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Abstract: The main objective of this study was to determine the predictive value of US characteristics
for disease-free survival (DFS) in BC patients. We retrospectively analyzed the ultrasonic images and
clinical data of BC patients who had previously undergone breast surgery at least 10 years before
study enrollment and divided them into a case group and a control group according to the cutoff
value of 120 months for DFS. Correlation analysis was performed to identify US characteristics as
independent predictors for DFS by multivariable logistic regression and Kaplan–Meier survival
analysis. A total of 374 patients were collected, including 174 patients in the case group with short-
DFS and 200 patients in the control group with long-DFS. Three US characteristics (size on US, mass
shape, mass growth orientation) and two clinical factors (axillary lymph node (ALN), molecular
subtypes) were identified as independent predictors for DFS (p < 0.05). The ROC curve showed good
performance of the multivariate linear regression model with the area under the curve being 0.777.
The US characteristics of large size, irregular shape, and nonparallel orientation were significantly
associated with short-DFS, which is a promising supplementary for clinicians to optimize clinical
decisions and improve prognosis in BC patients.

Keywords: breast cancer; disease-free survival; ultrasonography

1. Introduction

Breast cancer (BC) is the most prevalent neoplastic disease among women world-
wide [1,2]. An estimate of 287,850 new BC cases and 43,250 deaths cases will occur in
the United States in 2022 according to a report on cancer statistics [3]. BC still remained
a high rate of recurrence and metastasis even if it is diagnosed and treated early, which
leads to short disease-free survival (short-DFS), low quality of life, and high mortality.
More targeted cancer control interventions and investment in improved early detection
and treatment would facilitate the reduction in cancer mortality [3]. Therefore, it is ur-
gent to establish a convenient and precise prognostic method for short-DFS to improve
individualized management for BC patients.

To date, many predictive methods have been used in individual prediction for survival
estimation in BC patients, such as the traditional tumor node metastasis (TNM) staging,
Magee Equations (MEs) [4,5], and Nottingham Prognostic Index (NPI) [6,7], which were
based on pathology and immunohistochemistry results. Furthermore, some genomic
methods, including gene expression profiles [8], Adjuvant! Online [9] and the Mamma
Print 70-gene expression assay [10], have also been reported to improve the predictive
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performance for BC survival outcomes. However, those models can hardly avoid the
limitations of declined performance, high price, and complex operation, which desperately
need some new methods to improve predictive performance for BC prognosis.

Ultrasound (US) is a safe, inexpensive, and widely available modality in breast screen-
ing. US image vividly reflects the mass morphological features that provide rich information
on growth status, which are not only related to clinical pathology, immunohistochemistry,
and molecular subtypes but also associated with invasive ability in BC [11,12]. The signifi-
cant relationship between US characteristics and BC prognosis has also been evaluated in
some papers recently [13,14]. However, despite there being multiple US features that can
be used as crucial predictors for the prognosis of BC, it still merits further investigation.
Therefore, in this study, we evaluated the US features strongly related to DFS by analysis
for ten-year follow-up data in BC patients, which has great promise to further optimize
clinical decisions and improve prognosis.

2. Materials and Methods
2.1. Ethical Approval

The whole research process has been designed to conform to the ethical standard of
the 1964 Helsinki declaration. The Ethic Committee of the Second Affiliated Hospital of
Harbin Medical University provided an ethical approval (KY2017-133) and waived the
informed consent requirement for the retrospective study design.

2.2. Patients

This study enrolled 374 BC patients who were treated at the Second Affiliated Hospital
of Harbin Medical University from January 2009 to January 2012. According to the cutoff
value of 120 months for DFS, patients were divided into a case group with short-DFS and a
control group with long-DFS. The inclusion criteria were formulated for the study as follows:
(1) a single and unilateral breast cancer based on postoperative pathological findings;
(2) BC patients had previously undergone breast surgery for at least ten years before study
enrollment; (3) the complete results of pathological diagnosis, immunohistochemistry,
and US examination can be obtained from the work station; and (4) having patients’
telephone numbers or e-mail addresses and the follow-up data. We excluded patients
who had received any treatments before the operation or suffered from multiple organ
metastases. The recurrence or metastasis of cancer-related disease was identified by follow-
up results. The DFS was defined as the time interval from post-operation to BC-related
relapse or metastasis.

2.3. Data and Image Analysis

Preoperative US examinations of B-mode and CDFI were performed using a HITACHI
Vision 900 system (Hitachi Medical System, Tokyo, Japan) equipped with a linear-array
transducer of 5- to 12-MHz. US variables were collected and analyzed by reviewing each
image in work station by two sonographers with more than 5 years of experience in breast
US according to the double-blind way. The BI-RADS lexicon [15] and Adler’s grading
method of CDFI [16] were used to describe the US characteristics of each breast mass.
Nine US characteristics were assessed as follows: lesion size on US (<20 mm or ≥20 mm),
shape (oval/round or irregular), margin (circumscribed or not circumscribed), orientation
(parallel or nonparallel), echo pattern (hypoecho or others), shadowing features (yes or no),
hypoecho surround (yes or no), microcalcification (yes or no), CDFI grade (no flow/minimal
or moderate/marked).

2.4. Clinicopathology and Laboratory Examinations

The routine methods of hematoxylin-eosin (HE) stain, formalin-fixed, and paraffin-
embedded material were used to perform the histological diagnosis from surgical specimens
for tumor histological grades, type of pathology, and the status of the axillary lymph node.
Immunohistochemistry analyses were performed to confirm ER, PR, HER2, and Ki-67.
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Four molecular subtypes of luminal type A, luminal type B, HER2 amplified type and
triple-negative type were defined based on the immunohistochemical results.

2.5. Statistical Analysis

SPSS version 18.0 statistical software package (IBM Corporation, Armonk, NY) was
used for all variables in this study. Chi-square or Fisher’s exact tests were used to identify
the potential risk factors of DFS in the categorical variables between the case group and
control group. Variables with statistically significant association (p < 0.05) in the Chi-
square or Fisher’s exact tests were further evaluated by the multivariable logistic regression
analyses to establish a regression model for predicting DFS. An area under the curve
(AUC) of the receiver operating characteristic (ROC) curve was calculated to evaluate the
performance of the prediction model. Kaplan–Meier survival analysis was performed to
determine the association of US features and DFS by survivorship curves. All statistical
tests were two-sided, and p value < 0.05 was considered statistically significant.

3. Results

This section is divided into subheadings. It provides a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn.

3.1. Clinical Characteristics

The clinical data of 374 patients (age 33–72 years; mean 56.0 years) were collected and
analyzed respectively, including a case group of 174 patients with short-DFS and a control
group of 200 patients with long-DFS. There were no significant differences in 11 variables
including age, BMI, pathological type, mass margin, shadowing, hypoecho surround,
calcifications, echo pattern, ER, Her2, and Ki-67 between the two groups (p > 0.05). In
terms of molecular subtypes of luminal B or HER2-enriched compared with luminal A, no
significant difference was observed between the two groups (p > 0.05), while a statistical
difference was obtained in TN subtype compared with luminal A between the two groups
(p < 0.001). There were significant differences in seven variable parameters including the
status of ALN, nuclear grade, size on US, mass shape, mass orientation, CDFI, PR between
two groups (p < 0.05). The correlation analysis is summarized in Table 1.

Table 1. Patient characteristics and univariable analysis of factors associated with disease-free survival.

Variables

Disease-Free Survival
p Value Odds Ratio

(95% CI)<Ten Years
n = 174, (%)

≥Ten Years
n = 200, (%)

Age (years) 0.405 1.21 (0.81–1.82)
<50 90 (51.7) 113 (56.5)
≥50 84 (48.3) 87 (43.5)

BMI (kg/m2) 0.123 1.43 (0.93–2.20)
<25 109 (62.6) 141 (70.5)
≥25 65 (37.4) 59 (29.5)

Pathological type 0.062 0.67 (0.45–1.01)
IDC 100 (57.5) 95 (47.5)
Others 74 (42.5) 105 (52.5

Nuclear grade 0.009 1.77 (1.15–2.71)
Low/Intermediate 101 (58.0) 142 (71.0)
High 73 (42.0) 58 (29.0)
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Table 1. Cont.

Variables

Disease-Free Survival
p Value Odds Ratio

(95% CI)<Ten Years
n = 174, (%)

≥Ten Years
n = 200, (%)

Size on US (mm) 0.001 2.09 (1.38–3.17)
<20 65 (37.4) 111 (55.5)
≥20 109 (62.6) 89 (44.5)

ALN < 0.001 0.23 (0.15–0.36)
Positive 96 (55.2) 44 (22.0)
Negative 78 (44.8) 156 (78.0)

Mass shape 0.001 2.03 (1.34–3.06)
Round, oval 74 (42.5) 120 (60.0)
Irregular 100 (57.5) 80 (40.0)

Mass orientation 0.001 2.06 (1.36–3.12)
Parallel 77 (44.3) 124 (62.0)
Not-parallel 97 (55.7) 76 (38.0)

Mass margin 0.334 1.25 (0.82–1.90)
Circumscribed 59 (33.9) 78 (39.0)
Not-circumscribed 115 (66.1) 122 (61.0)

Shadowing 0.144 0.73 (0.49–1.11)
Yes 82 (47.1) 79 (39.5)
No 92 (52.9) 121 (60.5)

Hypoecho surround 0.524 1.16 (0.768–1.77)
Yes 65 (37.4) 82 (41.0)
No 109 (62.6) 118 (59.0)

Calcifications on US 0.078 0.69 (0.46–1.04)
Yes 90 (51.7) 85 (42.5)
No 84 (48.3) 115 (57.5)

Echo pattern 0.412 0.82 (0.51–1.30)
Hypoechoic 132 (75.9) 144 (72.0)
Others 42 (24.1) 56 (28)

CDFI 0.002 2.15 (1.33–3.48)
No flow, Minimal 33 (19.0) 67 (33.5)
Moderate, Marked 141 (81.0) 133 (66.5)

ER 0.178 1.34 (0.89–2.02)
Positive 82 (47.1) 109 (54.5)
Negative 92 (52.9) 91 (45.5)

PR 0.014 1.73 (1.14–2.63)
Positive 95 (54.6) 135 (67.5)
Negative 79 (45.4) 65 (32.5)

HER2 0.159 0.73 (0.48–1.13)
Positive 67 (38.5) 63 (31.5)
Negative 107 (61.5) 137 (68.5)

KI67 0.063 0.65 (0.41–1.02)
Positive 55 (31.6) 46 (23.0)
Negative 119 (68.4) 154 (77.0)

Molecular subtypes <0.001
Luminal A 55 (31.6) 94 (47.0)
Luminal B 21 (12.1) 40 (20.0) 0.755 * 1.11 (0.60–2.08)
HER2-enriched 40 (23.0) 48 (24.0) 0.218 ** 0.70 (0.41–1.20)
TN 58 (33.3) 18 (9.0) < 0.001 *** 0.18 (0.10–0.34)

Note: p value is derived from the univariable association analyses between each of the variables and groups.
p * Luminal B VS. Luminal A, p ** HER2-enriched VS. Luminal A, p *** TN VS. Luminal A. Abbreviations: ALN,
axillary lymph node; BMI, body mass index; CDFI, color doppler flow imaging; ER, estrogen receptor; HER2,
epidermal growth factor receptor 2; KI67, Ki-67 Protein; PR, progesterone receptor; TN, triple negative.

3.2. Multiple Logistic Regression Analysis

For rigorous variable selection, the risk factors with a p-value < 0.05 in the simple
logistic regression analysis were considered for a multiple logistic regression model. The
parameters of size on US, status of ALN, mass shape, mass orientation, and molecular
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subtypes were identified as independent predictors for DFS and the results are summa-
rized in Figure 1. With respect to the tumor size on US, patients with large tumor size
were more likely to have short-DFS compared with those with small size (X1, OR: 1.930,
95% CI: 1.209–3.082, p = 0.006). Patients with negative ALN were least likely to have short-
DFS compared with those with positive ALN (X2, OR: 0.231, 95%CI: 0.142–0.375, p < 0.001).
Ultrasound characteristic of irregular shape was a higher risk factor than round or oval
shape in the patients with short-DFS (X3, OR: 2.052, 95%CI: 1.284–3.280, p = 0.003). More-
over, patients with ultrasound features of nonparallel growth orientation were more likely
to suffer from short-DFS than patients with parallel growth orientation (X4, OR: 1.573,
95%CI: 1.077–2.297, p = 0.019). In the four molecular subtypes, the TN subtype showed
a higher risk for short-DFS compared to luminal A (X5, OR: 1.669, 95%CI: 1.364–2.042,
p < 0.001). According to the constant of -1.773, a multivariate regression model was estab-
lished as follows: y = −1.773 + 0.657 * X1–1.466 * X2 + 0.719 * X3 + 0.453 * X4 + 0.512 * X5, as
shown in Table 2. The ROC was used to evaluate the performance of the regression model
and the AUC was 0.777, which is shown in Figure 2.
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Figure 1. US feature as independent predictor for short-DFS. We displayed the US images of breast
mass from preoperative examination in female patients with invasive ductal carcinoma who suffered
from surgical treatment and received postoperatively systemic therapy. (A) The image of the left
breast mass from a 48-year-old patient with a short-DFS of 79 months shows the US features of
significantly irregular shape and moderately parallel growth orientation. (B) The image of the right
breast mass from a 44-year-old patient with a short-DFS of 51 months shows the US features of
significantly irregular shape and slightly nonparallel growth orientation. (C) The image of the left
breast mass from a 55-year-old patient with a long-DFS of more than 120 months shows the US
features of round shape and slightly parallel growth orientation. (D) The image of the right breast
mass from a 59-year-old patient with a short-DFS of 58 months shows the US features of significantly
nonparallel growth orientation and moderately irregular shape. (E) The image of the right breast
mass from a 42-year-old patient with a short-DFS of 35 months shows the US features of significantly
nonparallel growth orientation, oval shape, and size of more than 20 mm. (F) The image of the right
breast mass from a 58-year-old patient with a long-DFS of more than 120 months shows the US
features of oval shape, and parallel growth orientation.
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Table 2. Multiple logistic regression analysis of the US characteristics with disease-free survival.

Variable B SE Wals p Value Odds Ratio (95% CI)

Size on US (mm)
<20 VS. ≥20 0.657 0.239 7.581 0.006 1.930 (1.209–3.082)

ALN
Positive VS. Negative −1.466 0.248 34.919 <0.001 0.231 (0.142–0.375)

Mass shape
Round, oval VS. Irregular 0.719 0.239 9.017 0.003 2.052 (1.284–3.280)

Mass orientation
Parallel VS. Not-parallel 0.453 0.193 5.492 0.019 1.573 (1.077–2.297)

Molecular subtypes
Luminal A VS. TN 0.512 0.103 24.733 <0.001 1.669 (1.364–2.042)

Constant −1.773 0.789 5.037 0.025

Note: p value is derived from the univariable association analyses between each of the variables. Abbreviations:
US, ultrasound; ALN, axillary lymph node; TN, triple negative.
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Figure 2. ROC curve for the predictive model. Analysis of the predictive performance of the model
for short-DFS in BC patients demonstrated a good discriminative power with an area under the ROC
curve of 0.777.

3.3. Survival Analysis for DFS

Kaplan–Meier survival curves were drawn using disease-free survival time and sur-
vival status of patients and the differences between disease-free survival rates were com-
pared by log-rank tests. Each of the independent predictive factors, including size on US
(<20 mm vs. ≥20 mm), status of ALN (positive vs. negative), mass shape (round, oval
vs. irregular), mass orientation (parallel vs. nonparallel), molecular subtypes (luminal A,
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luminal B, HER2-enriched vs. triple negative), had a significant statistical difference in
terms of affecting the DFS (Logrank p < 0.001), which were illustrated in Figure 3.
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Figure 3. Kaplan–Meier survival analysis curve for each predictive factor in BC. The X-axis represents
the following-up time in 120 months and the Y-axis represents DFS rate at different times. Each of the
independent predictive factors affecting the DFS had a significant statistical difference in features
(Logrank p < 0.001), including size on US (A), status of ALN (B), mass shape (C), mass orientation
(D), molecular subtypes (E).

4. Discussion

In this study, we drew an interesting conclusion that the tumor US characteristics
of size on US, shape, and growth orientation are associated with DFS in BC patients.
Furthermore, a prediction model combining US characteristics with clinical predictors of
ALN and molecular subtypes was established and showed good predictive performance.
Therefore, the application of US features as a predictor for DFS suggests a new idea that
morphological characteristics of tumors are related to prognosis, which can be served as an
effective complement to clinical features for prognostic prediction in BC.

Our study showed that there was a significant relationship between tumor size and
DFS in BC patients, and the patients with large-sized tumors are inclined to have a short
DFS. The tumor size in BC patients is an important prognostic factor that has been affirmed
by the TNM cancer staging system [17]. Some studies also concluded that tumor size has
been thought of as an indispensable prognostic factor in the clinical outcome of BC [18–20].
Conventionally, tumor size is measured as a diameter based on palpation, reviewing an
image, or measuring a surgical specimen. However, the size on US is relatively accurate
and convenient because of its high resolution, multiple aspects, and cine clips. Biologically,
tumor size reflects the number of cancer cells with invasiveness and metastasis capability.
Moreover, the number of cancer cells increases eight-fold for every doubling of tumor
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size [21], which would lead to the fact that large tumor may have more chances to invade
the adjacent tissue and cause metastasis than a small one, making it difficult to perform
complete resection. The large surface of the tumor is a significant influence factor in
the metastasis of cells, which enhances the surface contact area between cancer cells and
adjacent tissue, and improves the capability of spread to other areas of the body. This was
mainly attributed to the larger surface area of the tumor with a large diameter according
to the formula of a sphere area (S = 4πr2, where r is the radius). Furthermore, our study
showed that the patients with tumor diameters of more than 20 mm have a significant
short-DFS in BC (a high OR value 1.930). Therefore, it is of great significance to use the
tumor size combined with US features as a model for the prediction of DFS in BC.

Irregular shape can further increase the surface area of tumor contact with surrounding
normal tissue compared with the same size tumor, which leads to more carcinoma cells
dislodging from the surface into metastasis. Therefore, the shape of the tumor is also a
critical factor in the evaluation for the prognosis of BC. However, the characteristic of
shape was rare to be used as a predictive factor in BC patients because it is difficult to
evaluate in surgical specimens. US is suitable to evaluate the morphometric properties
of a tumor by cine clips through the masses with a longitudinal axis and a transverse
axis [22]. We concluded that the US characteristic of irregular shape was a higher risk factor
for the patients with short-DFS compared with a round or oval shape with an OR value
of 2.052. Irregular shape is a critical property in BC [23], which represents not only the
nonuniform growth speed of mass edge but also the highly invasive ability of cells [24].
Furthermore, surface area is the exposure range of neoplastic tissue coming in contact with
normal tissue, which is much greater and increases rapidly in tumors with irregular shapes
and convoluted surfaces [21]. Some research has shown that irregular shape is related to
poor prognosis in invasive BC, similar to the result of our study [13,25]. Therefore, the
shape features in US would be an amazing predictive factor for the prognosis of BC.

Interestingly, the feature of nonparallel growth orientation on US was found to be an
independent predictor of the prognosis in BC patients in our study, with an OR value of
1.573 for short-FDS. Nonparallel orientation is explained as the mass growth perpendicular
to the skin surface and shape taller than wide according to the ACR Reporting system [26].
The characteristic of vertical growth represents a sign that carcinoma cells can easily destroy
normal breast tissue growing orienting skin and have highly aggressive characteristics and
a grave prognosis [27]. Wang et al. found that nonparallel growth orientation was similar
to molecular subtypes on the prognostic values for BC and can be served as a prognostic
biomarker for triple negative BC patients [28]. Our previous study also demonstrated that
the vertical growth orientation of a tumor in preoperative US examination was associated
with a high recurrence risk of BC [14]. Furthermore, a study found that vertical growth
orientation be related to axillary lymph node metastasis in TNBC patients [29]. Therefore,
nonparallel growth orientation is a promising predictive factor for prognosis of BC patients,
which is easy to be evaluated by preoperative US examination.

Clinicopathologic factors including ALN and molecular subtypes have been commonly
proved to be significantly associated with the prognosis of BC [30–32], which is similar to
our study. In recent years, using US features as predictive factors in BC prognosis has been
reported in some research [14,29,33]. However, incorporation of US features and clinical
factors was rarely performed in terms of predicting short-DFS in a ten-year follow-up study.
Our study showed good predictive performance (AUC = 0.777) of US characteristics for
the DFS and put forward a new idea of applying morphometrical features of tumors as
prognostic predictive factors in the BC patients.

5. Conclusions

In a 10-year follow-up study, we concluded that US characteristics of large size,
irregular shape, and nonparallel orientation were significantly associated with short-DFS.
The cooperation of US characteristics and clinical factors is a promising supplementary
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in predicting DFS for clinicians to optimize clinical decisions and improve prognosis in
BC patients.

However, some limitations in our research are as follows: firstly, our study is a retro-
spective and single-centered work with unavoidable bias in the basic characteristics of the
study population; secondly, the sample size was relatively small in the short-DFS group,
which should be further confirmed by a large population; thirdly, some genomic character-
istics and gene markers were not considered in this research; fourthly, the US as a highly
operator-dependent technology performed by different sonographers can influence the
results of image analysis. Moreover, a combination of multiple image technologies includ-
ing US, MRI, and contrast enhancement spectral mammography for the same tumor will
certainly be of great benefit in further validating our findings and improving the prediction
performance. Further work in the area will be needed to conquer these limitations.
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