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Reverse-Correlation Analysis of 
the Mechanosensation Circuit and 
Behavior in C. elegans Reveals 
temporal and spatial encoding
Daniel A. porto1, John Giblin2, Yiran Zhao2 & Hang Lu1,2,3

Animals must integrate the activity of multiple mechanoreceptors to navigate complex environments. 
In Caenorhabditis elegans, the general roles of the mechanosensory neurons have been defined, but 
most studies involve end-point or single-time-point measurements, and thus lack dynamic information. 
Here, we formulate a set of unbiased quantitative characterizations of the mechanosensory system 
by using reverse correlation analysis on behavior. We use a custom tracking, selective illumination, 
and optogenetics platform to compare two mechanosensory systems: the gentle-touch (tRNs) and 
harsh-touch (PVD) circuits. This method yields characteristic linear filters that allow for the prediction 
of behavioral responses. The resulting filters are consistent with previous findings and further provide 
new insights on the dynamics and spatial encoding of the systems. our results suggest that the tiled 
network of the gentle-touch neurons has better resolution for spatial encoding than the harsh-touch 
neurons. Additionally, linear-nonlinear models can predict behavioral responses based only on sensory 
neuron activity. our results capture the overall dynamics of behavior induced by the activation of 
sensory neurons, providing simple transformations that quantitatively characterize these systems. 
Furthermore, this platform can be extended to capture the behavioral dynamics induced by any neuron 
or other excitable cells in the animal.

A key function of the nervous system is to integrate the activity from a variety of sensory neurons and transform 
these neuronal signals into specific behavioral responses. This integration occurs not only across sensory modal-
ities but also spatially and temporally within a single modality such as in mechanosensation1. Characterizations 
of how the nervous system processes this information is vital for understanding brain function and allowing for 
prediction of behavioral responses. Caenorhabditis elegans, a nematode with a mapped connectome and powerful 
genetic and physiological tools, is an effective model organism for investigating relationships between sensory 
inputs and downstream activities2,3. The components of the neural circuits involved in C. elegans mechanosensa-
tion have been elucidated through various genetic and behavioral analyses, coupled with neuronal cell ablation 
assays4–6. Two sets of mechanoreceptors are specifically responsible for sensing touch throughout the body: the 
gentle touch sensing TRNs and harsh touch sensing PVDs7. These specific neurons have been the focus of a num-
ber of studies, including genetic dissections of the mechanical signal transduction, their calcium responses and 
the eventual behavioral outcomes4,8–15. However, most descriptions are specific to a single input stimulus, typi-
cally a single pulse with an eye lash or a metal pick, and a single behavioral output. This leaves unexplored space 
of the stimuli and outputs, leading to descriptions that are potentially biased toward a specific stimulus, and not 
allowing for the generalizable prediction of the system.

To map the transformations between mechanoreceptor neurons and behavioral outputs, we sought to model 
these transformations in an unbiased quantitative framework that captures the systems’ dynamics in a predictive 
manner. This is computationally challenging because of the stochasticity and complexity of the animal’s behav-
ioral repertoire, as well as the various time scales and frequencies relevant in the system16–18. A successful tech-
nique for characterizing neuronal systems is reverse correlation analysis with a white noise stimulus19–26. This 
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methodology is commonly applied in sensory physiology to model a sensory neuron’s response to natural stimuli 
as a linear filter. The computed linear filters provide a complete description of the linear dynamics of the neuron, 
and can be used in conjunction with a nonlinear filter to accurately model its function21,27–30. This technique has 
also been extended to modeling sensory neurons31 and behavior in invertebrates32–36. However, this technique has 
not been extended to model and contrast the spatial and temporal properties of behavioral responses to the gentle 
and harsh touch mechanosensory neurons.

Although reverse correlation analysis allows for accurate estimations of system dynamics, several experimen-
tal obstacles hinder its applicability to the mechanosensory circuits in C. elegans at present. Current techniques 
for delivering precise mechanical stimuli to animals involve the delivery of a mechanical force via a stylus or 
microfluidic device to specific locations on the animal’s body9,14,15,37. Although ideal for neuronal imaging, these 
techniques require the immobilization of animals with glue or other techniques, and therefore, do not allow for 
reverse correlation analysis with behavior response dynamics. Additionally, many of these techniques have a low 
experimental throughput, and cannot provide the large sample sizes required for reverse correlation studies. One 
technique that overcomes these challenges is to couple optogenetics with behavior, as a light stimulus is more 
easily controlled and can be used to activate specific neurons in freely moving animals34,35,38. This fictive stimulus 
has the added benefit of bypassing differences in native receptor protein expressions, allowing for comparison 
between sensory systems. In order to apply light stimuli with spatial resolution to activate specific regions of 
sensory neurons, we adapted a previously developed tracking platform with selective illumination39. The custom 
microscopy system uses a projector and computer vision tools to track the animal in real-time, allowing for the 
delivery of spatially and temporally resolved stimuli required for white noise signal delivery.

Combining these tools, we developed an experimental and computational pipeline for performing white noise 
analysis on C. elegans, and apply this method to elucidate models of transformations between mechanosensory 
neuron activity and behavioral response. Using our platform, we computed linear filters that characterize the 
dynamics of the gentle touch sensing TRNs and harsh touch sensing PVDs. These filters provide a quantitative 
framework for the functions of these neurons and allowed for the investigation of differences in spatial encoding. 
Furthermore, this technique allowed us to create models that accurately predict behavioral changes in response 
to mechanosensory neuron activity. Our method provides simple transformations that quantitatively character-
ize these systems by capturing the spatiotemporal dynamics of behaviors induced by optogenetic activation of 
sensory neurons.

Results
Reverse-correlation analysis using optogenetics and behavior tracking. To illuminate the dif-
ferences between the mechanosensory systems, we characterize and compare the dynamics for these two ana-
tomically distinct sets of mechanosensory neurons: the gentle touch sensing TRNs and the harsh touch sensing 
PVDs (Fig. 1A). In order to use reverse correlation for modeling behavioral responses, the two main experimental 
requirements are the precise delivery of a white noise stimulus and accurate measurements of the output. For the 
stimulus, we used optogenetics to directly activate the mechanosensory neurons with a white noise signal. This 
unmediated input enabled us to activate neurons regardless of expression of mechanotransductive channels. This 
allows for the comparison of how the two systems and their morphologies control downstream activity, rather 
than differences in their sensory activation. Additionally, whereas a natural stimulus can activate additional sen-
sory neurons and possibly interfere with characterization, the optogenetic stimulus will only activate the neurons 
expressing channelrhodopsin. Therefore, the resulting filters characterize the dynamics of behaviors exclusively 
in response to activation of specific sensory neurons. Our tracking platform39 enables the delivery of patterned 
illumination while simultaneously tracking individual animals, allowing for selective activation of specific sec-
tions of transgenic animals with high spatial and temporal precision (Fig. 1B, Movie S1, Methods). We used this 
platform to deliver the white noise light stimulus for reverse correlation; we activated mechanosensory neurons 
with a pseudo-random m-sequence pattern, a spectrally unbiased binary signal (Methods).

The outputs we sought to characterize are the behavioral responses of animals using the optogenetic stim-
uli as inputs. We developed a custom computer vision algorithm (Methods) to analyze recordings of animals’ 
behavior in a high-throughput and unbiased manner. The worm’s posture and position are extracted for each 
frame, which are then used to quantify various “continuous” behaviors such as instantaneous velocity, instanta-
neous head angle, and instantaneous acceleration (Fig. 1C). In addition to these “continuous” behaviors we also 
quantified and categorized several classical “discrete” behaviors such as reversals, pauses, and omega turns18,40–42 
(Fig. 1C, Methods). Each of these continuous and discrete variables was used as a separate output for reverse cor-
relation analysis, yielding a filter that can be used to predict behavior responses to any arbitrary stimulus patterns. 
By using filters for a large portion of the worm’s behavioral repertoire, we can describe the overall behavioral 
response when stimulating specific mechanosensory neurons.

Using the white noise light stimulus for optogenetics and the quantified behavioral responses, we next 
applied reverse correlation to model C. elegans responses as transformations of linear and non-linear filters. 
Classically, when characterizing mammalian neuronal systems, a neuron’s response is modeled by computing 
the average of the stimuli that preceded its action potentials (spike-triggered average or STA) or its subthreshold 
voltages (voltage-weighted average or VWA)29. Analogously, we estimate the dynamics of C. elegans responses 
by computing the behavior weighted average of the stimulus (BWA). When stimulating specific segments of the 
mechanosensory systems, the BWA represents how the animals characteristically transform patterns of activity of 
those neurons into specific behaviors, providing a filter estimation of this transformation (Fig. 1D).

In order to accurately estimate these linear filters, a large sample size is required to test enough input val-
ues20,30. To estimate the number of samples required in our system, we characterized the speed of convergence of 
computed filters as the number of input samples increased (Movie S2). We characterized the convergence of fil-
ters by computing the L2 norm of the difference between subsequent filters (computed as the absolute difference 
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Figure 1. Reverse correlation analysis of mechanosensory neurons enabled by tracking and selective 
illumination platform. (A) Mechanosensory neurons characterized in this study. The gentle touch sensing 
neurons ALML/R, AVM, PVM, and PLML/R (blue) and harsh touch sensing neurons PVDL/R (red).  
(B) Schematic of custom tracking system with selective illumination used for reverse correlation experiments 
(Methods). A projector is used as the light source to enable selective illumination. Captured video frames are 
processed in real-time to deliver accurate light patterns on moving animals. (C) Sample stimulus and extracted 
quantified behavior traces obtained from the custom platform and analysis script (Methods). Input is a binary 
signal of On and Off. Outputs are characterized for both “discrete” and “continuous” behaviors. Discretized 
behaviors are classified based on a custom behavior analysis script (Methods). Colors represented in sample 
output: dark blue represents a pause, red represent reversals, light blue represents turns. (D) A sample filter 
computed using the BWA computation (Acceleration Response to Anterior TRN, n = 113 animals). Shaded area 
represents SEM. (E) The speed of convergence for the BWA as a function of the amount of data used to train the 
model. The error converges to a relative tolerance of δ < 0.005 after 30,000 time-points.
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between filters). We found that our system converges (to a relative tolerance of δ < 0.005) after using roughly 
30,000 frames of tracking data (Fig. 1E). With our experimental conditions, this is equivalent to a sample size of 
roughly 30 animals (Methods).

Linear Filters for anterior and posterior touch receptor neurons (tRNs) robustly capture behav-
ioral dynamics. We first used our method to characterize responses to the touch receptor neurons (TRNs: 
ALML/R, AVM, PVM, and PLML/R) by using transgenic animals expressing channelrhodopsin (ChR2) under 
the mec-4 promotor (Methods)39. In response to natural stimuli, the posterior TRNs (PVM and PLML/R) respond 
to posterior touch, inducing forward acceleration, whereas the anterior TRNs (ALML/R and AVM) respond 
to anterior touch, inducing reversals4,7,8,39,43. To characterize the dynamics of these responses, we applied an 
m-sequence light stimulus to either the anterior or posterior region of transgenic animals, selectively stimu-
lating the anterior or posterior TRNs, respectively (Fig. 2A). We first computed linear filters characterizing the 
relationship between anterior TRNs and either discrete or continuous behavior (Figs 2 and S1). As a control, we 
also performed experiments with animals that were not fed all trans-retinol (ATR), a cofactor required for ChR2 
function. The computed filters for control animals are flat, zero-mean signals (Fig. 2, gray lines). In contrast, 
the acceleration BWA for the ATR-fed worms results in a filter with a robust negative peak, −13 ± 0.50 µm/s2 
(Fig. 2B,Ei). This deceleration is expected from typical reversal responses to anterior touch stimulation4,7. The 
presence of this peak in the experimental group and its absence in the control group suggest that the filter is opto-
genetically induced, and not due to spontaneous behavior. We attribute small fluctuations as experimental noise 
rather than representing a true high frequency response. In addition to peak magnitudes, our method also reveals 
new information about the dynamics of these responses. From the BWA, we can characterize metrics such as the 
delay to the peak (0.2 s) and the decay timescale of the filter (0.4 s). These temporal characteristics are critical for 
accurately predicting response to activation of the anterior TRNs.

In order to further assess the validity of the resulting filters, we performed statistical tests comparing true 
filters and filters computed from shuffled data (Methods). We computed magnitudes for all filters, defined as the 
L2 norm, to the correctly computed filter. Data is shuffled in four different ways (Methods). In all tests, the BWA 
computed from experimental data has the highest magnitude compared to filters computed from shuffled data 
(Fig. S2). Together with the statistical comparison of ATR-fed and non ATR-fed animals, we conclude that the 
BWA for acceleration is robust and descriptive of the behavioral response.

To ensure that the computed linear filters are not an artifact from the input signal itself, we tested computing 
filters using a different m-sequence stimulus. Using acceleration as an example, we observe a similar linear filter to 
those obtained with the previous stimulus (Fig. 2C, as compared to 2B). When comparing the peak values of the 
filters computed with different stimuli, there is no statistical difference (Fig. 2Eii). These results demonstrate that 
the linear filters are indeed characteristic of C. elegans’ behavioral output specifically in response to the activity in 
the anterior TRNs, and independent of the input signal.

Next, we sought to compare the dynamics of the animals’ response between anterior or posterior TRN activi-
ties. Previous findings have shown that applying a mechanical force to the posterior region of the animal induces 
an acceleration, and PLM is required for these responses4,7,8. As with the anterior TRNs, we stimulated the poste-
rior TRNs by applying an m-sequence light stimulus to the posterior half of the animal, and computed the BWA 
for the same quantified behaviors (Figs 2 and S1). The filter for acceleration has a positive peak (2.8 ± 0.48 µm/s2),  
although with a much smaller magnitude than its anterior counterpart and is not statistically significant com-
pared to non ATR-fed worms (Fig. 2D). Additionally, the filter is not statistically significant when testing against 
filters for shuffled data (Figs S3–S6). Interestingly, although the computed linear filter for the posterior TRNs 
has a peak in the direction that is consistent with previous findings, it is close to zero-mean. One interpretation 
that is consistent with literature is that worms have a lower rate of responses when activating PLM and PVM in 
comparison to the activating anterior TRNs. This is not surprising, as worms are generally moving forward and 
do not require a change in behavior to escape the weak stimulus, whereas avoidance of a weak anterior stimulus 
requires a directional change.

In addition to continuous signals, we also estimated linear filters for the probability of transitions between 
defined states. Unlike in predicting continuous variables (e.g. acceleration and velocity), filters computed for 
these behaviors indicate a change in probability of transitions to these behaviors. When computing the BWA with 
transitions into pauses or reversals in response to anterior TRNs, we observe linear filters with positive peaks that 
are statistically significant as compared to non ATR-fed animals (Fig. 2F,G,I). Similarly, the filters computed from 
shuffled data support this statistical significance (Figs S3–S6). This indicates that activating the TRNs induces an 
increase in probability of transitions to pauses or reversals, and this increased likelihood happens within the first 
second after a stimulus. In contrast, when stimulating the posterior TRNs, the filter computed for transitions into 
pauses and reversals is close to zero-mean, consistent with an interpretation whereby the stimulus does not alter 
these behaviors significantly (Figs 2H,I, and S3–S6).

Reverse correlation analysis of Harsh-touch sensing pVD neurons. In addition to the TRNs, C. 
elegans has another set of neurons that are responsible for body touch sensation. The PVD neurons are morpho-
logically unique sensory neurons that have extensive and organized dendritic structures expanding most of the 
body of the worm; in contrast, TRNs are tiled (Fig. 1A). The PVD neurons are known to respond to harsh touch, 
as opposed to gentle touch or nose touch5,10–13. Because of the morphological and functional differences between 
the PVD and TRN systems, we ask whether there are downstream differences in spatial and temporal behavioral 
response dynamics. To do so, we applied the same reverse correlation method to animals expressing ChR2 in the 
PVD neurons13.

For comparison with the TRNs, we again divided the stimulus regions into anterior and posterior segments 
and computed the BWA for the same behaviors (Fig. 3A). Interestingly, when the animal is stimulated either 
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stimulating the anterior (B,C) or posterior (D) TRNs. Statistical significance of filters determined by 
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values from computed linear filters in B–D. (F–H) Linear filters computed from BWA for pauses and reversals 
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anteriorly or posteriorly, the BWA’s for acceleration both have positive peaks (Fig. 3B,C). However, only the filters 
from the posterior segment are statistically different from the non-ATR group, with a higher positive peak for 
both acceleration (Anterior 4.0 ± 0.58 µm/s2 vs Posterior 7.1 ± 0.58 µm/s2) and velocity (Anterior 3.5 ± 0.32 µm/s 
vs Posterior 7.1 ± 0.32 µm/s) (Figs 3D and S7). When computing the BWA with transitions into pauses or rever-
sals in response to either anterior or posterior PVD, we observe flat, zero-mean linear filters (Fig. 3E,F). These 
filters are statistically indistinguishable from the non-ATR fed control group (Fig. 3G), suggesting that activation 
of the PVDs does not induce a change in probability of these events. When comparing these filters with shuffled 
data, only the posterior acceleration filter is statistically significant (Figs S8–S11). This contrast from the TRN 
filters suggests a different role for PVD sensory neurons in the behavioral circuit – that PVD activation promotes 
positive acceleration, and TRNs promote negative acceleration, consistent with previous findings8,12.
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In addition to the magnitudes, the context of peak occurrence can also be informative. The PVD acceleration 
filters have significant negative peaks following the positive peaks; the magnitudes of the negative peaks are of 
similar values to the first positive peak (Fig. 3D). This suggests that the acceleration in response to PVD activation 
is more likely to occur when preceded by an absence of stimulus. In other words, acceleration is dependent on the 
derivative of the stimulus, not the absolute value. In contrast, the anterior TRN acceleration filters only contain 
one significant peak. These differences in the acceleration filters further supports the idea that PVD and TRNs 
influence different aspects of behavior.

Linear-Nonlinear models predict behavioral response. In general, the filters computed from BWA in 
response to a white noise signal capture the linear dynamics of the analyzed systems. However, biological systems 
are rarely linear24. A common approach for modeling the nonlinear dynamics of a system is to use a linear-nonlinear 
cascade, where a static nonlinear filter is used to characterize the nonlinear dynamics not captured by reverse corre-
lation20,23–25. To define static nonlinear filters, we used the linear filters computed from BWA and compared predicted 
outputs with measured experimental outputs (Methods). For instance, for acceleration in response to anterior TRNs, 
we first compared predicted values with the quantified experimental values (Fig. 4A, gray circles). Not surprisingly, 
there is a positive correlation between predicted and experimental outputs, indicating that the model does indeed 
capture linear dynamics in these responses. To capture the nonlinear dynamics of the response, we fit a static filter 
using a simple quadratic function (Fig. 4A blue lines, Methods). Similarly, we also characterized nonlinear filters for 
velocity (Fig. S12) and transitions into pauses or reversals (Fig. 4B, Methods). The quadratic functions greatly improve 
the model fit to the data, suggesting that they capture a large portion of the nonlinear dynamics of the anterior TRNs.

We next sought to test the validity of using linear-nonlinear (LN) cascade models to predict behavioral responses 
to novel stimuli. To do this, we probed the anterior TRNs with a different m-sequence stimulus from the one used to 
compute the filters (Fig. 5A, Methods). We first compared the measured velocities of animals to the predicted veloci-
ties when using the linear filter only (Fig. 5B). Although the magnitude of predicted velocity from the model did not 
exactly match the experimental measurements, the model captures large features of the temporal dynamics of velocity 
in response to this novel stimulus. Next, we incorporated the static nonlinear filter to predict velocities (Fig. 5C). When 
using the LN model, the magnitudes of predicted velocities are more similar to experimental values, leading to more 
accurate predictions. In addition to predicting the continuous velocity of the animals, we also tested L and LN mod-
els for pauses and reversals, and observe predicted increases in probability of events similar to experimental values 
(Fig. S13A,B). Incorporating the nonlinear component to these models also improves the model predictability.

Interestingly, in our experiments we observe a time-dependent decrease in the magnitude of responses, which 
fails to be captured in time-scales of the dynamic linear filters (Fig. 5B,C latter half). Biologically, this habit-
uation of responses is commonly observed in sensory systems44. In general, although LN models can predict 
system responses, this is true only to the time-scales captured in the linear filters, and does not capture adapta-
tion dynamics. To model this decay of responses, we added a dynamic exponential function following the LN 
cascade (Fig. 5A). We tested a wide range of decay rate values using this model and found that a decay rate of 50 s 
provided the best predictions (Fig. S14). Interestingly, this decay rate is consistent with previous findings from 
investigations of habituation to stimulation of TRNs, with both tapping and optogenetic stimuli45. When adding 
this exponential component to our model, the accuracy of our model’s predicted behavioral responses improves 
for later time points of the trials, thus improving the overall accuracy of our models (Figs 5D and S13C,D). These 
results illustrate how the linear filters computed from BWA, when combined with additional nonlinear filters, 
are powerful in predicting temporal dynamics of behavioral responses to sensory neuron activation and likely 
generalizable to other sensory responses.
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Figure 4. Static nonlinear filters capture nonlinear dynamics in behavioral outputs. Estimation of static filters 
to capture nonlinear dynamics. (A,B) Static nonlinear filters fitted using predicted values from the linear 
filter (x-axis) and experimental values (y-axis) when stimulating the anterior TRNs, for (A) acceleration and 
(B) transitions into pauses and reversals. Colored traces represent computed nonlinear filters and gray dots 
represent independent time-points from measured and predicted values. Probability of discrete events is 
computed as the probability of an event occurring at a given time point.
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Figure 5. Linear-Nonlinear-Exponential (LNE) model accurately predicts behavioral response. (A) Block 
diagram of LNE model for used to predict behavioral responses to mechanosensory neuron activity: a LTI 
system modeled from BWA, followed by a static nonlinear filter and exponential decay filter. (B–D) Predictions 
of velocity for L (B), LN (C), and LNE (D) models (blue) and experimental traces (black). For experimental 
data, dark line and shade represent average and SEM, respectively (n = 31 animals). For model predictions, 
dark line represents model prediction and shaded area represents the 95% confidence interval (Methods). (E) 
Comparison of performance of models, computed as the sum of squared error (SSE) and normalized to the 
linear model performance value (Methods).
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Spatially refined selective illumination improves resolution of linear filters from BWA. We have 
thus far characterized mechanosensory systems by probing either the anterior or posterior segments of the ani-
mal, similar to previous investigations of the receptive fields of mechanosensory systems12,14. To further exam-
ine the spatial resolution of the mechanosensory systems, we took advantage of our selective-illumination light 
stimulus, which allows for the probing of specific spatial segments as small as 14 µm39. We characterized the TRN 
system with better resolution by increasing the number of segments in our stimulus to 4 (Fig. 6A). We applied 
an m-sequence stimulus selectively to one of the four segments, and computed linear filters for both continuous 
and discrete behavioral outputs (Figs 6 and S15–S19). This particular discretization of the TRN system allows for 
the computation of separate filters for the processes and cell bodies of ALM and AVM, as well as separate filters 
for PVM and PLM cell bodies (while keeping a high number of photons in the stimulus region). We first com-
puted filters for acceleration in response to stimulating four segments. The filters for the most anterior quarter 
and second-most anterior quarter have a prominent negative peak, statistically significant when compared to 
non-ATR fed animals (Fig. 6B,C,F). These filters are also statistically significant when compared to shuffled data 
(Figs S16,S17). Interestingly, these filters are similar to the filter computed from stimulating the entire anterior 
region (compare to Fig. 2B,C). This suggests that there are no observable differences in acceleration dynamics 
between cell body and axon activity of the anterior TRNs.

Not surprisingly, the filters for acceleration in response to the most posterior quarter and second most poste-
rior quarter are both flat and are statistically indistinguishable from filters computed with non-ATR fed animals 
(Fig. 6D,E,F). These filters are also not statistically significant when comparing to shuffled data (Figs S16,S17). 
Similar to the anterior region, the acceleration filters for the separate posterior segments are similar to the flat 
filter computed from stimulating the entire posterior region (compare to Fig. 2D).

We next computed linear filters for transitions into pauses or reversals, and found differences in spatial encod-
ing. The results for the anterior segments did not reveal much spatial encoding, with the filters for both the most 
anterior quarter and second-most anterior quarter both having positive peaks (Fig. 6G,H,K), similar to the filter 
computed when stimulating the entire anterior regions (compare to Fig. 2F,H). These filters are also statistically 
significant when comparing to shuffled data (Figs S16, S17). This suggests that there is low spatial encoding of 
these discrete behavioral responses between the axons and cell bodies of the anterior TRNs. Interestingly, we 
observe different filters when dividing the posterior segment of the TRNs into separate segments for the cell 
bodies of PVM and PLM. The filter for the most posterior quarter, which includes the PLM cell body, is again a 
flat filter (Fig. 6J), similar to the filter computed when stimulating the entire posterior region (compare to 2 H). 
Surprisingly, the filter for second-most posterior quarter has a negative peak, statistically significant when com-
pared to non-ATR fed animals (Fig. 6I,K). This filter is also statistically significant when compared to shuffled 
data (Figs S16, S17). The negative peak suggests that there is a reduced probability of pauses and reversals when 
activating PVM cell body. This suggests that PVM potentially has a previously undescribed function of inhibiting 
pauses and reversals. Additionally, the difference in filters for the four segments implies that the TRNs employ 
their tiled network to allow for spatial encoding of behavioral responses. This suggests that the morphological 
differences between the tiled TRNs and branched PVDs are used to differently control downstream activity.

Discussion
The nervous system continuously transduces sensory stimuli into neuronal activity and appropriate behavioral 
outputs. One of the biggest challenges in mapping this neuronal encoding is the lack of a quantitative framework 
for characterizing how a layer of neural activity is transduced into the downstream circuit. In this work, inspired 
by previous work in modeling neuronal systems, we built a framework that uses reverse correlation analysis with 
a custom tracking platform to analyze a C. elegans sensory system. We investigated the spatial and temporal 
encoding of two mechanosensory systems, the gentle touch sensing TRNs and the harsh touch sensing PVDs. We 
computed several linear filters that quantitatively describe transformations between sensory neuron activity and 
behavioral outputs, and support previous findings about the systems. Analysis of the PVDs produced linear filters 
that indicate an increase in velocity and acceleration from their activation, which is consistent with literature on 
its function5,10–13. Similarly, the linear filters computed for the TRNs were also consistent with previous literature: 
the anterior TRNs show decreases in velocity and acceleration, and an increase in probability of pauses and rever-
sals4,7,8,39,43; additionally, the posterior TRNs induce a much smaller increase in acceleration in the positive direc-
tion4,8,39, and do not result in significant filters in our experimental conditions. In the present set of experiments, 
we did not select animals based on the coinjection marker expression (as a proxy for ChR2 expression in the 
neurons). The heterogeneity in the expression of ChR2 in the posterior TRNs, thus, is likely to introduce variation 
in the light-induced acceleration behavior, which resulted in the lack of statistical significance when quantitative 
filters are compared. In comparison, the anterior stimulation behavior is more robust; thus even in the presence of 
ChR2 expression heterogeneity, the quantitative filters do show statistical significance. When assuming uniform 
expression levels across the sensory systems, our results provide spatiotemporal receptive fields for these systems 
that are consistent with previous findings7.

The linear filters resulting from our method provide several insights into the circuitry and morphological dif-
ferences between the two sensory systems. First, although we used identical stimuli for both segments, the filters 
produced from activating the anterior TRNs were much more robust than the filters from activating the posterior 
TRNs, suggesting that downstream interneurons in this circuit are more responsive to the anterior neurons. This 
preference in downstream activity has also been observed in experiments involving tap responses, which show 
that reversals dominate over accelerations when tapping cultured plates, and this preference occurs downstream 
of sensory neuron activity8. In contrast, the filters for the posterior segments of PVD were more robust than the 
anterior segments. This is also consistent with previous findings that show PVD is required for posterior harsh 
touch sensation, but not required for anterior harsh touch12. A key difference in our experiments is that we bypass 
mechanoreceptor activation, and can therefore separate out effects due to differences in sensory neuron response 
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to different spatial stimuli, as well as other neurons that might affect response rate. Therefore, one possible mech-
anism for the differential decision-making is that the two mechanosensory systems may have different strengths 
of connections to postsynaptic command interneurons. Particularly for PVD, although the number of physical 
synapses to forward command neuron PVC and backward command neuron AVA are similar46, the functional 
connectivity seems to be higher for PVC compared to AVA. Our results are consistent with this hypothesis.

Our results also provide insight on the levels of spatial encoding in the TRNs and PVD systems. The TRNs, 
which employ a tiled network to cover the body, appear to have more spatial encoding. When comparing the 
computed filters for the anterior and posterior TRNs, both acceleration and reversals show distinct differences 
in responses. Furthermore, when analyzing this system in four segments, we observed differences in linear filters 
among the four segments. In contrast, the branched network in PVD does not appear to spatially encode behav-
ioral responses. The filters from activating the anterior and posterior segments of the PVD system have similar 
dynamics, with the anterior filters having slightly smaller magnitudes and longer delays. This contrast between 
the two mechanosensory systems suggests that although both the TRNs and PVDs have spatially distributed 
processes to sense touch throughout the body, the unique morphological strategies in the two systems lead to 
differences in their capabilities of encoding responses. Biologically, this disparity in encoding can be explained by 
their morphologies and perhaps synaptic connectivity to downstream neurons, as the tiled TRN system consists 
of more nodes, which could allow for more spatially specific behavioral responses.

One new finding from our experiments concerns the role of the cryptic PVM neuron. Although shown to 
respond to mechanical stimuli47, its role in mediating behavior is poorly understood4,7,8,39. We found that activat-
ing PVM did not induce significant changes in velocity. Interestingly, PVM activation significantly reduced the 
probability of reversal events. These filters suggest a unique function for PVM in modulating escape response. In 
contrast to the other TRNs, including PLM, PVM does not induce escape responses, but rather suppresses these 
behaviors. It should be noted that a segment of a PLM process is present in the same segment as the PVM cell 
body, and the resulting filters could represent a stimulation of both the PVM cell body and PLM process.

The findings in this work demonstrate the utility of our method for providing new insights into the dynamics 
of the mechanosensory system in C. elegans, one of the earliest and better characterized neural circuits. By using 
a quantitative framework to compare the dynamics between the two sensory systems, we recapitulated qualitative 
findings from previous literature, and provide further insights in the temporal and spatial encoding in these sys-
tems. Additionally, we used linear filters computed from BWA to create LNE models that can predict the behavio-
ral responses of animals in response to activity in sensory neurons alone. Because this method is noninvasive and 
independent of natural stimulus, it can be easily extended to investigate the dynamics of other neural circuits in C. 
elegans and other model organisms. We foresee many potential applications in investigations of sensory behavior 
responses and sensory integration.

Methods and Materials
C. elegans culture and maintenance. We used transgenic worms expressing channelrhodopsin in var-
ious mechanosensory neurons. Worm populations were cultured at 20C in the dark on standard nematode 
growth medium (NGM) petri dishes. Plates were coated with OP50 bacteria lawn supplemented with the cofac-
tor required for channelrhodopsin, all-trans-retinal (Sigma-Aldrich). The solution was prepared by diluting a 
50 mM stock solution (in ethanol) in OP50 suspension to a final concentration of 100uM. Control animals were 
grown in parallel on OP50 without all-trans-retinal. All worms tested were F1 progeny of P0 adults picked onto 
seeded plates 3–4 days before experiments. Animals were washed to unseeded NGM plates 1 hr prior to assays. 
Animals were then picked to individual plates for experiments. Each animal was exposed to a single stimulus 
profile and then discarded. The strains used in this work included AQ2334: lite-1(ce314); ljIs123[pmec-4::ChR2; 
punc-122::rfp]39 and ZX899: lite-1(ce314); ljIs123[pmec-4::ChR2; punc-122::rfp]13.

tracking and light delivery platform. Experiments were performed on a tracking system adapted 
from a previously developed projector based microscopy system39. The system uses an inverted microscope 
(Leica-DMIRB) with a low-magnification objective (x4) to image freely moving animals. We image using 
near-infrared light by applying a long-pass filter (715 nm) to the transmitted light path and capture images using 
a large sensor NIR camera (Basler acA2040-180 kmNIR), which limits interference in blue light used for opto-
genetics stimulus. A three-color LCD projector is used as the light source for optogenetic stimulus with selective 
illumination. We use a camera with large sensor area to capture the full body of the animal, and use a small ROI 
and binning to reduce the size of images to improve processing speed and therefore tracking rate. A Lenovo desk-
top computer with an Intel Core i74790 Processor (8 MB Cache, up to 4.0 GHz) and a 512 GB Solid State Drive 
and 16 GB RAM was used to process images for tracking and selective illumination. Tracking of individual ani-
mals was performed by using images taken with the camera, and processed to compute the centroid of the animal 
in terms of x-y pixels on the camera FOV. Based on the position of the computed centroid, a command is sent to a 
motorized stage to move the animal to the center of the FOV. To apply a light stimulus with spatial and temporal 
control, we used a modified projector as the light source to the microscope. Images taken with the camera are 
processed to determine the outline of the animal’s body in each frame. The appropriate illumination pattern is 
then computed and sent to the projector. Stimuli were only presented when anterior and posterior segments were 
correctly computed by the algorithm; during pirouettes or other uncommon postures, stimulus presentation was 
paused. This process was performed at a rate of 13 frames per second. For each animal, illumination profile and 
tracking videos were saved for future analysis.

Quantitative behavior analysis. To extract quantitative behavioral features from tracking recordings, a 
custom MATLAB script was developed. A series of segmentation and morphological processes were used to 
extract body postures in each frame. We combined extracted postures with recorded stage movements to quantify 
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several behaviors. We computed various “continuous” behaviors that have a scalar value for each time point. This 
includes velocity (magnitude), velocity (angle), acceleration, head angle, angular velocity. We also classified var-
ious “discrete” behaviors that have been used in previous works18,40,48,49. These include behaviors such as pauses, 
reversals, omega turns, and turns. Each of these behaviors were classified by applying thresholds on quantified 
continuous behaviors. Pauses and reversals were classified by applying both vertical and horizontal thresholds on 
velocity measurements. Omega turns were classified by applying a threshold on the eccentricity of the animal’s 
posture. Curves were classified by applying a threshold on the angle of position trajectory.

White noise experiments. We used the selective illumination capability of the tracking system to deliver 
spatially controlled light stimuli to freely moving animals expressing ChR2 in their mechanosensory neurons. 
We used a pseudorandom m-sequence, a binary signal with unbiased spectrum, with similar properties to a 
Gaussian white noise signal22,31. We tested several white noise signals, and found that an m-sequence with a max-
imum frequency of 2 Hz produced reliable results, as it allows for testing time scales appropriate for behavioral 
responses (Negative results in Fig S20). We use a light intensity of 0.75 mW/mm2 as it induces reliable and vary-
ing behavioral responses, similar to previous work39. The generated pseudorandom sequences were repeats of a 
6-bit words, 63 value length m-sequences (2*(26 − 1) = 126 values). We deliver the same pseudorandom signal for 
each experimental group, applying the signal through the tracking system and changing values in the m-sequence 
at 2 Hz, which is lower than the Nyquist Frequency (acquisition rate is 13 Hz). Stimuli were only presented when 
ansterior and posterior segments were correctly computed by the tracking algorithm; during pirouettes or other 
uncommon postures, stimulus presentation was paused.

Reverse correlation analysis. To compute mathematical functions that describe the transformations from 
sensory neuronal activity into behavior, we first modeled the entire animal as a linear transducer:

∫ τ τ τ= ∗ = −
−∞

∞
o t h t s t h s t d( ) ( ) ( ) ( ) ( ) (1)

where the relationship between the input signal (neuronal activity through optogenetics) s(t) and output signal 
(behavior) o(t) is characterized by a function h(t). We assume that the system is causal, and h(t) < 0 for t < 0. We 
used standard reverse-correlation similar to29–31,34,35, and computed h(t) for specific behaviors by computing a 
“behavior-weighted-average” (BWA):


~ ∑ τ= ×τ τ−h t BWA

N
S v( ) 1 ( ) (2)t o

where the stimulus preceding each time-point is weighed by the scalar value of the behavior at that time. We 
convert the light stimulus patterns into −1 and 1 for when the light is on and off, respectively. For continuous 
behaviors, we used the scalar values at each time points as the weights. For discrete behaviors, we used a binary 
signal indicating transitions from forward movement to specific states. For all cases, we compute linear filters 
using 400 points preceding and following each time point (801 total timepoints). The points preceding each time 
point are computed as a control to capture experimental variability.

Statistical significance of computed filters. Behavior-weighted averages (BWAs) were tested for sig-
nificance by comparing their magnitude, computed as the L2 norm, to a distribution of random filters computed 
with shuffled data. We tested four different methods of shuffling data: cyclic shuffling of the stimulus vector by a 
random integer, cyclic shuffling of the output vector by a random integer, random permutations of the stimulus 
vector, and random permutations of the output vector. For each test, we perform the same computation with the 
shuffled data and repeat 100 times. For determining the significance of all computed filters, we performed the 
shuffling test using cyclic shuffling of the stimulus vector by a random integer. The BWA is classified as significant 
if its magnitude is higher than all shuffled data tests. Random integers were generated from a uniform distribu-
tion from 1 to length of vector using the MATLAB function rand, and random permutations of vectors were 
performed using the MATLAB function randperm.

Nonlinear filters and model predictions. We model static nonlinear filters for each behavioral response 
in order to extract the nonlinear dynamics not captured in the linear filters computed from reverse correlation50. 
We first compute linear model predictions by convolving the computed linear filters from presented stimuli in 
each trial used, as shown in equation (1). We then compare these linear predictions to the measured outputs at 
each time point, and fit a quadratic function. For “discrete” behaviors, probabilities for transitions into specific 
behaviors were calculated at each time point. These quadratic functions are then used as static nonlinear filters in 
a linear-nonlinear (LN) cascade model for specific behavior transformations.

=y F y(t) ( ) (3)pN N pL

where the predicted nonlinear output is a static function of the predicted linear output. We also apply an expo-
nential decay filter (LNE) to capture nonlinear adaptations to the stimuli. We apply this exponential factor to only 
the changes in behavior after the stimulus:

λ> = > − < ∗ − + <y t y t y t t y t( 5) ( ( 5) avg( ( 5)) exp( ) avg( ( 5)) (4)pE pN pN pN
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where the decay parameter λ is 50 s, based on empirical data (Fig S14) and previous findings45. We use bootstrap 
sampling to compute 95% confidence intervals for our model predictions. Confidence intervals were computed 
using the MATLAB functions bootstrp and bootci, computed with 1000 resamples of the stimulus data.

statistics. Linear filters are presented as mean ± SEM as computed by the BWA. The two-tailed Student’s 
t-test was used to compare filter peaks between two groups. Peaks were determined by searching for local maxima 
in the filters between −1 < t < 1. P < 0.005 was considered statistically significant. Accuracy of best-fit nonlinear 
filters were computed as coefficients of determination (R2 values). Performance of models were compared using 
the sum of squared error (SSE). Values are normalized to the SSE value for linear models.

Data Availability
All behavior and stimulus data generated during the current study are available from the corresponding author 
upon reasonable request.

Code Availability
All custom code used to generate results in this manuscript are available on Github (https://github.gatech.edu/
pages/dporto3/BWA-v1/).
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