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Abstract
Background & aims  For more than eight decades, cardiovascular disease (CVD) has remained the leading cause of 
death in the world. CVD risk factors are multifaceted, with genetics and lifestyle both playing a role. The aim of this 
study was to investigate the association between a genetic profile risk score for obesity GRS and cardio-metabolic risk 
factors in overweight and obese women.

Methods  The current cross-sectional study was conducted on 391 overweight and obese women. The genetic risk 
score was created by combining three single nucleotide polymorphisms [MC4R (rs17782313), CAV-1 (rs3807992), and 
Cry-1 (rs2287161)]. Anthropometric measurements, blood pressure, and some blood parameters were measured by 
standard protocols.

Results  A significant association between the GRS and some of cardiometabolic risk factors variables such as body 
mass index (β = 0. 49, 95%CI = 0.22 to 0.76, p < 0.001), waist circumference (β = 0. 86, 95%CI = 0.18 to 1.54, p = 0.01), 
body fat mass (β = 0. 82, 95%CI = 0.25 to 1.39, p = 0.005), %body fat (β = 0. 44, 95%CI = 0.06 to 0.82, p = 0.02), and hs-CRP 
(β = 0.46, 95% CI = 0.14 to 0.78, p = 0.005) was observed in crude model. After adjustment for confounding factors 
(age, BMI, and physical activity), a significant positive association was observed between BMI (p = 0.004), WC (p = 0.02), 
body fat mass (p = 0.01), %BF (p = 0.01), hs-CRP (p = 0.009), and GRS. In addition, we discovered a significant negative 
association between the GRS and BMC (= -0.02, 95%CI = -0.05 to -0.001, p = 0.04). But other variables did not show any 
significant association with GRS among obese and overweight women.

Conclusion  We found a significant positive association between GRS, including MC4R (rs17782313), CAV-1 
(rs3807992), and Cry-1 (rs2287161) and cardiometabolic risk factors among overweight and obese Iranian women.
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Introduction
Cardiovascular disease (CVD) is one of the major con-
tributors to mortality and the global burden of disease [1, 
2], accounting for one-third of all deaths worldwide [3]. 
Approximately 17.8 million deaths in 2017 were attribut-
able to CVDs [2], and the number is expected to increase 
to 23.6 million by 2030 [4], with a similar rising mortality 
rate in Iran [5]. The risk factors of CVD are multifacto-
rial, including dyslipidemia, high blood pressure, insulin 
resistance, inflammation, and high BMI and waist cir-
cumference (WC) [6–9]. Furthermore, genetic predis-
position has been identified as a significant predictor of 
CVDs.

Large-scale genome-wide association studies 
(GWAS) have identified several novel genetic variants 
correlated with CVD and obesity [10–12]. Moreover, 
the associations between genetic factors and CVD 
could be easily determined by using GRS, calculated 
through the accumulation of risk alleles for each sin-
gle nucleotide polymorphism (SNP) in samples much 
smaller than those required for GWAS [11, 13, 14]. 
MC4R (melanocortin 4 receptor) rs17782313 variant 
has been reported to have an association with higher 
BMI in children and adults [15–18]. Furthermore, the 
risk allele C for MC4R rs17782313 was linked to car-
diovascular risk factors such as insulin resistance and 
hypertension, as well as a higher susceptibility to obe-
sity and inflammation [19–23]. Caveolin-1 (CAV-1) 
is a major structural protein of caveolae, [24] which 
is abundant in adipocytes [25]. Over the preced-
ing decade, a large variety of studies have implicated 
CAV-1 SNP in the development of hypertension, dys-
lipidemia, and atherosclerosis [26–28]. It is worth not-
ing that A-allele carriers of the CAV-1 rs3807992 had 
significantly higher BMI [29, 30]. Cryptochromes (Cry) 
1, the principal component of the negative limb of the 
core clock, appears to play important roles in metabo-
lism [31] such as regulating glucose homeostasis [32]. 
Thus, it could contribute to the risk of insulin resis-
tance [33]. C-allele of the Cry-1 rs2287161 polymor-
phism, in turn, contributes to the significant greater 
BMI [34]. So, the aforementioned genetic variants 
were previously reported to be individually associated 
with overweight/obesity in some populations [35, 36].

Given the foregoing, GRS, as a result of the combined 
impact of multiple SNPs, is thought to be a useful tool 
for predicting cardiometabolic risk factors and increas-
ing the power to detect them. Furthermore, no evidence 
has been generated up to now on the association between 
cardio-metabolic traits and obesity-GRS, based on the 
aforementioned genetic factors. Therefore, the present 
study has been undertaken to compute the GRS through 
traits associated with obesity-related genetic markers, 
namely, MC4R (rs17782313), CAV-1(rs3807992), and 

Cry-1 (rs2287161), to improve the identification of over-
weight and obese women at a higher risk of developing 
cardio-metabolic risk factors.

Methods and materials
Study population
This cross-sectional study involved 391 overweight or 
obese women. The age range of the participants was 18 
to 68 years, and the BMI range of the participants was 
25–40  kg/m2, which refers to health centers in Tehran, 
Iran. Participants had no common ancestry and were not 
related. The following conditions were excluded: type I 
and type II diabetes, cardiovascular disease, malignan-
cies, kidney disease, thyroid disease, menopause, preg-
nancy, lactation, smoking, any acute or chronic diseases, 
weight loss supplements, particular diets during the last 
year, and taking thyroid, lipid, glucose, or blood pressure 
drugs. All participants signed written informed consents 
before enrollment in the study, which was reviewed and 
approved by the Tehran University of Medical Sciences 
(TUMS) in Tehran, Iran. Ethical approval, and associ-
ated number IR.TUMS.MEDICINE.REC.1400.1515, was 
obtained from The ethics Commission of the Tehran Uni-
versity of Medical Sciences. All research was performed 
in accordance with relevant guidelines and regulations.

Body composition analysis
By strictly following the techniques, procedures, and 
precautions outlined in the manufacturer’s protocol, we 
measured body composition using a bioelectrical imped-
ance analyzer (BIA), InBody 770 scanner (Inbody Co., 
Seoul, Korea) protocol [37]. The instructions specified 
by the manufacturer require participants to remove extra 
clothing and metal utensils, such as earrings, rings, and 
watches, as well as removable shoes, coats, and sweat-
ers. The following body composition measurements are 
taken: fat mass (FM), fat-free mass (FFM), skeletal muscle 
mass (SMM), waist circumference (WC), waist to hip 
ratio (W.H.R), and others.

Anthropometric indices
Using a non-stretch tape measure, we measured and 
recorded participants’ heights, standing up and unshod, 
with a precision of 0.5 cm. For hip and waist circumfer-
ence, the most prominent part and the narrowest part, 
respectively, were marked and measured with a precision 
of 0.5  cm. Various anthropometric characteristics, such 
as weight and BMI, were determined by BIA.

Physical activity assessment
All participants were assessed on their physical activity 
during the last week using the short form of the Interna-
tional Physical Activity Questionnaire (IPAQ). Physical 
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activity in the last week was measured using IPAQ, a vali-
dated self-report instrument [38].

Biochemical and hormonal determination
Venous blood was collected between 8:00 a.m. and 
10:00 a.m. following an overnight fast. The serum was 
centrifuged, aliquoted, and stored at − 80  °C, and all 
samples were analyzed by using a single assay tech-
nique. Glucose oxidase-phenol 4-aminoantipyrine per-
oxidase (GOD-PAP) was used to measure fasting blood 
glucose (FBS). A glycerol-3-phosphate oxidase–phenol 
4-aminoantipyrine peroxidase (GPOPAP) enzymatic 
endpoint was used to measure triglyceride (TG) and 
total cholesterol (TC). A direct enzymatic clearance 
assay was used to measure low-density-lipoprotein 
(LDL), and high-density lipoprotein (HDL) choles-
terol. MCP-1, hs-CRP, and galectin were measured via 
standard protocols. Plasminogen activator inhibitor-1 
(PAI-1) (Human PAI-1*96 T ELISA kit Crystal Com-
pany) was measured in triplicate. An immunoturbidi-
metric assay (high sensitivity assay, Hitachi 902) was 
used to measure serum inflammatory markers. The 
data on insulin minimum detectable concentration 
was 1.76 mIU/mL and the intra CV was 2.19%, and 
inter CV was 4.4%. Homeostasis model assessment 
(HOMA), a measure of HOMA-IR, was calculated as 
[(fasting plasma glucose × fasting serum insulin)/22.5] 
[39]. Randox Laboratories (Hitachi 902) kit was used 
for all measurements. All samples were assessed by 
standard methods at the Nutrition and Biochemistry 
Laboratory of the School of Nutritional and Dietetics 
at TUMS.

Genotyping and GRS
The DNA was extracted using the salting out method 
[40]. Subsequently, the DNA integrity was observed 
using a 1% agarose gel, whereas DNA concentration 
was quantified using a Nanodrop 8000 Spectropho-
tometer (Thermo Scientific, Waltham, MA, USA). 
The PCR-allele technique performed by the TaqMan 
Open Array (Life Technologies Corporation, Carls-
bad, CA, USA), was used for genotyping of the SNPs 
[41]. The MC4R gene primer was selected based on a 
previous study [42]. For MC4R (rs17782313), we used 
polymerase chain reaction (PCR) with the following 
primers: forward primer 5- AAGTTCTACCTACCAT-
GTTCTTGG-3 and reverse primer 5-TTCCCCCT-
GAAGCTTTTCTTGTCATTTTGAT-3. Then, 
fragments containing three genotypes were distin-
guished: CC, CT, and TT. We used PCR with the fol-
lowing primers for CAV-1 (rs3807992): forward primer 
3′AGTATTGACCTGATTTGCCATG 5′ and reverse 
primer 5′ GTCTTCTGGAAAAAGCACATGA 3′. 
Then, fragments containing three genotypes were 

distinguished: GG, GA, and AA. For Cry1 (rs2287161), 
we used PCR following primers: forward primer 
5′-GGAACAGTGATTGGCTCTATCT − 3′ and reverse 
primer 5′-GGTCCTCGGTCTCAAGAAG-3′. Then, 
fragments containing three genotypes were distin-
guished: CC, GC, and GG.

The GRS was created by combining three single nucle-
otide polymorphisms [MC4R (rs17782313), CAV-1 
(rs3807992), and Cry-1 (rs2287161)] that had previously 
been linked to obesity-related traits in GWAS and other 
studies [17, 35, 43–45]. Each SNP was recoded as 0, 1, or 
2 according to the number of risk alleles for higher BMI. 
Following that, the unweighted GRS was calculated by 
adding the number of risk alleles from the three SNPs. 
The GRS scale ranges from 0 to 6, with each point corre-
sponding to one risk allel. Higher scores indicate a greater 
genetic susceptibility to higher BMI or body weight [46].

Statistical analyses
Kolmogorov-Smirnov test was used to check the nor-
mal distribution of data. Descriptive analysis was used 
to assay the general characteristics of participants by the 
mean ± standard deviation, minimum and maximum. 
Analysis of variance (ANOVA) and analysis of covari-
ance (ANCOVA) were performed to compare the body 
composition, blood pressure, the metabolic and inflam-
matory profiles between subjects. Linear regression was 
used in the crude model and adjusted models to evaluate 
the associations of cardiometabolic risk factors (depen-
dent variable) and GRS (independent variable). Adjust-
ments were made for age, physical activity, and BMI. All 
statistical analysis was performed by using the SPSS ver-
sion 23.0 (SPSS, Chicago, IL, USA). All reported P-values 
were two-sided, and a P-value lower than 0.05 was con-
sidered statistically significant.

Finally, we draw a forest plot for linear regression coef-
ficients for a better vision of associations between GRS 
and each of the cardiometabolic variables, and also for 
comparing the crude and adjusted models. For this pur-
pose, we utilized the “forestplot” package (version 2.0.1) 
in “R Programming” software (version 4.0.3).

Result
Study population characteristics
This cross-sectional study was conducted on 391 over-
weight or obese but apparently healthy women. The 
means and standard deviation (SD) of age, weight, 
and BMI of individuals were 36.65 ± 9.08 years, 
80.75 ± 11.52 kg, and 31.03 ± 3.87 kg/m2, respectively. The 
general characteristics of study participants are given in 
more detail in Table 1.
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Difference in means of cardiometabolic variables across 
GRS
A total of 391 Iranian women were categorized based 
on their genetic risk score. The genetic risk score was 
divided into low risk, moderate risk, and high risk of 
genetic risk score and study variables were reported and 
compared across the genetic risk score. After categoriza-
tion, we found that women at high risk of GRS had a sig-
nificantly higher BMI (p = 0.01). The results also displayed 
a borderline significant difference across the genetic risk 
scores for body fat mass (p = 0.05), percentage of body 
fat (p = 0.05), serum HDL concentration (p = 0.08), and 
CRP (p = 0.06). After adjustment for confounding factors 
(BMI, age, and physical activity), BMI (p = 0.04) and per-
centage of body fat (p = 0.03) maintained their significant 
differences. Also, a borderline significant difference was 
observed for body fat mass (p = 0.05) and CRP (p = 0.05) 
in the adjusted model (Table 2) (Fig. 1).

Association of the GRS with obesityrelated anthropometric 
parameters
The crude model revealed a significant relationship 
between the GRS and some anthropometric variables, 
including BMI (β = 0. 49, 95%CI = 0.22 to 0.76, p = 0.001), 
WC (β = 0. 86, 95%CI = 0.18 to 1.54, p = 0.01), body fat 
mass (β = 0. 82, 95%CI = 0.25 to 1.39, p = 0.005), and %BF 
(β = 0. 44, 95%CI = 0.06 to 0.82, p = 0.02) (Table 3) (Fig. 2).

After adjustment for confounding factors (age and physi-
cal activity), a significant positive association was observed 
between BMI (p = 0.004), WC (p = 0.02), body fat mass 
(p = 0.01), and %BF (p = 0.01) and GRS. Also, we observed 
a significant negative association of the GRS with BMC (β= 
-0.02, 95%CI= -0.05 to -0.001, p = 0.04). Moreover, a mar-
ginally significant positive association was seen between 
WHR (β = 0. 004, 95%CI = 0.00 to 0.008, p = 0.07) and GRS in 
adjusted model.

Association of the GRS with obesity-related metabolic 
traits
The findings revealed a significant positive relationship 
between hs-CRP (= 0.46, 95% CI = 0.14 to 0.78, p = 0.005) 
and GRS. But no significant association of the GRS with 
other obesity-related metabolic variables such as SBP, 
DBP, FBS, TG, TC, LDL-C, VLDL-C, HDL, HOMA-IR, 
insulin, MCP-1, PAI-1, and Galectin3 was seen in the 
crude model (Table 3) (Fig. 2). After controlling for con-
founder factors such as age, physical activity, and BMI, 
the significant positive association between hs-CRP 
(p = 0.009) and GRS was maintained. But other variables 
did not show any significant association with GRS among 
obese and overweight women.

Discussion
This cross-sectional study investigated the relationship 
of genetic risk score by obesity-related genetic mark-
ers, including MC4R (rs17782313), CAV-1 (rs3807992), 
and Cry-1 (rs2287161), with cardiometabolic risk factors 
in overweight and obese women. There are no studies 
focusing on obesity-GRSs with overweight and obesity 
in Iranian overweight and obese populations, which rein-
forces the potential of our GRS analysis. Our results 
showed that women in T3 of GRS had a significantly 
higher BMI and percentage of body fat. Also, a border-
line significant difference across genetic risk scores was 
observed for body fat mass and hs-CRP. A significant 
positive association was observed between BMI, WC, 
body fat mass, %BF, hs-CRP, and GRS. Additionally, the 
GRS was negatively correlated with the BMC. WHR and 
GRS also showed a marginally significant positive cor-
relation. However, there were no significant associations 
between other variables and GRS among obese and over-
weight women.

Table 1  Characteristics of the investigating subjects
Variable Mean SD Minimum Maximum
Age (years) 36.65 9.08 18.00 64.00

Body weight (Kg) 80.75 11.52 59.50 122.40

BMI (Kg/m2) 31.03 3.87 25.00 40.70

Body composition
WC (cm) 99.22 9.60 79.60 131.30

WHR (ratio) 0.93 0.05 0.81 1.13

BFM (kg) 34.28 8.04 19.40 66.00

BF (%) 42.04 5.31 15.00 56.20

BMR (kcal) 1368.65 118.68 1092.00 1833.00

BMC (g) 2.65 0.34 1.89 3.93

SMM (kg) 25.48 3.37 17.30 37.90

Blood pressure
SBP (mmHg) 111.32 13.44 76.00 159.00

DBP (mmHg) 77.65 9.55 51.00 111.00

Blood parameters
FBS (mg/dl) 87.26 9.68 67.00 137.00

Total cholesterol (g/dl) 183.92 35.32 104.00 344.00

TG (mg/dl) 120.80 68.67 37.00 512.00

HDL (mg/dl) 46.45 10.63 18.00 82.00

LDL (mg/dl) 94.56 23.79 34.00 156.00

hs-CRP (mg/L) 5.08 4.54 0.00 22.73

HOMA index 3.35 1.27 1.29 9.19

Insulin (mIU/ ml) 1.21 0.23 0.60 1.99

MCP-1 (ng/ml) 50.57 92.91 0.40 575.40

Galectin3 (ng/ml) 4.10 7.30 0.15 32.29

PAI-1 (ng/ml) 16.10 29.92 0.52 202.00
SD: Standard deviation; BMI: Body mass index; WC: waist circumference; WHR: 
waist height ratio; BFM: body fat mass; BF: body fat; BMR: Basal metabolic 
rate; BMC: bone mineral content; SMM: skeletal muscle mass; SBP: Systolic 
blood pressure; DBP: Diastolic Blood Pressure; FBS: fasting blood sugar; TG: 
Triglyceride; LDL: Low density lipoprotein; HDL: High density lipoprotein; hs-
CRP: High-sensitivity C-reactive protein; MCP-1: monocyte chemoattractant 
protein; PAI-1: Plasminogen Activator Inhibitor 1
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We have shown that higher GRS has been associated 
with higher BMI, which in turn, higher BMI is a risk fac-
tor for cardiometabolic disease and might be a useful 
tool in identifying Iranian women at high risk for obe-
sity and cardiometabolic disease. According to Aslumi 
et al., the GRS based on 15 gene variants with cardio-
metabolic traits is associated with a higher BMI and also 
significantly increases WC and triglycerides through the 
presence of a low-protein diet [47]. Moreover, one cross-
sectional study showed that GRS for adult BMI was asso-
ciated with childhood and adolescent weight gain in an 
African population. These findings suggest that genetic 
susceptibility to higher adult BMI can be detected in 
childhood in this African population, and preventing 
adult obesity should begin at an early age, according to 
these findings [48]. Several SNPs have been associated 
with obesity-related traits in cross-sectional studies [47, 
49]. One cross-sectional study showed the combined 

effect of several genetic variants on obesity in Pakistanis 
and indicated the prediction of anthropometric traits by 
a GRS for obesity in a sample of Pakistanis [50], and sev-
eral studies show the positive relationship between obe-
sity indices such as BMI, BF%, BFM, WC, and WHR with 
cardiometabolic diseases [51–53]. The obesity-GRS was 
also shown to be significantly linked to higher body fat 
mass among Finnish children and adolescents [54]. Previ-
ous studies showed that the MC4R variant has an asso-
ciation with higher BMI and WC in children and adults 
[55, 56]. A-allele carriers of the CAV-1, which is abun-
dant in adipocytes [25], had a significantly higher BMI 
[29, 30]. Also, Cry − 1 has an important role in metabo-
lism [31] and the C-allele of the Cry-1 polymorphism can 
lead to significantly higher obesity indices such as BMI, 
weight, WC, and hip circumferences [34]. Moreover, we 
found a significant positive association between WC and 
GRS, and the association between central obesity and 

Table 2  Mean and SD of anthropometric body composition, blood parameters and blood pressure across to GRS.
Variables† GRS

Low risk (164) Moderate risk (97) High risk (130) P-value P-valueb

> 3 3 3 <
Age (years) 36.66 ± 9.51 37.20 ± 8.85 36.27 ± 8.83 0.72 0.76

Body weight (Kg) 79.88 ± 10.29 80.50 ± 11.56 81.73 ± 12.56 0.38 0.69a

BMI (Kg/m2) 30.30 ± 3.60 31.16 ± 3.79 31.63 ± 4.07 0.01 0.04
Body composition
WC (cm) 98.05 ± 9.01 99.41 ± 9.48 100.15 ± 10.16 0.18 0.25 a

WHR (ratio) 0.93 ± 0.05 0.93 ± 0.04 1.55 ± 7.51 0.43 0.50 a

BFM (kg) 32.98 ± 7.22 34.75 ± 7.96 35.21 ± 8.70 0.05 0.05a

BF (%) 41.18 ± 5.10 42.61 ± 4.95 42.46 ± 5.67 0.05 0.03a

BMR (kcal) 1377.30 ± 115.06 1376.30 ± 164.83 1371.17 ± 123.62 0.91 0.58 a

BMC (g) 2.68 ± 0.33 2.64 ± 0.35 2.63 ± 0.35 0.37 0.21 a

SMM (kg) 25.58 ± 3.18 25.26 ± 3.45 25.53 ± 3.52 0.75 0.74 a

Blood pressure
SBP (mmHg) 110.71 ± 11.90 111.44 ± 15.30 111.95 ± 13.91 0.79 0.81

DBP (mmHg) 77.42 ± 9.63 77.81 ± 10.11 77.82 ± 9.17 0.94 0.72

Blood parameters
FBS (mg/Dl) 87.21 ± 9.14 85.71 ± 7.68 88.36 ± 11.30 0.26 0.64

Total cholesterol (g/dl) 186.93 ± 34.22 185.36 ± 38.54 179.62 ± 34.19 0.35 0.32

TG (mg/dl) 122.21 ± 67.58 109.23 ± 51.23 127.14 ± 79.19 0.28 0.29

HDL (mg/dl) 46.92 ± 9.86 48.41 ± 12.32 44.60 ± 10.01 0.08 0.18

LDL (mg/dl) 95.92 ± 22.08 97.91 ± 25.29 90.78 ± 24.33 0.15 0.19

hs-CRP (mg/L) 4.63 ± 3.97 4.70 ± 4.18 5.78 ± 5.17 0.06 0.05
HOMA index 3.38 ± 1.16 3.12 ± 1.12 3.48 ± 1.45 0.22 0.38

Insulin (mIU/ ml) 1.20 ± 0.23 1.21 ± 0.22 1.23 ± 0.24 0.63 0.64

MCP-1 (ng/ml) 47.86 ± 90.28 49.30 ± 85.48 54.51 ± 101.29 0.89 0.69

Galectin3 (ng/ml) 3.44 ± 6.91 5.53 ± 7.90 3.99 ± 7.51 0.63 0.48

PAI-1 (ng/ml) 17.10 ± 35.99 11.55 ± 18.08 18.41 ± 29.51 0.49 0.54
SD: Standard deviation; GRS: Genetic risk score; BMI: Body mass index; WC: waist circumference; WHR: waist height ratio; BFM: body fat mass; BF: body fat; BMR: Basal 
metabolic rate; BMC: bone mineral content; SMM: skeletal muscle mass; SBP: Systolic blood pressure; DBP: Diastolic Blood Pressure; FBS: fasting blood sugar; TG: 
Triglyceride; LDL: Low density lipoprotein; HDL: High density lipoprotein; hs-CRP: High-sensitivity C-reactive protein; MCP-1: monocyte chemoattractant protein; 
PAI-1: Plasminogen Activator Inhibitor 1

† Calculated by analysis of variance (ANOVA)

a BMI considered as collinear and this variable adjusted for age, physical activity, and smoking

b Adjusted for age, BMI, physical activity
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mortality risk was reported in a recent study of 42,702 
participants in Europe [57]. This has particular signifi-
cance for Asian populations, whose BMIs are within the 
normal range but are associated with increased visceral 
adiposity [47, 51].

In line with our study, several studies show a positive 
relationship between inflammatory markers such as hs-
CRP and GRS. One study showed inflammatory markers 
such as MCP-1 are higher in risk-allele carriers of CAV1 
with unhealthy diet patterns [58]. One study suggests 
that CAV-1 inhibits the activity of the endothelial nitric 
oxide synthase (eNOS) and HDL receptor in caveolae 
[58]. Numerous genetic loci have been identified that 
affect serum CRP levels, including the CRP gene itself, 
the APOE gene, and the IL6R gene, and CRP levels were 
higher among participants with a higher GRS [59]. An 
analysis of the effect of GRS on cardiovascular disease 
revealed significant mediation by established cardiovas-
cular risk factors [60]. In the Framingham Heart Study, 
a GRS composed of 13 SNPs associated with CVD was 
an independent predictor of cardiovascular events and 
offers modest improvements in reclassification for inci-
dent cardiovascular events [61]. In the Diabetes Heart 
Study, GRSs derived from 13 to 30 SNPs have been 
shown to be associated with prevalent CVD, and these 

associations have been extended to include all-cause and 
CVD mortality [62].

Also, we observed a significant negative association 
between the GRS and BMC. Other studies found that 
the rs17782313 C risk allele of MC4R has an inverse 
association with BMC. It can be related to lower fat-
free mass in people with the MC4R risk allele [63]. 
Because FFM has an important role in bone mineral 
density. Also, it has been shown that the MC4R geno-
type, which is an independent determinant of fat mass 
[64], is also related to bone mass in children [65]. One 
study suggested a relationship between CAV1 and 
bone health and metabolism [66]. They saw knock-
down of Cav-1 in animal studies led to a decrease in 
osteoclast differentiation, osteoclast genesis, and bone 
homeostasis, and so Cav-1 had a positive role in osteo-
clast differentiation of female but not male mice, and 
it can be associated with estrogen-induced signal-
ing processes and the protective effect of estrogen on 
osteoclasts [66]. However, we observed a significant 
negative association between the GRS and the BMC. 
This may be because we assess three distinct genes 
and not the effects of each one separately. Each mam-
malian cell possesses its own molecular circadian 
clock, and it consists of a unit of positive (CLOCK 

Fig. 1  Difference in means of cardiometabolic variables across GRS. BMI: Body mass index;BFM: body fat mass; BF: body fat; hs-CRP: High-sensitivity C-
reactive protein
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and BMAL1) and negative elements (CRY, PER, and 
REV-ERB alpha), that numerous clock genes are con-
trolled by molecular clocks [66]. The bone volume was 
increased in Cry deficient mice [67]. Indeed, there is 
an association between circadian rhythms and osteo-
blast differentiation, and mineral deposition genes are 
predominantly associated with circadian rhythm pat-
terns [67, 68].

To the best of our knowledge, this study is the first 
to examine the association of GRS and cardiometa-
bolic risk factors among overweight and obese women. 
Therefore, the use of GRS is a more effective method 
of estimating the genetic risk of overweight/obesity 
when comparing different multiple common risk vari-
ants than individual risk variants, especially when the 
sample size is not very large. A strength of the present 
study is that it was performed in a developing coun-
try, where information about diet-disease associations 
is limited. However, several limitations should be con-
sidered. As a result of the cross-sectional design of 

the study, it was impossible to draw any causal link-
age. Another limitation is that the current study had a 
small sample size and was conducted on a population 
from Tehran, and therefore the results might not be 
generalizable to the other cities in Iran.

Conclusion
In conclusion, we found a positive significant asso-
ciation between GRS and some cardiometabolic risk 
factors in overweight and obese women. However, as 
a result of the limited available literature performed 
in this regard, where most have been conducted with 
Asian participants, further prospective studies in dif-
ferent populations are needed to confirm and compare 
the veracity of our findings.

Table 3  Association of GRS on cardiometabolic risk factors among obese and overweight female subjects
Variables GRS

Crude Model1

Β 95 CI P-value Β 95 CI P-value R2
BMI (Kg/m2) 0.49 0.22 to 0.76 < 0.001 0.42 0.13 to 0.71 0.004
Body composition
WC (cm) 0.86 0.18 to 1.54 0.01 0.81 0.08 to 1.53 0.02a 0.01

WHR (ratio) 0.12 -0.20 to 0.45 0.46 0.004 0.00 to 0.008 0.07a 0.01

BFM (kg) 0.82 0.25 to 1.39 0.005 0.79 0.19 to 1.39 0.01a 0.01

BF (%) 0.44 0.06 to 0.82 0.02 0.49 0.08 to 0.89 0.01a 0.01

BMR (kcal) -1.49 -10.95 to 7.96 0.75 -4.66 -14.99 to 5.66 0.37 a 0.006

BMC (g) -0.02 -0.44 to 0.005 0.12 -0.02 -0.05 to -0.001 0.04a 0.02

SMM (kg) -0.01 -0.25 to 0.23 0.92 -0.09 -0.35 to 0.16 0.46 a 0.08

Blood pressure
SBP (mmHg) 0.62 -1.20 to 2.44 0.50 -0.21 -2.10 to 1.67 0.82 0.081

DBP (mmHg) 0.20 -1.09 to 1.50 0.75 -0.47 -1.81 to 0.86 0.48 0.071

Blood parameters
FBS (mg/Dl) 0.54 -0.85 to 1.95 0.44 0.26 -1.13 to 1.66 0.71 0.10

Total cholesterol (g/dl) -3.63 -8.74 to 1.47 0.16 -3.78 -9.09 to 1.53 0.16 0.09

TG (mg/dl) 2.28 -7.68 to 12.25 0.65 1.12 -9.65 to 11.90 0.83 0.07

HDL (mg/dl) -1.13 -2.66 to 0.40 0.14 -0.42 -2.05 to 1.21 0.61 0.008

LDL (mg/dl) -2.5 -5.95 to 0.92 0.15 -2.24 -5.81 to 1.31 0.21 0.084

hs-CRP (mg/L) 0.46 0.14 to 0.78 0.005 0.44 0.11 to 0.78 0.009 0.15

HOMA index 0.04 -0.13 to 0.23 0.61 -0.03 -0.22 to 0.16 0.76 0.10

Insulin (mIU/ ml) 0.01 -0.01 to 0.05 0.33 0.01 -0.02 to 0.04 0.45 0.07

MCP-1 (ng/ml) 0.43 -8.21 to 9.07 0.92 0.91 -8.00 to 9.83 0.84 0.009

Galectin3 (ng/ml) 0.09 -0.93 to 1.12 0.85 0.04 -1.17 to 1.26 0.93 0.03

PAI-1 (ng/ml) -0.68 -3.80 to 2.43 0.66 -2.13 -5.41 to 1.15 0.20 0.06
SD: Standard deviation; R2: R-squared; GRS: Genetic risk score; BMI: Body mass index; WC: waist circumference; WHR: waist height ratio; BFM: body fat mass; BF: body 
fat; BMR: Basal metabolic rate; BMC: bone mineral content; SMM: skeletal muscle mass; SBP: Systolic blood pressure; DBP: Diastolic Blood Pressure; FBS: fasting blood 
sugar; TG: Triglyceride; LDL: Low density lipoprotein; HDL: High density lipoprotein; hs-CRP: High-sensitivity C-reactive protein; MCP-1: monocyte chemoattractant 
protein; PAI-1: Plasminogen Activator Inhibitor 1

† Calculated by linear regression

Model1: Adjusted for age, BMI, physical activity, and energy intake

a BMI considered as collinear and this variable adjusted for age, physical activity, and smoking
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Fig. 2  Forest plot for linear regression coefficients, the associations between GRS and the cardiometabolic variables. BMI: Body mass index; WC: waist 
circumference; WHR: waist height ratio; BFM: body fat mass; BF: body fat; BMR: Basal metabolic rate; BMC: bone mineral content; SMM: skeletal muscle 
mass; SBP: Systolic blood pressure; DBP: Diastolic Blood Pressure; FBS: fasting blood sugar; TG: Triglyceride; LDL: Low density lipoprotein; HDL: High density 
lipoprotein; hs-CRP: High-sensitivity C-reactive protein; MCP-1: monocyte chemoattractant protein; PAI-1: Plasminogen Activator Inhibitor 1
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