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Abstract

Background: Histological grade (HG) is commonly adopted as a prognostic factor for ER-positive breast cancer
patients. However, HG evaluation methods, such as the pathological Nottingham grading system, are highly
subjective with only 50–85% inter-observer agreements. Specifically, the subjectivity in the pathological assignment
of the intermediate grade (HG2) breast cancers, comprising of about half of breast cancer cases, results in uncertain
disease outcomes prediction. Here, we developed a qualitative transcriptional signature, based on within-sample
relative expression orderings (REOs) of gene pairs, to define HG1 and HG3 and reclassify pathologically-determined
HG2 (denoted as pHG2) breast cancer patients.

Results: From the gene pairs with significantly stable REOs in pathologically-determined HG1 (denoted as pHG1)
samples and reversely stable REOs in pathologically-determined HG3 (denoted as pHG3) samples, concordantly
identified from seven datasets, we extracted a signature which could determine the HG state of samples through
evaluating whether the within-sample REOs match with the patterns of the pHG1 REOs or pHG3 REOs. A sample
was classified into the HG3 group if at least a half of the REOs of the 10 gene pairs signature within this sample
voted for HG3; otherwise, HG1. Using four datasets including samples of early stage (I–II) ER-positive breast cancer
patients who accepted surgery only, we validated that this signature was able to reclassify pHG2 patients into HG1
and HG3 groups with significantly different survival time. For the original pHG1 and pHG3 patients, the signature
could also more accurately and objectively stratify them into distinct prognostic groups. And the up-regulated and
down down-regulated genes in HG1 compared with HG3 involved in cell proliferation and extracellular signal
transduction pathways respectively. By comparing with existing signatures, 10-GPS was with prognostic significance
and was more aligned with survival of patients especially for pHG2 samples.

Conclusions: The transcriptional qualitative signature can provide an objective assessment of HG states of ER-positive
breast cancer patients, especially for reclassifying patients with pHG2, to assist decision making on clinical therapy.
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Background
Breast cancer has the highest incidence and mortality
among females [1]. The microscopic morphological
assessment of the degree of tumor cell differentiation,
represented as tumor histological grades (HGs), has
powerful prognostic prediction capability in breast can-
cer [2–5] and has been incorporated into the eighth edi-
tion of American Joint Commission of Cancer staging
system [6]. According to the Nottingham grading
system, after assessing tubule formation (tubularity),
nuclear pleomorphism (nuclearity) and mitotic count,
each patient can be assigned to histologic grade 1 (HG1,
well-differentiated, slow-growing tumor), histologic
grade 2 (HG2, moderately differentiated, slightly faster
growing tumor) or histologic grade 3 (HG3, poorly dif-
ferentiated, highly proliferative tumor) [5]. The higher
grade is associated with lower survival rate [3, 4, 7]: the
5-year survival rates of untreated HG1, HG2 and HG3
patients are 95, 75 and 50%, respectively [5, 8, 9].
Considering the excellent prognoses, HG1 patients are
amenable for a mild and less harmful anti-cancer ther-
apy. On the contrary, HG3 patients require a more
powerful anti-cancer therapy. Genomics analysis indi-
cates that HG1 and HG3 breast carcinomas develop in-
dependently along different genetic pathways [10, 11],
while HG2 patients (comprising ~ 50% of breast cancer
cases) contain a blend of histological features, some of
which are common to both HG1 and HG3 tumors, and
exhibit a mixed gene expression profiles of HG1 and
HG3 [12, 13]. Thus, HG2 breast carcinomas should not
be classified as individual HG, but represent clinical and
molecular hybrids between HG1 and HG3 diseases
[14, 15]. The heterogeneity of the HG2 breast cancers
resulted in uncertain disease outcome prediction and
there is no standard treatment protocol for clinical
decision making [7, 16].
However, the pathological Nottingham grading system,

the most employed HG evaluation method, is dependent
on adequately prepared hematoxylin-eosin-stained
tumor tissue sections to be assessed by an appropriately
trained pathologist, which is highly subjective with only
50–85% inter-observer agreements [17–20]. The consen-
sus was even lower for HG2 samples (comprising ~ 50%
of breast cancer cases) [15, 21, 22], and it primarily re-
sulted in the unappealing inter-observer agreements
among pathologists during evaluating HG. Therefore,
many studies have tried to identify transcriptional signa-
tures to reclassify pathologically-determined HG states
especially HG2 (pHG2) status of patients in order to im-
prove the therapeutic planning for breast cancer patients
[13, 16, 23–25]. However, most of the previously pro-
posed signatures for classifying samples were based on
summarized expression measurements of the signature
genes, which lack robustness for clinical applications

due to widespread batch effects and quality uncertainties
of clinical samples [26–29]. The data normalization of
samples collected in advance also hinders the feasibility
of these signatures in routine clinical practice [16]. In
contrast, the qualitative transcriptional signatures based
on the within-sample relative expression orderings
(REOs) of gene pairs are robust against experimental
batch effects [27–29], varied proportions of the tumor
epithelial cell in tumor tissues sampled from different
tumor locations of the same patient [30], partial RNA
degradation during specimen preparation and storage
[31] and amplification bias for minimum specimens with
about 15–25 cancer cells [32], which are common fac-
tors that can lead to failures of quantitative transcrip-
tional signatures in clinical applications. Besides, the
qualitative signatures can be applied at the individual
level [33]. Based on the within-sample relative expres-
sion orderings (REOs) of gene pairs, we have developed
prognostic signatures for many cancer types [28, 34–36]
and demonstrated their robustness in both inter-
laboratories and across-platforms tests [29, 37].
Approximately 70% breast cancer patient express

estrogen receptor (ER) according to American Cancer
Society [1], adjuvant endocrine therapy is the routine
regimen, and only for ER-positive patients with high
HG, combined chemotherapy is suggested. It has been
reported that there is a significant transcriptional differ-
ence between ER-positive and ER-negative cohorts [38].
ER-positive status is associated with a heterogeneous
mixture of histologic grades, whereas ER-negative status
is generally associated with HG3 [39].
In this study, we aimed to develop a qualitative tran-

scriptional signature to identify HG states objectively in
ER-positive breast cancers. Using gene expression pro-
files of 932 ER-positive early stage breast cancer patients,
we developed a qualitative signature to allocate each pa-
tient into the pathologically-determined HG1 (denoted
as pHG1) or HG3 (denoted as pHG3) group. Using four
independent validation datasets including a total 524
samples of ER-positive breast cancer patients who ac-
cepted surgery only, the signature could find out a cer-
tain percentage of pHG1 patients as HG3 patients with
worse prognoses and some pHG3 patients identified as
HG1 patients with better prognoses. Especially, we
adopted an objective approach to validate the signature
through evaluating whether the pHG2 patients reclassi-
fied as HG1 had better prognoses than the pHG2 pa-
tients reclassified as HG3.

Results
Development of the REO-based grade signature
The flowchart of this study was described in Fig. 1.
For each of the seven training datasets (Table 1), with
FDR < 0.1, we firstly identified gene pairs with

Li et al. BMC Genomics          (2020) 21:283 Page 2 of 12



significantly stable REOs in the pHG1 and pHG3
groups, respectively, and then identified gene pairs
with reversal REOs between the two groups. Then,
437 gene pairs were commonly identified from the
seven datasets and they consistently showed the same
reversal REO patterns between the pHG1 and pHG3
groups in the seven datasets. Next, we performed a
forward-stepwise selection procedure to search a set
of gene pairs that achieved the highest F-score ac-
cording to the classification rule as follows: a sample
was classified into the HG3 group if at least a half of
the REOs of the set of gene pairs within the sample
voted for HG3; otherwise, into the HG1 group. Fi-
nally, we obtained 10 gene pairs, denoted as 10-GPS
(Table 2), to distinguish different histological grades
with the highest F-score (0.8884). In the training data,
the apparent specificity for HG1 samples was 90.77%
and the apparent sensitivity for HG3 samples was
86.99%. The performance of the transcriptional grade
signature in each training dataset can be found in

Fig. 1 Workflow for identification and evaluation of the qualitative signature of reclassifying histological grade status. The workflow has 2 major
analysis steps: (1), identification the qualitative signature in surgery only samples and (2), evaluation of the qualitative signature in surgery only
samples and TCGA dataset

Table 1 Description of the datasets used in this study

Datasets Platform HG1 HG2 HG3 #Genes

Training datasets

GSE19615 Affymetrix array 23 – 25 20,486

GSE21653 Affymetrix array 37 – 47 20,486

GSE1456 Affymetrix array 26 – 40 12,432

GSE3494 Affymetrix array 62 – 33 12,432

EGAD00010000210a Illumina beadchip 30 – 221 25,186

EGAD00010000211a Illumina beadchip 35 – 125 25,186

TCGA Illumina HiSeq 2000 58 – 170 20,720

Validation datasets

GSE7390 Affymetrix Array 29 68 35 12,432

GSE6532 Affymetrix Array 29 31 12 12,432

GSE4922 Affymetrix Array 48 60 11 12,432

EGAb Illumina beadchip 35 120 46 25,186

Note: a denoted dataset provided by the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) [40]. EGAb denoted dataset
integrated from EGAD00010000210 and EGAD00010000211
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Additional file 1: Table S1. Notably, the apparently
imperfect performance should be reasonable because
HG evaluation based on the pathological Nottingham
grading system is highly subjective with only 50–85%
inter-observer agreements [17–20]. We speculated
that the 10-GPS could provide a more objective and
clinically relevant measure of tumor grade with prog-
nostic significance.
We validated the above speculation based on the

knowledge that HG3 patients were with lower survival
rate than HG1 patients [3, 7]. Here, we collected another
four independent datasets (Table 1) including samples
with RFS or OS data of early stage ER-positive breast
cancer patients who accepted surgery only. When the
10-GPS was applied to these datasets, the averaged ap-
parent sensitivity for all HG3 samples was 83.1% and the
average apparent specificity for all HG1 samples was
78.4%. In a merged dataset from the three validation
datasets with the RFS information, the 12 pHG3 patients
reclassified as HG1 by the signature had significantly

higher 10-years RFS rate than that of the 46 HG3 pa-
tients confirmed by the signature (p = 0.0143; HR = 8.17,
95% CI: 1.10–60.60; C-index = 0.61, Fig. 2a). And, we
also compared 10-years RFS rates between the 13 pHG1
patients reclassified as HG3 by the 10-GPS and the 93
HG1 patients confirmed by the 10-GPS. Despite no statis-
tical difference was, there was trend to be different be-
tween the two groups (p = 0.3583; HR = 1.65, 95% CI:
0.56–4.86; C-index = 0.54, Fig. 2b). There was also trend
of difference between the RFS rate of 12 pHG3 patients
reclassified as HG1 by the signature and that of 13 pHG1
patients reclassified as HG3 by the 10-GPS (p = 0.1847;
HR = 3.95, 95% CI: 0.44–35.35; C-index = 0.65, Fig. 2c).
In each of the three validation datasets with the RFS

information, we also compared the survival between the
pHG1 and pHG3 patients diagnosed by the pathological
Nottingham grading system and the survival between
the HG1 and HG3 patients reclassified by the 10-GPS from
the pHG1 and pHG3 patients. Significant difference of RFS
between the pHG1 and pHG3 patients was observed only
in GSE6532 and GSE4922 dataset (Additional file 2: Fig.
S1). However, the HG1 patients showed significantly better
RFS than those of HG3 patients in all the three datasets
(Fig. 3). No significant difference of prognosis was observed
between pHG1 and HG1 cohorts for each of the four valid-
ation datasets. Similar for pHG3 and HG3 cohorts for each
of the four datasets (Additional file 3 Fig. S2). The majority
histological grade labels of pHG1 and pHG3 sample were
correct, which resulting no significant difference of survival
mentioned above. These results demonstrated that the 10-
GPS can more accurately and objectively stratify samples
into distinct prognostic groups.

Application of the signature to reclassification of HG2
samples
Then, we used the 10-GPS to reclassify the pHG2 sam-
ples of the above four validation datasets with RFS or

Table 2 The REO-based transcriptomic grade signature

Gene A Gene B

Gene ID Gene symbol Gene ID Gene symbol

80,127 BBOF1 9319 TRIP13

22,885 ABLIM3 24,137 KIF4A

1848 DUSP6 11,065 UBE2C

9486 CHST10 9319 TRIP13

11,122 PTPRT 9833 MELK

6271 S100A1 9319 TRIP13

23,403 FBXO46 8140 SLC7A5

23,303 KIF13B 27,346 TMEM97

1101 CHAD 11,004 KIF2C

51,310 SLC22A17 9212 AURKB

Note: Gene A has a higher expression level than Gene B in HG1 groups

Fig. 2 Kaplan–Meier estimates of relapse-free survival in dataset merged from GSE7390, GSE6532 and GSE4922. a Relapse-free survival curves for
reclassified HG3 and confirmed HG1 breast cancer patients. b Relapse-free survival curves for reclassified HG1 and confirmed HG3 breast cancer
patients. c Relapse-free survival curves for reclassified HG3 and reclassified HG1 breast cancer patients
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OS information (Table 1) into the HG1 and HG3
groups, respectively, and evaluated their prognostic
differences.
Firstly, for the 68 pHG2 samples of the GSE7390 data-

set, the 10-GPS signature allocated 38 and 30 patients
into the HG1 and HG3 groups, respectively. And, the
former ones had significantly higher RFS rate than the
latter ones (p = 5.55E-03; HR = 2.53, 95% CI: 1.28–4.97;
C-index = 0.64; Fig. 4a). Then, in the 91 pHG2 patients
combined from the datasets of GSE6532 and GSE4922
with small sample sizes, the RFS rate of the 65 patients
stratified into the HG1 group was significantly higher
than that of the 26 patients stratified into the HG3
group (p = 9.06E-03; HR = 2.64, 95% CI: 1.24–5.62; C-
index = 0.61; Fig. 4b). In the EGA dataset, the 71 HG1
patients classified by the 10-GPS also displayed signifi-
cant higher OS rate than that of the 49 HG3 patients

classified by the 10-GPS (p = 6.92E-03; HR = 2.10, 95%
CI: 1.21–3.64; C-index = 0.61; Fig. 4c).

Transcriptional characteristics of the low-HG and high-HG
samples recognized by the 10-GPS
In the TCGA-BRCA dataset, we used the limma algo-
rithm and found 6194 differentially expressed genes
(DEGs) between the 58 pHG1 and 170 pHG3 samples
diagnosed by the pathological Nottingham grading sys-
tem (FDR < 0.05, Additional file 4: Table S2). Applying
the 10-GPS to these samples, 94 samples were allocated
into the HG1 group and the other 134 samples were al-
located into the HG3 group. We identified 8087 DEGs
between the two reclassified groups with the same FDR
control (Additional file 4: Table S3). And of these genes,
up-regulated genes were significantly associated with
proliferation and down-regulated were significantly

Fig. 3 Kaplan–Meier estimates of relapse-free survival. a Relapse-free survival curves for HG1 and HG3 breast cancer patients in dataset GSE7390.
b Relapse-free survival curves for HG1 and HG3 breast cancer patients in dataset GSE6532. c Relapse-free survival curves for HG1 and HG3 breast
cancer patients in dataset GSE4922

Fig. 4 Kaplan–Meier estimates of survival. a Relapse-free survival curves for HG1 and HG3 patients reclassified from pHG2 breast cancer patients
in dataset GSE7390. b Relapse-free survival curves for HG1 and HG3 patients reclassified from pHG2 breast cancer patients in dataset merged
from GSE6532 and GSE4922. c Overall survival curves for HG1 and HG3 patients reclassified from pHG2 breast cancer patients in dataset EGA
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associated with extracellular signal transduction (Fig. 5).
When comparing the two DEG lists, we found that 5472
(88.34%) of the 6194 DEGs between the original HG1-
HG3 groups were also included in the DEGs identified
after sample reclassification and the dysregulation direc-
tions of the overlapped genes reached up to 100% (bino-
mial test, p < 1.10E–16). We also identified 3126 DEGs
between 145 HG1 (denoted as LHG2) samples and 71
HG3 (denoted as HHG2) samples recognized from the
pHG2 samples with the aid of 10-GPS (Additional file 4:
Table S4). About 31.14% of the 2519 DEGs were also in-
cluded in the 8087 DEGs. The concordance score of the
1164 overlapped DEGs was 99.92%, which was unlikely

to happen by chance (binomial test, p < 1.10E–16).
Moreover, after reclassifying HG status of samples for
TCGA dataset, we identified differential expressed genes
identified from pHG1 and pHG3 samples, from HG1
and HG3 samples reclassified from pHG2 samples, and
HG1 and HG3 samples reclassified from overall samples
respectively (Fig. 6). In all of the three two-way cluster-
ing heatmaps in Fig. 6, each of the two reclassified histo-
logical grade sample subclasses (two child nodes under
the root node in sample clustering tree) contained both
HG1 and HG3 samples although HG1 (or HG3) samples
were in the majority. This may be caused by the differ-
ence between quantitative and qualitative expression

Fig. 5 Functional pathways enriched with differential expressed genes between HG1 and HG3 groups. a Pathways enriched by up-regulated
genes. b Pathways enriched by down-regulated genes

Fig. 6 Heatmap of differential expressed genes identified from HG1 and HG3 samples reclassified from (a) pHG1 and pHG3 samples. b pHG2
samples (c) all pathological grade samples in TCGA along with hierarchical clustering. The bottom list indicated the sample names and the right
list indicated the differential expressed genes. The three color-coded bars right the heatmap indicated expression value normalized by log2 (left,
red indicated up-regulated and green indicated down-regulated), pathological histological grade (upper right) and reclassified histological grade
(lower right)
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relationship essentially. After identified enriched path-
way lists by differential expressed genes for all the four
datasets, the most common pathways were associated
with proliferation and extracellular signal transduction
(Additional file 5: Fig. S3) The clearer transcriptional dif-
ferences between the two reclassified groups indicated
that the 10-GPS could more accurately and objectively
stratify samples into distinct histological grade groups.

Comparison of 10-GPS prognostic significance with GGI,
Oncotype DX and PAM50
For each of the four validation datasets, we obtained
relapse risk by using existing signatures such as Gene
expression Grade Index (GGI) [41], PAM50 [42] and
Oncotype DX [43]. Chi-square test were conducted, re-
vealing that there were significant differences in relapse
risks generated by almost all the three existing signa-
tures between HG1 and HG3 cohorts (Fig. 7, Additional
file 1: Table S5). This indicating that histological grade
status reclassified by 10-GPS were with prognostic sig-
nificance. Meanwhile, no prognostic differences between
low-risk group identified by GGI and HG1 group identi-
fied by 10-GPS were observed (Fig. 8a-d). It was similar
for high-risk group identified by GGI and HG3 group
identified by 10-GPS were observed (Fig. 8e-h). Signifi-
cant prognostic difference between HG1 samples who
were identified as low-risk by GGI and HG1 samples
who were identified as high-risk by GGI was observed
only in GSE4922, which might result from unbalanced
samples (Additional file 6 Fig. S4 a-d). No significant
prognostic difference between HG3 samples who were
identified as low-risk by GGI and HG3 samples who
were identified as high-risk by GGI was observed
(Additional file 6 Fig. S4 e-h). It showed that the prog-
nostic significance of 10-GPS was more aligned with
the survival of patients. Moreover, HG1 samples who
were identified as high-risk and HG3 samples who
were identified as low-risk were mainly from pHG2
cohort. The consistency between the result and prior
knowledge that pHG2 are with low inter-observer
agreements was reasonable. It implied that 10-GPS
was feasible for reclassifying histological grade status,
especially for pHG2 samples. All these comparisons
indicated that 10-GPS could effectively reclassify into
distinct histological grade groups with significantly
prognostic difference.

Discussion
In this study, we developed a histological grade signature
consisting of 10 gene pairs (10-GPS) to reclassify the
ER-positive breast cancer patients to distinct prognostic
groups. This transcriptional qualitative signature, which
is based on REOs in an individual sample, was highly
robust against experimental batch effects, varied

proportions of the tumor epithelial cell in tumor tissues
[30], RNA degradation [31], and amplification bias for
minimum specimens [32]. All of these merits make it pos-
sible to apply the 10-GPS into clinical practices. The 10-
GPS could not only objectively and accurately allocate HG1
and HG3 patients but also reclassify HG2 patients into two
groups with significantly different survival rates. For clinical
application, the patients allocated into the HG3 group
should receive adjuvant chemotherapy followed by endo-
crine therapy; and the patients allocated into the HG1
group were recommended the endocrine therapy only.
Fortunately, based on the working assumption that the

majority labels of the pHG1 and pHG3 samples were
right, thus we employed a supervised learning method to
develop the signature. Imperfect F-score of 0.8884 just
suggested that the 10-GPS did not over-fit the training
dataset. There’s no surprise that the apparent sensitivity
for all HG3 samples was 83.10% and the apparent speci-
ficity for all HG1 samples was 78.40% in the validation
datasets. In this study, we adopted a more objective ap-
proach to validate the signature through evaluating
whether the reclassified HG1 patients could have better
prognosis than that of HG3 patients. In four independ-
ent validation datasets, the reclassified HG1 and HG3
groups recognized by the 10-GPS from the original HG2
patients or from the original HG1 and HG3 patients had
significantly different survival.
We expected that the 10-GPS can replace or serve as

auxiliary reference of the pathological Nottingham
grading system to stratify ER-positive patients into two
distinct groups in clinical practices. When applying the
10-GPS to all 132 samples of the GSE7390 dataset, the
grade signature classified 66 patients into the HG1
group and 66 patients into the HG3 group. The RFS rate
of the former group was significantly higher than that of
the latter group (p = 7.74E-04; HR = 2.49, 95% CI: 1.44–
4.33; C-index = 0.64; Additional file 7: Fig. S5 a). Signifi-
cantly different survival time between HG1 and HG3
groups reclassified by the 10-GPS were also observed
in another three independent validation datasets
(Additional file 7: Fig. S5 2b-d). By comparing with
existing signatures, 10-GPS was with prognostic sig-
nificance and was more aligned with survival of pa-
tients especially for pHG2 samples.
Some signatures had been developed to re-classify the

HG status of BC samples, for example, during the devel-
opment of GGI, samples with ≥100 ng and a RIN ≥ 7
were considered as qualified, and the quantitative
threshold has been adopted during the re-classification
process which might be affected by constituent ratios of
samples [41], which results lacking of reproducibility for
datasets generated by different labs or platforms and
limitation of individual application. Meanwhile, the
qualitative signature 10-GPS is with wider application to
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Fig. 7 Composition of samples for HG1 and HG3 groups in four validation datasets by comparing with relapse risk identified by (a) PAM50. b
Oncotype DX and (c) GGI
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trace samples [32], samples with lower RIN [31] and
samples with low tumor-purity [30].
A limitation of this study is that we were unable to

directly evaluate the signature in RNA-sequencing, such
as those archived in the TCGA database, where no pa-
tients accepted surgery only and sizes of samples who
accepted same therapy regimen were too small to per-
form the validation. Here, we only indirectly validate the
10-GPS in RNA-seq data of the TCGA-BRCA dataset
through analysis of DEGs between the HG1 and HG3
groups. Another limitation of our study is no evidence
could prove that application of the signature to patients
who have undergo chemotherapy or radiation therapy is
feasible (Additional file 8 Fig. S6). In the future, we will
evaluate the performance of the signature developed in
this study for expression data produced by RNA-
sequencing or PCR platforms and evaluate applying the
signature to patients who have undergo chemotherapy
or radiation therapy.

Conclusions
Pathological histological grade evaluation methods are
with high subjectivity, especially for the evaluation of
HG2 breast cancer specimens. The transcriptional quali-
tative signature is objective for the evaluation and is ro-
bust for application of microscale samples, samples with
lower RIN and samples with low tumor-purity, and can
assist making on clinical therapy especially for patients
with pHG2.

Methods
Data collection and pre-processing
We collected gene expression profiles of 932 ER-positive
breast cancer samples with pHG1 or pHG3 diagnosed
by the pathological Nottingham grading system. To
evaluate whether the reclassified two groups have signifi-
cantly different survival time, we also collected independ-
ent expression data of 524 early stage (I–II) ER-positive
breast cancer patients who accepted surgery only. All the
breast cancer datasets used in this study were summarized
in Table 1. The overall pathological histologic grades of
TCGA samples were obtained from the study of Zheng
Ping et al. [44].
For Affymetrix array data, raw intensity files (.cel),

downloaded from the Gene Expression Omnibus data-
base (GEO, https://www.ncbi.nlm.nih.gov/geo), were
processed with the Robust Multichip Average algorithm
(RMA) algorithm for background adjustment without
quantile normalization [45]. For Illumina beadchip data,
the normalized expression data under accession number
EGAD00010000210 and EGAD00010000211 [40] were
downloaded from the European Genome-Phenome Arch-
ive (http://www.ebi.ac.uk/ega/). When processing the data
of the two platforms, each probe set ID was mapped to
Gene ID according the corresponding annotation files,
and then probe sets that mapped to multiple Gene IDs or
did not map to any Gene ID were removed. The expres-
sion measurements of all probe sets corresponding to the
same Gene ID were averaged to obtain a single

Fig. 8 Kaplan–Meier estimates of survival (a-c) Relapse-free survival curves for low-risk group identified by GGI and HG1 group identified by 10-
GPS in GSE7390, GSE6532, GSE7390 (d) Overall survival curves for low-risk group identified by GGI and HG1 group identified by 10-GPS in
METABRIC (e-g) Relapse-free survival curves for high-risk group identified by GGI and HG3 group identified by 10-GPS in GSE7390, GSE6532,
GSE7390 (h) Overall survival curves for high-risk group identified by GGI and HG3 group identified by 10-GPS in METABRIC\
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measurement (on the log2 scale). For RNA-Seq data
downloaded from The Cancer Genome Atlas database
(TCGA, https://www.cancer.gov/tcga), the level 3 Frag-
ments per Kilobase of transcript per Million mapped reads
(FPKM) [46] values were downloaded from The Cancer
Genome Atlas (TCGA) database. After removing genes
with a count of 0 in more than 75% of samples, other zero
values were filled with the smallest count in this expres-
sion data. The Ensembl gene IDs corresponding to the
unique Entrez gene IDs were used. From the seven train-
ing datasets, we extracted expression profiles of 11,587
genes commonly measured by the three platforms (Affy-
metrix array, Illumina beadchip and Illumina HiSeq 2000)
for subsequent analysis.

Development of the transcriptional signature for
histological grade
Firstly, we identified the significantly stable REOs in
pHG1 groups of each training dataset. For a given gene
pair (Gi, Gj), if the REO pattern (Gi >Gj or Gi <Gj) was
kept in more samples than expected by random chance,
we defined the REO pattern of this gene pair, Gi >Gj in
pHG1 group (or equally Gi <Gj in pHG3 group) as a
stable REO characterizing pHG1 samples. The signifi-
cance of the REO pattern is determined by a binomial
test [47] as follows,

P ¼ 1−
Xs−1

i¼0

n
i

� �
p0ð Þi 1−p0ð Þn−1 ð1Þ

where s is the number of samples in which gene i has a
higher (or lower) expression level than gene j in a total
of n samples, p0 is the probability of observing a certain
REO pattern (Gi >Gj or Gi <Gj) in a sample by chance
(p0 = 0.5). The Benjamini-Hochberg multiple testing cor-
rection was used to estimate the false discovery rate
(FDR) [48]. Then, we identified the gene pairs with
stable REOs in pHG3 group but reversal REO patterns
between the pHG1 and pHG3 groups in each training
dataset.
After selecting gene pairs with concordant reversal

REOs among the seven training datasets, a forward-
stepwise selection algorithm was performed to search
for optimal subset of these gene pairs that resulted in
the highest F-score. The F-score, harmonic mean of sen-
sitivity and specificity, was calculated as follows,

F� score ¼ 2� sensitivity � specificity
sensitivity þ specificity

ð2Þ

where sensitivity was defined as the proportion of cor-
rectly identified HG3 samples among all pHG3 samples,
and specificity was defined as the proportion of correctly
identified HG1 samples among all pHG1 samples.

Survival analysis
Recurrence-free survival (RFS) and overall survival (OS)
served as the prognosis endpoint. Kaplan-Meier survival
plots and log-rank tests [49] were used to evaluate the
differences in RFS and OS of distinct groups. The Cox
proportional-hazards model was also performed to
calculate the hazard ratios (HRs) and their 95% confi-
dence intervals (CIs) [50]. To evaluate the predictive
performance of a signature we also adopted the con-
cordance index (C-index), which is a measure of over-
all concordance between predicted risk scores and
observed survival [51, 52].

Differential expression and functional enrichment analysis
After using limma package in R, the expression values of
all tumor samples of TCGA-BRCA dataset were log-
transformed by voom and the batch effects such as plate
was corrected by removeBatchEffect. Then differential
expressed genes were identified. The Fisher [53] was
used to determine the significance of biological pathways
enriched with a set of interested genes by hypergeo-
metric distribution test.
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Additional file 7: Fig. S5. Kaplan–Meier estimates of survival. (a)
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