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Mammary adipose tissue (AT) is necessary for breast epithelium. However, in breast
cancer (BC), cell-cell interactions are deregulated as the tumor chronically modifies
AT microenvironment. In turn, breast AT evolves to accommodate the tumor, and
to participate to its dissemination. Among AT cells, adipocytes and their precursor
mesenchymal stem cells (MSCs) play a major role in supporting tumor growth and
dissemination. They provide energy supplies and release a plethora of factors involved in
cancer aggressiveness. Here, we discuss the main molecular mechanisms underlining
the interplay between adipose (adipocytes and MSCs) and BC cells. Following close
interactions with BC cells, adipocytes lose lipids and change morphology and secretory
patterns. MSCs also play a major role in cancer progression. While bone marrow
MSCs are recruited by BC cells and participate in metastatic process, mammary AT-
MSCs exert a local action by increasing the release of cytokines, growth factors and
extracellular matrix components and become principal actors in cancer progression.
Common systemic metabolic diseases, including obesity and diabetes, further modify
the interplay between AT and BC. Indeed, metabolic perturbations are accompanied
by well-known alterations of AT functions, which might contribute to worsen cancer
phenotype. Here, we highlight how metabolic alterations locally affect mammary AT
and interfere with the molecular mechanisms of bidirectional communication between
adipose and cancer cells.

Keywords: mammary adipose tissue, breast cancer, obesity, diabetes, molecular signals, adipocytes,
mesenchymal stem cells

INTRODUCTION

Breast cancer (BC) is the most common tumor in women and represents the second cause of cancer-
caused death after lung cancer (1). In 2018, over 2 million new BC cases were estimated worldwide
(2). In the past 3 decades, patient survival rate has increased, thanks to improvements in treatment
and detection (3). However, patients’ quality of life is still negatively affected by chemotherapy
side effects. Targeted and hormone therapies in most cases do not have long lasting effects; and
a number of patients display or acquire resistance to treatments, with a significant reduction of
therapy efficacy (3, 4).
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The increased incidence and the worse prognosis for BC are
parallel to the alarming increase of metabolic disturbances. BC
risk is about twofold higher in obese and 16% higher in women
with type 2 diabetes (T2D), independently of obesity (5). Patients
with obesity and T2D have larger tumors at diagnosis, and worse
outcome, with increased risk of distant metastases and mortality
(6–8). Moreover, obesity and T2D affect chemotherapy toxicity
and surgical complications (9–11).

Breast tissue is composed by 90% of adipose tissue (AT) with
permanent interactions between epithelial cells and adipose cells
(12). Adipocytes and their precursor mesenchymal stem cells
(MSCs) may sustain tumor phenotypes by either acting as energy
reservoirs for neighboring cancer cells or through secretion of
signaling molecules and vesicles containing proteins, lipids and
nucleic acids (13, 14). The dysfunction of AT is now considered
a central mechanism for the development of obesity and T2D
metabolic complications (15).

In this manuscript, we overview the role of mammary
AT as a support for BC cell growth and progression, and
describe the known molecular mechanisms underlying the
AT/tumor bidirectional crosstalk, especially in the presence of
metabolic disorders.

MAMMARY ADIPOSE TISSUE AND
BREAST CANCER

AT is a loose connective tissue characterized by marked cellular
heterogeneity. It is made up of about one-third of adipocytes
and two-thirds of stromal-vascular fraction cells, a combination
of MSCs, endothelial precursor cells, fibroblasts, smooth muscle
cells, pericytes, macrophages and preadipocytes in various stages
of development (16). MSCs are located in perivascular niches
and participate to cell turnover and to the vascular network for
AT tropism (17). For a long time, AT has been considered as
an energy depot. Since 90s, the role of AT has been revised and
broadened to an active endocrine organ, able to control systemic
energy and metabolic homeostasis through a complex network of
signals (16, 18).

In the mammary gland, adipose cells are characterized by high
plasticity and support the growth and function of the mammary
epithelium (19). Mammary AT surrounds the epithelial ducts,
which are the milk-producing structures of the breast. In vitro
and in vivo studies have shown the importance of mammary AT
for the growth, the branching and the preservation of the ducts
and for the functional differentiation of the epithelium ahead of
pregnancy (20). For instance, A-Zip mice, which have mammary
gland lacking mature adipocytes, display rudimental epithelial
ducts with reduced branching and severe distention (21).

The role of AT, and more specifically of adipocytes and their
precursors MSCs, in BC progression and metastasis, is a quite
new area of research. However, adipose cells communicate with
cancer cells within the breast, and this may contribute to cancer
progression, through different mechanisms.

• Release of signaling molecules: Either locally released
molecules, either those coming from distal sites converge

in the interstitial fluids of the mammary AT (19). Some AT-
released factors contribute to AT remodeling, adipogenesis,
innervation and angiogenesis by acting through autocrine
and paracrine ways. Other AT-factors act in an endocrine
manner and influence the functions of many tissues,
thus controlling appetite, food intake, glucose disposal
and energy expenditure (16, 18, 22). Over 350 proteins
have been identified in mammary AT by using proteomic
approaches. These factors are called “adipokines” and
include leptin, adiponectin, resistin, growth factors (IGF1,
insulin-like growth factor 1; VEGF, vascular endothelial
growth factor; EGF, epidermal growth factor; FGF,
fibroblast growth factor; HGF, hepatocyte growth factor;
NGF, nerve growth factor; TGFβ, transforming growth
factor), enzymes (autotaxin) and cytokines (interleukin
[IL]-1, IL-6, IL-8, CCL5, tumor necrosis factor-TNF-α)
(16, 22, 23). These molecules are crucial for the physiology
and development of AT and breast epithelium and for
the entire organism. However, the same factors may as
well contribute to proliferation, motility, invasiveness,
epithelial to mesenchymal transition (EMT) and stemness
of BC cells, as well as to tumor angiogenesis by activating
different molecular mechanisms (12, 24–26).
• Mechanical support: Among AT-secreted proteins, there

is a wide variety of extracellular matrix (ECM) proteins
needed for the tissue structure, but also involved in cell-
cell communication systems and in the sequestering of
growth factors for a time-and context-dependent release
(27). Some of these factors may sustain cancer progression.
For instance, adipocyte-derived collagen VI promotes BC
progression via bNG2/chondroitin sulfate proteoglycan
receptors, while endotrophin, a cleavage product of collagen
VI, contributes to tissue fibrosis and EMT of BC cells
through enhanced TGF-β signaling (28, 29).
• Energy supply: Lipids and metabolites are largely released

by AT in mammary glands. Mammary epithelium is
able to utilize and metabolize fatty acids to a variety of
derivatives (19). However, lipids are taken up also by
cancer cells which display a characteristic “lipid metabolic
reprogramming.” BC cells take advantage of fatty acids
and glycerol for the biosynthesis of membranes, needed for
their proliferation, and for the generation of lipid-derived
biomolecules such as steroid hormones, diacylglycerol,
eicosanoids, phospholipids and sphingolipids which sustain
all the functions of cancer cells (12, 30). Recently, it has
been shown that the inhibition of fatty acid receptor CD36
impairs metastasis in human BC-derived tumors (31).

Therefore, adipose cells may accommodate BC cells with
stimulatory, supportive and nutritive functions.

BC-ASSOCIATED ADIPOSE CELLS

Emerging evidence indicates that relevant phenotypic changes
occur in AT surrounding BC. Indeed, the invasion of AT by BC
cells located at the margin of tumor mass is associated with tumor
aggressiveness and poor prognosis (32).
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Overall, AT adjacent to malignant breast tumors displays
down-regulation of the expression of adipogenesis-related genes
Homeobox C Cluster (HOXC) 8, HOXC9, fatty acid binding
protein 4 (FABP4) and hormone sensitive lipase (HSL) and up-
regulation of inflammatory cytokines, like TNF-α and monocyte
chemoattractant protein 1 (MCP-1) and of leptin, with a decrease
of adiponectin levels (33).

The impact of BC cells specifically on adipocytes has been
documented by analyzing adipocytes isolated from human and
mouse tumor samples and by using in vitro systems of BC
cells co-cultured with different types of human and murine
adipocytes. Compared to normal adipocytes, the so called
“cancer- associated adipocytes” (CAA) are smaller cells, with
a reduction in the number and size of lipid droplets and
modification of basement membranes and ECM (34). Adipocytes
adjacent to breast tumors display increased levels of matrix
metalloproteinase-11 (MMP11), which inhibits pre-adipocyte
differentiation and reverses mature adipocyte differentiation to
maintain the invasive property of cancer cells (34, 35). Impaired
adipogenic differentiation program of CAAs is accompanied
by the downregulation of Peroxisome Proliferator Activated
Receptor Gamma (PPARγ), CCAAT-enhancer-binding protein α

(C/EBPα), FABP4, and resisitin mRNA levels (36, 37). Moreover,
BC cell-released TNF-α and IL-11 drive a desmoplastic reaction
in pre-adipocytes, leading to downregulation of adipogenic
master genes (37). PPARγ reduction is also related to the increase
of miRNA-155 in exosomes of adipocyte-BC co-coltures (38).
Notably, the reduction of lipid droplets takes place with the
metabolic reprogramming that adipocytes undergo in contact
with BC cells and with the acquisition of a brown-like phenotype.
Indeed, cancer cells induce the lipolysis in CAAs via HSL
and adipose triglyceride lipase (ATGL). Free fatty acids enter
into cancer cells, are transported through FABP4 and degraded
to provide ATP and bioactive lipids needed for cell invasion,
angiogenesis and immunosuppression (11, 30). Consistently,
during BC progression, in cancer cells there is an increase
of FABP4 and of lipogenic enzymes, like fatty acid synthase
(FASN). FASN controls the response of BC cells to E2-stimulated
ERα signaling and its levels are associated to a poor clinical
outcome in patients with BC (39, 40). Gene expression profiling
of breast adipocytes shows greater brown adipocyte-related
activity next to breast tumors than in benign breast lesions
(33). This is consistent with the finding that in co-coltures
of adipocytes- BC cells there is an increase of the exosomal
miRNA-144 that promotes beige/brown adipocyte differentiation
by downregulating MAP3K8/ERK1/2/PPARγ and of exosomal
miRNA-126 that plays a crucial role in metabolic reprogramming
of adipocytes, targeting IRS1 (Insulin receptor substrate 1) and
AMPK (5’ AMP-activated protein kinase) (41). In addition
to MMP11, CAAs express MMP1, MMP7, MMP10, MMP14
and PAI, thus damaging ECM integrity in BC environment
(34). Furthermore, cancer cells induce adipocytes to secrete
fibronectin, which, in turn activates STAT3 signaling pathway in
BC cells, thus promoting EMT (42). Fibronectin activates also
AKT2 in BC cells, interfering with p38 pathway and docetaxel-
induced apoptosis (43). Beside ECM proteins, CAAs display
an imbalanced secretion of adipokines, cytokines and growth

factors or associated proteins. For instance, compared to normal
adipocytes, CAAs secrete a higher amount of leptin, IL-1b,
IL-6, CCL5, MCP-1, TNF-α, VEGF and insulin-like growth
factor binding protein-2 (IGFBP-2) which in turn promote
invasion and metastasis of BC (24, 44, 45). Indeed, CCL5
immuno-detection in peritumoral AT of women with triple
negative BC (TNBC) correlates with lymph node and distant
metastases and shows a negative correlation with the overall
survival of patients (46). In addition, adipocytes co-cultured
with BC cells induce the expression of IL-6 in cancer cells,
resulting in the phosphorylation of effector kinase CHK1 and
the acquisition of a radio-resistant phenotype in BC cells (47).
Mature adipocytes also contribute to HER2 + BC cell resistance to
trastuzumab-mediated antibody-dependent cellular cytotoxicity
and impair immunotherapy efficacy by the hyperexpression
of programmed death- ligand 1 (PD-L1), that prevents the
antineoplastic functions of CD8 + T cells (24, 48).

Similar to adipocytes, MSCs are largely modified by cancer
cells. Per se involved in tissue repair, angiogenesis and
immunomodulation, MSCs, in contact with cancer cells become
cancer supportive cells, so called carcinoma-associated MSCs
(CA-MSCs). Nowadays, the contribution of MSCs in BC
progression has been investigated mainly by using bone marrow-
derived MSCs (BM-MSCs). BM-MSC homing in BC is mediated
by tumor (and CAA) –derived chemokines (MCP-1, CCL5,
CXCL 16- chemokine [C-X-C motif] ligand 16, SDF1-stromal
cell-derived factor 1), growth factors (VEGF, IGF1, TGFβ, FGF)
and miRNAs (i.e., miRNA-126/miRNA-126∗) (49, 50). Once
educated by cancer cells, BM-MSCs secrete CXCL1, CXCL2,
SDF1, IL-6, IL-8, TGFβ and microvesicles containing miRNA,
such as miRNA-21 and miRNA-34a, all factors implicated in BC
survival, progression and chemo-resistance (51, 52). For instance,
BC cell-released TNF-α stimulates BM-MSCs to secrete CXCR2
(C-X-C Motif Chemokine Receptor 2) ligands which, in turn,
recruit CXCR2 + neutrophils into the tumor, thus promoting
metastases (53). Following MSC co-colture, BC cells upregulate
IL-6 and CXCL7 pathways with enhanced mammosphere
formation efficiency (54). BM-MSCs enhance angiogenesis by
releasing soluble factors (VEGF, Leukemia inhibitory factor- LIF,
Macrophage Inflammatory Protein 2-MIP2) and exosomes that
induce VEGF expression in cancer cells by activating extracellular
signal-regulated kinase1/2 (ERK1/2) pathway (55). Moreover, BC
cell migration is fostered by BM-MSCs through ER (estrogen
receptor)-SDF-1/CXCR4 crosstalk and CXCR2 activation (56,
57). BC cells prompt BM-MSCs to secrete large amount of
CCL5, which, in turn, were shown to increase BC metastatic
potential of about 5 fold (58). Occurrence of BC metastases in
lungs and bones is also supported by the induction of TWIST
transcription by BM-MSC production of lysil oxidase enzyme
(59) and by the production of exosomes containing miRNA-
222/223 (60). Finally, it has been shown that, in contact with
BC cells, BM-MSCs are able to transdifferentiate into cancer
associated fibroblasts (CAFs), the best companions for BC cells
(50, 51, 61).

The crosstalk between BM-MSCs and BC cells is highly
relevant since BC typically metastasizes to bone, and bone
marrow could represent an ideal environment for the
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development of BC micro-metastatic niches. However, the
interaction of BC cells with mammary AT resident MSCs should
be taken into account for its potential role in BC progression.

Recently, it has been shown that MSCs isolated from
mammary AT of patients with BC, express high levels of brain-
derived neurotrophic factor (BDNF), neurogenic locus notch
homolog protein 1 (NOTCH1) and cytoskeletal Vimentin, and
reduction of growth differentiation factor 15 (GDF15), IGF1,
MMP2, platelet-derived growth factor receptor b (PDGFRB) and
TGFβ. Moreover, when co-injected with BC cells in immune-
compromised SCID/beige mice, MSCs generate tumors with an
increased volume and innervation (52). MSCs isolated from
mice bearing BC xenograft tumors can be incorporated in
tumor vessels and display up-regulation of SDF1 and α-smooth
muscle actin (α-SMA - marker of CAF) (62). Mammary MSCs
significantly promote ER-negative BC cell migration and invasion
in vitro and tumor invasion in a co-transplant xenograft mouse
model by producing IL- 6 upon activation of cofilin-1, a well-
known regulator of actin dynamics (63). Noteworthy, in another
study, using co-culture models, AT-derived MSCs promote BC
cell migration and invasion through P2X-mediated purinergic
signaling and ATP-loaded microvescicles (64). AT- derived
MSC exosomes lead to an up-regulation of WNT target genes
Axin2 and Dkk1, and β-catenin in BC cells, thus enhancing
cell migration (65). Moreover, mammary MSCs promote
mammosphere formation via cytokines, EGF/EGFR/Akt and
adipsin pathways (26, 44, 66). In addition, it has been shown
that AT-derived MSCs fuse with BC cells spontaneously and
this fused population is enriched in BC stem cells (CSC)
CD44+CD24−/lowEpCAM+ (67). Finally, MSCs isolated from
BC patients with pathological stage III disease, induce up-
regulation of mRNA expression levels of IL-4, TGF-β1, IL-10,
CCR4 andCD25 in peripheral blood leukocytes and an increase of
the percentage of CD4 + CD25(high)Foxp3(+) T regulatory cells
in vitro, thus sustaining an anti-inflammatory response within the
tumor microenvironment (68).

Taken together, these data indicate that both adipocytes and
MSCs are largely modified by cancer cells and, once educated by
BC cells, become principal actors in metastatic process.

ADIPOSE CELLS AS LINK BETWEEN
METABOLIC DERANGEMENTS AND BC
PROGRESSION

Several studies have highlighted that hyperlipidemia,
hyperglycemia, hyperinsulinemia and anti-diabetic drugs
may be determinant in the association between metabolic
imbalance (i.e., obesity and T2D) and BC (7, 8). Changes in body
weight and genetic polimorphisms may significantly interact to
increase pre- and post-menopausal BC risk (69). However, it is
still poorly understood how mammary AT changes related to
obesity and T2D conditions might influence BC progression.

In general, in presence of chronic overnutrition, AT
expands beyond its capacity in order to maintain a sufficient
angiogenesis, leading to persistent hypoxia, fibrosis, cellular
senescence, necrotic adipocyte death and a large secretion of

pro-inflammatory cytokines, such as TNF-α, IL-6, IL-8 and MCP-
1. Compromised AT cells recruit immune cells, particularly
monocytes that amplify the local inflammation, determining the
“low grade chronic inflammation.” The unhealthy AT expansion
largely contributes to the systemic metabolic derangements
associated to obesity and T2D (15, 27, 70).

It has been reported that adipocytes and MSCs from human
lipoaspirate of obese donors, compared to adipocytes/MSCs
from lean subjects, enhance BC cell growth at higher extent
and promote tumor metastasis at least in part by IGF1 and
leptin pathways (71, 72). Leptin from obese-derived MSCs
increases expression of SERPINE 1, SNAI2, IL-6, TWIST1, and
cyclooxygenase-2 -COX-2, which are crucial in EMT and CSC
programs in BC cell lines and in TNBC PDX-derived cells (72).
Moreover, leptin modulates exosome biogenesis in BC cells and
promotes invasive ductal and lobular carcinoma in vivo (12,
73). Leptin increase and adiponectin reduction are hallmarks of
obesity. While leptin involvement in BC progression is widely
recognized (12, 74), the role of adiponectin is still controversial
and depends on ERα expression in BC (75). In ERα + cells,
low adiponectin levels, like those observed in obesity, stimulate
cell proliferation. In contrast, in ERα- cells, adiponectin is able
to inhibit cell growth and progression in vitro and in vivo
(76). In AT of obese subjects and mouse models an increase
of survivin has also been observed. Survivin is an antiapoptotic
protein strongly linked to cancer cell growth. Consistently, its
increase in obesity protects MSCs from apoptosis and controls
adipocyte lipolysis and lipid storage and may contribute to cancer
progression (77, 78). Increased lipid content and external lipid
stimuli largely modify adipocyte-BC cell communication. Indeed,

FIGURE 1 | Adipose and breast cancer cell bidirectional communication.
Adipocytes (yellow round cells) and mesenchymal stem cells (gray elongated
cells) communicate with breast cancer cells (red cells) with a plethora of
signals that include exosomes, lipids and proteins. The extracellular
environment affects either adipose cells either cancer cells, thus interfering on
cell-cell communication systems.
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lipid-overloaded 3T3-L1 adipocytes transfer about twofold more
fatty acids to BC cells, compared to “normal” adipocytes.
BC cells in turn up-regulate Carnitine palmitoyltransferase 1A
(CPT1A) and electron transport chain complex protein levels
and display an increase of proliferation and migration that
is parallel to adipocyte lypolisis (79). Mammary adipocytes,
incubated with palmitate or oleate or cultured in high glucose
medium release higher amounts of IGF1 and CCL5 and promote
BC cell proliferation and invasiveness (46, 71). High glucose
concentrations also stimulate mammary adipocytes to secrete
IL-8, which contributes to tamoxifen resistance in BC cells
possibly through up-regulation of Connective Tissue Growth
Factor (CTGF) (80). CTGF levels in tumoral tissues of patients
with ER + BC correlates with hormone therapy resistance,
distant metastases, reduced overall and disease-free survival (80).
In addition, tumor-surrounding adipocytes induce multi-drug
resistance in BC cells through up-regulation of a transport-
associated major vault protein (MVP) which mediates the
efflux of the chemotherapeutic agent doxorubicin. This effect is
amplified by obesity (81). Recently, it has been shown that in mice
bearing triple negative BC, diet-induced obesity (DIO) inhibits
fatty acids storage and amplify local inflammation in mammary
AT. In parallel, cancer cells increase fatty acid synthesis and
change fatty acid composition. Lipid saturated cell membranes
protect cancer cells from the cytotoxic effects of doxorubicin
(82). Moreover, lipid peroxidases secreted by visceral AT of
DIO rats are able to modify carcinogenesis-related genes in
non-tumoral breast epithelium cells, thus indicating that in
obesity, AT-secreted factors are also involved in early stages of
tumor development (83). AT hypoxia and BC progression seem
to be strongly linked. A high amount of adipocytes enhances
cancer progression inducing the expression of Hypoxia-inducible
factor-1α (HIF-1α) and its target genes, which causes the
loss of ERα protein in BC cells (84). A positive correlation
between breast adipocyte size and the presence of crown-like
structures (CLS; spread inflammatory loci characterized by M1
macrophages around necrotic adipocytes) in peritumoral AT has
been observed, likely reflecting local inflammation. In patients
with both obesity and BC, the presence of CLS accumulation
in mammary AT is concomitant with aggressive, high-grade
tumors and positive lymph node involvement (85). In the
inflamed breast tissue of obese BC patients, higher levels of
both NF-κB binding activity and aromatase expression have
been reported (85). Mammary AT inflammation, characterized
by CLS, inflammatory cytokines and recruitment of a number
of immune cells, is largely considered the link between
metabolic derangements and worse BC prognosis (70, 86). For
this reason, great efforts are being made for disrupting the
obesity-cancer link by targeting inflammation with omega-3
fatty acids, non-steroidal anti-inflammatory drugs, monoclonal

antibodies against specific cytokines, selective COX-2 inhibitors
or polyphenolic compounds. Resveratrol, for example, appears
to protect against the protumorigenic effects of obesity in a
murine model of BC, at least in part, by inhibiting adipocyte
hypertrophy, CLS formation, pro-inflammatory cytokines and
COX-2 expression (87).

CONCLUSION AND PERSPECTIVES

As genetic and epi-genetic mutations accumulate in cancer cells
(88, 89), functional alterations appear in AT and support BC
progression. AT and BC cells communicate through a network
of exosomes, lipids and proteins; extracellular environment may
further interfere with these signals (Figure 1). However, most
of the studies are based on MSCs/adipocytes isolated from
different AT reservoirs (i.e., abdominal, dermal, umbilical), both
of murine and human origin. Since the functional diversity
of AT depots is well established (20), it is necessary to
strengthen the research activity on AT-BC communication in
the context of the breast. In addition, the expanded crosstalk
of adipocytes and MSCs between each other and with other
components of breast microenvironment, such as endothelial
cells, pericytes and immune cells should also be exploited
concerning BC progression.
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