Linear Kernel: K
(
xi, xj

)
= xT

i xj

(ii) Radical Kernel: K
(

xi, xj
)
= exp(−γ |

∣∣xi − xj
∣∣ |2)
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(iii) Polynomial Kernel: K
(
xi, xj

)
= (yxT

i xj + r)d

(iv) Sigmoid Kernel: K
(
xi, xj

)
= tanh

(
γxT

i xj + r
)
, where r, d ∈ N and γ ∈ R+ all

are constants.

The kernel functions play an important role when the complex decision limits are
defined between different classes. The selection of the decision limits is critical and chal-
lenging; hence, the selection of potential mappings is the first task for a given classification
problem. The optimal selection of the potential mapping minimizes generalization errors.

In the reported research, the Radial Basis Function (RBF) kernel is selected most
often for the creation of a high dimensional space for the non-linear mapping of samples.
Furthermore, the RBF kernel treats non-linear problems more easily as compared to the
Linear kernel. The Sigmoid kernel is not valid for some parameters.

The second challenge is the selection of hyperparameters that impact the complexity
of the model. The Polynomial kernel has more hyperparameters as compared to the
RBF kernel, but the latter is less computationally intensive during the Polynomial kernel,
requiring more computational time at the training phase.

3.2.5. Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by the structure and functional as-
pects of the human biological neural system. The ANN method originates from the field of
computer science, but the applications of ANNs are now widely used within a growing
number of research disciplines [45]; the combination of large amounts of unstructured
data (‘big data’) coupled to the versatility of the ANN architecture have been harnessed
to obtain ground-breaking results in numerous application domains including natural
language processing, speech recognition, and detection of autism genes. ANNs com-
prises many groups of interconnected artificial neurons executing computations through a
connectionist approach.

Typical ANN architectures are composed of three types of nodes, viz. input, hidden,
and output. The former contains the explanatory parameters and the level of attributes
varies from model to model. The dependent variables are contained by the output nodes
and the number of output nodes depends on choice probabilities. Nodes are connected
through links and the signals propagate in a forward direction. Different numerical weights
are computed from the data assigned to each link. At each node, the input value of the
previous node is multiplied by the weight and summed. An activation function is used to
propagate the signal into the next layer; activation functions ‘SoftMax’, ‘tan-sigmoid’, and
‘purlin’ have been used commonly in ANNs architectures. The sigmoid activation function
is used here. Weigh initialization, feedforward, backpropagation for error, updating
weights, and bias are integral to the ANNs.

The algebraic formulation of ANNs is:

f j = b1 +
n

∑
i=1

(
wij∗ri

)
(9)

where the wij represents the weight of neurons, ri represents the inputs, and b is the bias.
Further, the ‘sigmoid’ activation function is written as:

=k =
1

1 + e− f j
where k = 1, 2, 3 . . . r (10)

Equation (10) is used to compute the error in back-propagation:

E =
1
2 ∑

k
(τk −=k)

2
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where the τk denotes the desired output and =k represents the calculated output. Thus, the
rate of change in weights is calculated as:

∆w ∝ − ∂E
∂w

∆υj,k = −ε
∂E

∂νj,k

Equation (11) describes the updating of weights and biases between the hidden and
output layers. By using the chain rule:

∆υj,k = −ε
∂E

∂=k
× ∂=k

∂ψk
× ∂ψk

∂νj,k

∆υj,k = ε(τk −=k)×=k(1−=k)×
(

=j

)
∆υj,k = εξk=j

ξk = (τk −=k)×=k(1−=k)

∆wi,j ∝ −
[
∑
k

∂E
∂=k
× ∂=k

∂ψk
× ∂ψk

∂=j

]
×

∂=j

∂ψj
×

∂ψj

∂wi,j

∆wi,j = −ε

[
∑
k

∂E
∂=k
× ∂=k

∂ψk
× ∂ψk

∂=j

]
×

∂=j

∂ψj
×

∂ψj

∂wi,j

∆wi,j = ε

[
∑
k
(τk −=k)×=k(1−=k)×

(
νj,k

)]
×=k(1−=k)× ri

∆wi,j = ε

[
∑
k
(τk −=k)×=k(1−=k)×

(
νj,k

)]
×=j

(
1−=j

)
× ri

∆wi,j = ε

[
∑
k

ξk

(
νj,k

)]
×=j

(
1−=j

)
× r

∆wi,j = εξ j ri

where

ξ j =

[
∑
k

ξk

(
νj,k

)]
×=j

(
1−=j

)
(11)

Similarly, Equation (12) describes the updating of weight and bias between hidden
and input layers:

ν+j,k = νj,k + λF∆υj,k

w+
i,j = wi,j + λF∆wi,j (12)

where λF represents the learning rate.

3.2.6. Fusion of SVM-ANN

Traditional machine learning classifiers can be fused by different methods and rules [14];
the most commonly used fusion rules are ‘min’, ‘mean’, ‘max’, and ‘product’ [13]. Pi(ϕj

∣∣x)
represents the posteriori probability, most often applied to view the output of the classifiers,
and it can also be used for the implementation of fusion rules. Pi represents the output of
the ith-classifier, ϕi represent the ith-class of objects, and Pi(x

∣∣ϕj) represents the probability
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of x in the jth-classifier given that the jth-class of objects occured. As the proposed objective
of the architecture is a two-class output, the posteriori probability can be written as:

Pi(ϕj|x) =
Pi(x

∣∣ϕj)P(ϕj)

Pi(x)

Pi(ϕj|x) =
Pi(x

∣∣ϕj)P(ϕj)

Pi(x|ϕ1)P(ϕ1) + Pi(x|ϕ2)P(ϕ2)

j = 1, 2 and i = 1, 2, 3 . . . . . . , L

where L represents the number of classifiers; here, 2 classifers are selected, SVM & ANN.
Thus, the posteriori probability for the target class can be written as:

Pi(ϕt|x) =
Pi(x|ϕt)P(ϕt)

Pi(x|ϕt)P(ϕt) + θi·P(ϕo)
(13)

where ϕt represents the target class, ϕo is the outlier class, and θi is the uniform distribution
of density for the feature set, and where P(ϕt), P(ϕo), and Pi(x|ϕt) represent the probabil-
ity of the target class, probability of the outlier class/miss predicted class, and probability
of event x in the ith-classifier given that the target class of object has occurred, respectively.

In the architecture, the mean fusion rule is applied, formulated as:

µ(ϕt|x) =
1
L

L

∑
i=0

Pi(ϕt|x)

µ(ϕo|x) =
1
L

L

∑
i=0

Pi(ϕo|x)

where Pi(ϕt|x) and Pi(ϕo|x) represent the probabilty of the target class given that x event
has occurred in the ith-classifier and the probabilty of the outlier class given that x event
has occurred in the ith-classifier. Then, the decision criteria are computed as:

µ(ϕt|x) < µ(ϕo|x) where x is an outlier

For jth-class, the fusion rule can be written as:

µ(ϕt|x) =
1
L

L

∑
i=0

Pi(ϕt|x)

After substitues, the values of Pi(ϕt|x) are

µ(ϕt|x) =
1
L

L

∑
i=0

Pi(x|ϕt)P(ϕt)

Pi(x)

If Pi(x) ∼= P(x)∀i then the above can be written as:

µ(ϕt|x) =
1
L

L

∑
i=0

Pi(x|ϕt)P(ϕt)

P(x)

µ(ϕt|x) =
1
L

P(ϕt)

P(x)

L

∑
i=0

Pi(x|ϕt)

where,

Yavg(x) =
1
L

L

∑
i=0

Pi(x|ϕt)
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The target output is then computed as follows:

θ− =
P(ϕo)

P(ϕt)
· 1
L

L

∑
i=0

θi (14)

The decision criteria, therefore, simplify as Yavg(x) < θ−, where x is an outlier. Equa-
tion (14) represents the density function used to combine the class-conditional probability
instead of posterior probabilities, which are estimated by each classifier. Yavg(x) is the final
output of the architecture, and θ− is used as a threshold that can be independently tuned
to attain the desired trade-off between the false-negative rate and the false-positive rate.

4. Performance Evaluation
4.1. Performance Evaluation Matrix

A matrix comprising the accuracy, specificity, sensitivity, miss rate, precision, false-
positive ratio, and the false-negative ratio is used to evaluate the performance of the
algorithm [46]. A binary confusion matrix is used to compute the matrix. The development
and evaluation of the solution has been performed in the Python 3.7 environment using a
range of machine learning libraries on Intel® Core™ i3-3217U CPU @ 1.80 GHz PC.

The definition of the performance parameters within the matrix are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%

Miss rate =
FP + FN

TP + TN + FP + FN
× 100%

Sensitivity = recall =
TP

TP + FN
× 100%

Specificity =
TN

TN + FP
× 100%

Precision =
TP

TP + FP
× 100%

False positive ratio = 1−
(

specificity
100

)
False negative ratio = 1−

(
sensitivity

100

)
4.2. Performance Results and Discussion

The performance of both classifiers has been evaluated as standalone and after fusion.
A comparative analysis shows that the fusion of SVM and ANN provides an enhancement
of the accuracy of prediction compared to the performance of SVM and ANN standalone
algorithms. Results indicate a classification accuracy of 94.6%, exceeding the performance
of machine learning models reported to date such as Random Forest (RF) [7] and Naïve
Bayes (NB).

Figure 2a–c show the confusion matrix of ANN, SVM, and SVM-ANN, respectively.
Figure 3 shows a class level comparison of the different machine learning methods, viz.
SVM, ANN, and Fusion of SVM and ANN (SVM-ANN), which are used within the archi-
tecture. Results indicate that the SVM method yields a 93.02% accuracy for the negative
class (healthy) and 78.62% accuracy for the positive class (diabetic); the ANN method:
97.21% for the negative and 86.29% for the positive class; and SVM-ANN: 97.32% for the
negative and 89.23% for the positive class.
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Figure 3. Class level Comparison of Accuracy.

The results of the comparative analysis of the performance of the architecture is also
presented in Table 4. The SVM, ANN, and SVM-ANN approaches achieve 88.30%, 93.63%,
and 94.67% accuracy, respectively, indicating an improvement in performance owing to the
fusion of both.
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Table 4. Overview of Simulation Results.

Evaluation Matrix SVM ANN Fusion of SVM-ANN

Accuracy 88.30% 93.63% 94.67%
Specificity 93.02% 97.20% 97.32%
Sensitivity 78.62% 86.28% 89.23%
Precision 84.58% 93.77% 94.19%
Miss rate 11.70% 6.37% 5.33%

False Positive Ratio (FPR) 0.06 0.02 0.02
False Negative Ratio (FNR) 0.21 0.13 0.10

Figure 4 shows the comparison in terms of accuracy, precision, sensitivity, and speci-
ficity. On inspection, the SVM-ANN produces the best prediction in terms of accuracy in
comparison with standalone SVM and ANN, improving the accuracy by a margin of 6.37%
and 1.04%, respectively. The SVM-ANN model also improves the true-positive rate and
also evident is that the degree of miss-classification is decreased by the SVM-ANN model.
Furthermore, the fused architecture improves the system performance in terms of balanced
accuracy, precision, sensitivity, and specificity (average of accuracy, precision, sensitivity,
and specificity) by 3.71%, 4.98%, 6.78%, and 2.21%, respectively.
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A comparison of the performance of the fusion-based system with models reported
in the literature in terms of accuracy is shown in Figure 5. Results demonstrate that the
architecture reported here yields an increase in the accuracy of the classification of diabetes
with ~1.8% improvement compared to the best performing algorithm.
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5. Conclusions

Machine learning methods and techniques are beginning to play an ever-increasing
role in the domain of healthcare for the analysis of medical data to support the diagnosis and
inform on the optimum treatment of critical health conditions. However, the existence and
availability of sufficiently large datasets for the training and testing of machine learning
models remain a barrier to achieving better-performing algorithms. Thus, given the
prevailing restrictions in the scope and quality of available data, the paper reports on the
development and evaluation of the performance of an approach based on the fusion of two
machine learning methods for the prediction of diabetes.

The architecture performs data fusion to prepare a coherent dataset derived from
multiple streams (locations) in order to be better aligned to the needs of the development
of machine learning algorithms. The algorithms are then created through the fusion of
two well-known machine learning classifiers: SVM and ANN, for the identification and
prediction of the onset of critical events for PwD.

A comparison of performance with the published literature shows that the proposed
architecture accuracy of 94.67% is an improvement of ~1.8% when compared to the best-
performing model reported to date. In the future, other machine learning classifiers such
as Random Forest, Decision Tree, and Naïve Base can also be consideredat the machine
learning fusion layer.
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