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A meta-analysis of QTLs associated with grain protein content (GPC) was

conducted in hexaploid and tetraploid wheat to identify robust and stable

meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs

retrieved from 48 linkage-based QTL mapping studies were projected onto

the newly developed wheat consensus map. The analysis resulted in the

prediction of 57 MQTLs and 7 QTL hotspots located on all wheat

chromosomes (except chromosomes 1D and 4D) and the average

confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots

compared to the initial QTLs. The physical regions occupied by the MQTLs

ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the

physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb

with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also

found to be co-localized with 45 significant SNPs identified in 16 previously

published genome-wide association studies in wheat. Candidate gene (CG)

investigation within some selected MQTLs led to the identification of 705 gene

models which also included 96 high-confidence CGs showing significant

expressions in different grain-related tissues and having probable roles in

GPC regulation. These significantly expressed CGs mainly involved the

genes/gene families encoding for the following proteins: aminotransferases,

early nodulin 93, glutamine synthetases, invertase/pectin methylesterase

inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases,

hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and

EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains

containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-

1By9, TaBiP1,GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known

to be associated with GPCwere also detectedwithin some of theMQTL regions

confirming the efficacy of MQTLs predicted during the current study.
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Introduction

The hexaploid bread wheat (Triticum aestivum L.) is the

major food crop for approximately one-third of the world

population with 760.93 million thousand tonnes of production

from a growing area of over 219 million thousand hectares

(https://www.fao.org). It constitutes the 20 percent dietary

component of both calories and protein in the human diet

(Peng et al., 2011; Pal et al., 2022). The tetraploid durum wheat

(Triticum turgidum L. subsp. Durum Desf.) is mainly used for

pasta making. The most extensively produced species is

common wheat (95%) followed by durum wheat accounting

for the remaining 5%. Given the ever-increasing emphasis on

health among consumers, wheat breeding efforts have recently

shifted their focus from enhancing production to enriching

quality end products with high nutritional value (Saini et al.,

2020). Wheat quality is a versatile and complex phenomenon

involving various factors (Peng et al., 2022). Both protein

content, as well as the quality of processed wheat products, is

primarily governed by grain protein content (GPC) and

protein quality (protein profile). Wheat proteins are

challenging to define due to their tremendous complexity in

genetic factors and diverse environmental influence with one

another.

Wheat grain storage proteins are a complex mixture of

various polypeptide chains that have typically been

categorized based on their solubility or composition and

structure (Peng et al., 2022). GPC has an important role in

determining the crop’s commercial worth by altering the end-use

quality and nutritional content of flour/semolina. Given that

mature wheat grains typically contain 8–16% protein (Žilić et al.,

2011), one of the breeders’ key goals is to find stable QTLs and

superior alleles that can be successfully introgressed from high

GPC lines to low GPC lines but superior in terms of agronomic

traits (Kumar et al., 2018). The quantitative nature makes it a

challenging task to improve GPC, as it is governed by several

genes and affected by surrounding factors and crop management

operations (Saini et al., 2020). With the genotypes, locations, and

computational analysis, the heritability of GPC ranged from

0.41 to 0.70 (Giancaspro et al., 2019). Quality and quantity of

protein have long been important considerations in wheat

breeding. However, the negative association betwixt grain

productivity and GPC, considerable environmental effects, and

the narrow genetic base existing within the cultivated species of

gene pool all complicate the increase in GPC (Iqbal et al., 2016).

GPC improvement through traditional breeding procedures has

mostly yielded mediocre results.

The combination of modern genetic tools such as DNA

markers, genetic linkage maps, and high throughput

phenomics platforms with genomic resources i.e. high

quality wheat genome sequence and comparative genomics

analysis with model species has speed up the genetic dissection

of GPC in wheat cultivars (Saini et al., 2020; Gill et al., 2022).

Several GPC-QTLs have been reported and located across all

the chromosomes of both common wheat (e.g., Boehm et al.,

2017; Krishnappa et al., 2017; Cook et al., 2018; Su et al., 2020;

Jiang et al., 2021) and tetraploid wheat (Conti et al., 2011;

Blanco et al., 2012; Marcotuli et al., 2017; Fatiukha et al., 2020;

Ruan et al., 2021). However, very few reported QTLs could be

successfully employed in molecular breeding programs mainly

owing to the large confidence intervals (CIs), small phenotypic

variation explained (PVE) by individual QTLs, and

discrepancies in mapping results due to variations in the

genetic backgrounds and environmental effects.

A meta-analysis of the QTLs identified in different

experiments can be effective in refining the numbers and

positions of the QTLs and detecting stable and consensus

QTLs or meta-QTLs (MQTLs). It has been found that this is

the most dynamic approach for the identification of genomic

regions for a particular trait effectively by reducing the CI’s and

therefore enhancing the detection of candidate genes (CGs)

underlying the causative genomic regions (Goffinet and

Gerber, 2000; Sosnowski et al., 2012; Shafi et al., 2022).

Significant genomic regions are associated with several

economically important traits such as grain yield and its

attributing parameters (Saini et al., 2022c), nitrogen

physiology (Sandhu N. et al., 2021b; Saini et al., 2021),

tolerance to environmental stresses (Kumar et al., 2021; Pal

et al., 2021), single disease resistance such as leaf rust and

multiple disease resistance (Amo and Soriano, 2022.; Pal et al.,

2022; Saini et al., 2022a) in wheat and other cereal crops. The

MQTLs related to nutritional and quality traits have been

reported in durum and bread wheat (Quraishi et al., 2017;

Soriano et al., 2021; Gudi et al., 2022). The very first study

conducted by Quraishi et al. (2017) discovered six and eight

MQTLs associated with GPC and baking quality traits

respectively, utilizing 155 original QTLs obtained from only

eight linkage-based QTL mapping studies published before the

year 2013. In the second study, Soriano et al. (2021) utilized

171 QTLs for meta-analysis and identified several MQTLs

associated with different quality-related traits such as mineral

contents, yellow pigment, and a few shared MQTLs for GPC in

durum wheat. Most recently, Gudi et al. (2022) detected several

shared MQTLs each associated with different quality traits using

the studies published after the year 2013. Overall, all three above-

mentioned studies utilized only a fraction of QTLs available for

GPC either in durum or bread wheat; none of the studies

considered all the available QTLs from both bread and durum

wheat, simultaneously. Therefore, the present study was planned

to integrate all the available QTLs associated with GPC in durum
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and bread wheat and to perform a meta-analysis for the

identification of the most robust MQTLs associated with GPC.

In addition to the above, with the advancements in the next-

generation sequencing (NGS) technology, high throughput

genotyping strategies i.e. GBS, RAD sequencing, SNP array,

and advancements in GWAS approaches, it becomes very easy

to identify the significant genomic loci associated with

quantitative traits in crop plants (Halder et al., 2019; Sidhu

et al., 2020; Sandhu et al., 2021a; Sandhu et al., 2021b; Saini

et al., 2022b). The integration of meta-analysis with GWAS has

been utilized in several studies for the investigation of key

genomic regions associated with economic traits (Bilgrami

et al., 2020; Saini et al., 2022a; Saini et al., 2022b). The overall

goal of this meta-analysis was to combine QTLs associated with

GPC in tetraploid and hexaploid wheat with the aim of

identification of consensus genomic regions and their

confirmation through GWAS, which can be used in MQTL-

assisted breeding, and to consolidate thorough information for

developing novel wheat cultivars with high GPC. MQTL genes

were discovered and functionally characterized. RNA-seq and

microarray datasets were also used to find high-confidence CGs

with significant expressions in relevant wheat tissues. The

findings of this study may help in the identification of

diagnostic markers and their utilization in marker-assisted

breeding (MAB) or genomic selection (GS) in wheat to

improve GPC.

Materials and methods

Collection of data on QTLs associated
with grain protein content

The research articles pertaining to GPC in durum and bread

wheat were collected from different repositories/databases

including PubMed (https://www.pubmed.ncbi.nlm.nih.gov),

Google Scholar (https://scholar.google.com/). The information

on (i) markers flanking the individual QTLs (ii) peak positions

and confidence intervals (CI’s) of the individual QTLs (iii) kind

and size of the segregating population used in the individual

studies (iv) LOD score and phenotypic variation explained (PVE)

or R2 values were collected for each QTLs linked with GPC.

Whenever the peak position of the QTLs was not given, the mid-

values of the two flanking markers were used to estimate the peak

positions. When there was no information on LOD scores, the

threshold LOD of 3.0 was used and unique identities were

assigned to individual QTLs for analysis.

The mapping studies utilized 49 different mapping

populations (including 37 RILs, 11 DH, and one NIL

population) with the size ranging from 82 to 306

(Supplementary Table S1). The size of 37 RIL populations

ranged from 93 to 302, the size of 11 DH populations ranged

from 95 to 414 and the size of the NIL population was 120. SSR

and SNP markers were mostly utilized for mapping in these

linkage-based mapping studies in wheat. As many as 459 GPC-

QTLs were available from these 48 studies. Of these 459 QTLs,

133 and 326 QTLs belonged to durum and hexaploid wheat,

respectively (Figure 1A).

Construction of consensus linkage map

During present study, the markers information from

previously published high-quality linkage maps used for QTL

mapping in durum and common wheat for grain protein content

was utilized for the development of a consensus genetic map

these high-quality linkage maps are as follows- (i) the ‘Wheat,

Consensus SSR, 2004’ with 1,258 marker loci (Somers et al.,

2004), (ii) the ‘ITMI_SSR map’ involving 1,398 marker loci

(Röder et al., 1998; Somers et al., 2004), (iii) an integrated

map of durum wheat composed of 30,144 markers (Marone

et al., 2013) (iv) the “Illumina iSelect 90 K SNP Array”-based

genetic map with 40,267 loci (Wang et al., 2014) (v) the

“AxiomR, Wheat 660 K SNP array”-based genetic map with

119,566 markers (Cui et al., 2017). The information on

markers from individual investigations was used for consensus

map development. The LPMerge R package was used for the

development of a consensus linkage map (Endelman and

Plomion, 2014). LPmerge utilizes linear programming to

reduce the mean absolute error between the linkage maps and

consensus maps as effectively as possible. This minimization is

done under the constraints of linear inequality, which ensures

that the order of the markers in the linkage maps is maintained.

When linkage maps have incompatible marker orders, a

minimum set of ordinal constraints is removed to resolve the

problems.

QTL projection and meta-QTL analysis

Two different files i.e., QTL file and map file were prepared

from the individual QTL mapping studies. The QTL file contains

the following informations: name of the QTLs, chromosomes

number, linkage group, LOD scores, PVE value of individual

QTLs, genetic positions of the markers flanking the QTLs, and

peak positions of QTLs. Whereas, the map files mainly included

the following information-population type, size, mapping

function considered for mapping, chromosome-wise markers,

and their respective genetic positions. These QTL files and map

files were uploaded to the BioMercator V4.2 software (Sosnowski

et al., 2012) and QTL projection was performed following the

guidelines given in the manual (https://www.ebi.ac.uk/eccb/

2014/eccb14.loria.fr/programme/id_track/ID10-summary.pdf).

In the QTLs for which CI information was not available, the CI

(95%) was computed from the following empirical formulas for

different types of mapping populations:
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CI (95%) = 530/N x R2 for backcross and F2 populations

(Visscher and Goddard., 2004)

CI (95%) = 287/N x R2 for doubled haploid lines (Liu et al.,

2009)

CI (95%) = 163/N x R2 for RIL lines (Guo et al., 2006)

Where N denotes the number of individuals of the concerned

mapping populations utilized for mapping and R2 is the

percentage of phenotypic variation explained (PVE) by an

individual QTL. Values 530, 287, and 163 are the constants

derived from simulations considering some parameters such as

the proportion of recombination per cM, size of the mapping

population, etc. (Visscher and Goddard, 2004; Weller and Soller,

2004; Guo et al., 2006).

The meta-QTL analysis was performed via the Veyrieras

two-step algorithm available from the software BioMercator

V4.2 for individual chromosomes. The optimal QTL model

was chosen in the first step when the lowest criterion values

were obtained in at least three of the five selection models

[Akaike Information Criterion (AIC), Corrected AIC, AIC

model-3, Bayesian Information Criterion, and Average

Weight of Evidence Criterion]. In the second step, a model

was used to determine the number of MQTLs on each

chromosome. Finally, the consensus locations and 95% CI

of the MQTLs were calculated using the variances of initial

QTL positions and their intervals, respectively (Sosnowski

et al., 2012).

Determination of the physical position of
the meta-QTLs

The nucleotide sequences of the MQTLs flanking markers

were used for the determination of individual MQTLs physical

coordinates. The flanking markers nucleotide sequences were

retrieved from either of the following databases-(i) database

for Triticeae and Avena (GrainGenes; https://wheat.pw.usda.

gov/) for the markers such as SSR and ISSR (ii) JBrowse

WHEAT UGRI (https://urgi.versailles.inra.fr/jbrowseiwgsc/)

and CerealsDB for the SNP markers (https://www.cerealsdb.

uk.net/cerealgenomics/CerealsDB/indexNEW.php). These

sequences were BLASTed against wheat reference genome

FIGURE 1
Salient features of GPC-QTLs considered during the present study. (A) Species-wise distribution of QTLs, (B) chromosome-wise distribution of
QTLs, (C) Confidence intervals (D) LOD scores, and (E) PVE values of the QTLs.
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“Chinese Spring (RefSeq v1.0)” accessible at the

EnsemblPlants database (https://plants.ensembl.org/index.

html) to ascertain the physical positions of the markers

flanking the MQTLs.

Checking the efficacy of meta-QTLs with
genome wide association study

The physical positions of significant SNPs/marker-trait

associations (MTAs) related to GPC identified through

15 GWAS studies published during 2017–2022 were

compared with the MQTLs genomic coordinates reported in

the present study. The overlapping of MQTLs with at least one

significant SNP/MTA was considered as GWAS verified MQTLs.

The 15 GWA studies involved different association panels of

wheat such as spring wheat, winter wheat (hard and soft), and

durum/emmer wheat. The statistic regarding the type of wheat,

population size, and SNPs with GPC in wheat from different

GWA studies are given in (Supplementary Table S5).

Candidate genes and their expression
analysis

The MQTLs comprising at least three initial QTLs were

considered promising MQTLs which were further analyzed for

candidate genes (CGs) identification. MQTLs with less than

2 Mb physical intervals were straightway examined for

accessibility of gene models; whereas for the MQTLs with

more than 2 Mb physical intervals, the first peak physical

positions of MQTLs were estimated as per the formula used

by Saini et al. (2022c) then, 2 Mb regions around the MQTL

peaks were utilized for the detection of gene models.

Information on genes available from each MQTL was

retrieved using the BioMart tool available in the

EnsemblPlants database.

Gene models detected as above were further subjected to in

silico expression analysis using the ‘Wheat Expression Browser-

expVIP’ (Expression Visualization and Integration Platform)

(http://www.wheat-expression.com) (Ramírez-González et al.,

2018). Relevant datasets (Gillies et al., 2012; Li et al., 2013;

Pfeifer et al., 2014; Pearce et al., 2015; Clavijo et al., 2017)

including expression datasets related to grains and related

tissues were utilized for this purpose. Further, considering the

importance of flag leaf senescence in regulating the protein

contents in grains, datasets including expression data on genes

showing expression during a time course of flag leaf senescence

(Cantu et al., 2011; Borrill et al., 2019) were also utilized for the

expression analysis. Gene models with more than 2 transcripts

per million (TPM) expressions in relevant wheat tissues were

considered in the current study. Further, heat maps were

constructed by using the software “Morpheus” (https://

software.broadinstitute.org/morpheus/) to exhibit the patterns

of expressions of different genes in different tissues.

Over and above that, the nucleotide sequences of earlier

associated known genes with GPC were subjected to BLAST

analysis against the IWGSC RefSeq v1.0 accessible at the

EnsemblePlants database. The physical coordinates of known

genes were retrieved and compared with the genomic positions of

MQTL regions to discover their co-localization.

Results

QTLs associated with grain protein
content

Forty-eight (48) linkage-based mapping studies (involving

11 studies on tetraploid wheat and 37 on hexaploid wheat)

pertaining to GPC-QTLs were reviewed and considered for

the present study (Supplementary Table S1). The number of

mapping studies, type of mapping population, and population

size are described above. The chromosome-wise analysis revealed

that the QTLs distribution across all the three sub-genomes was

not uniform (Figure 1B). Sub-genomes A (180 QTLs) and B

(182 QTLs) carried almost same number of QTLs associated with

GPC, whereas, sub-genome D carried a small fraction of QTLs

(only 97 QTLs). As many as 164 QTLs had a CI of less than 5 cM,

whereas, the remaining QTLs had a CI of more than 5 cM with

88 QTLs possessing a CI of more than 20 cM (Figure 1C). LOD

score of individual QTLs varied from ≤ 3.0 to a maximum of

31.8 with 23 QTLs having LOD scores of >10 (Figure 1D). As

many as 306 QTLs contributed less than 10% variation to total

phenotypic variation. There were 35 QTLs that had a PVE value

of >20% (Figure 1E).

Consensus genetic map of wheat

The wheat consensus map constructed during the present

study depicted significant variation for individual chromosomes

with respect to genetic length (Supplementary Table S2). The

consensus map covered a distance of 9,882.15 cM (chromosomal

length ranging from 294.84 cM for 4D to 743.48 for 5A with an

average of 470.58 cM) which accommodated 137,845 molecular

markers mainly including SNPs, SSR, and other markers such as

DArT, RFLP, ISSR, and AFLP. The sub-genomes A, B and D

covered 4011.64, 2979.21 and 2891.3 cM genetic distances,

respectively. The number of markers mapped on individual

chromosomes varied from 361 markers on 4D to

18,944 markers on 3B. The sub-genome B possessed a

maximum number of markers (62,780 markers) followed by

subgenome A with 59,963 and subgenome D with

15,102 markers (Figure 2). The marker densities also differed

among the three sub-genomes with sub-genome B showing a
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maximum density of 21.07 markers/cM and sub-genome D

exhibiting a minimum density of 5.22 markers/cM.

QTLs projected on the consensusmap and
meta-QTLs predicted for grain protein
content

From the 459 QTLs retrieved from 48 mapping studies,

304 QTLs could be projected onto the consensus genetic

map. Due to some of the obvious reasons mentioned

previously, the remaining 155 QTLs were unable to be

projected onto the consensus map (Pal et al., 2022; Gudi

et al., 2022). After QTL projection, a meta-analysis was

performed which resulted in the identification of 65 potential

genomic regions [including 57 MQTLs (each involving at least

2 QTLs derived from different studies) and 7 QTL hotspots (each

involving multiple QTLs derived from a single study)] associated

with GPC (Figures 3, 4A) based on 233 initial QTLs leaving

45 initial QTLs as singletons (single QTLs) and 26 QTLs with

peaks outside the supporting intervals of identified potential

genomic regions. Out of 57 MQTLs, a total of 24 MQTLs

were predicted on sub-genome A, the maximum number of

MQTLs was found on chromosome 7A, where there were seven

MQTLs, followed by chromosome 5A which contained

4 MQTLs. In contrast, chromosomes 1A, 2A, 3A, and 4A

each contained three MQTLs, and chromosome 6A had just

one MQTL (Supplementary Table S3, Figure 4B).

There were 25 MQTLs available on sub-genome B, making it

the sub-genome with the maximum number of MQTLs.

Chromosome 2B was found to have the maximum number of

5 MQTLs. This was followed by chromosomes 1B and 4B each

with 4 MQTLs, and chromosomes 3B, 5B, 6B, and 7B each with

3MQTLs. On sub-genome D, a total of 9 MQTLs were predicted;

chromosome 2D had the most, three MQTLs, followed by two

MQTLs on each of chromosomes 3D, and 6D, but only one

MQTL on each of chromosomes 5D and 7D, whereas, no MQTL

was detected on chromosomes 1D and 4D. The number of QTLs

per MQTL varied from 2 in 28 MQTLs to ≥5 QTLs in the

16 MQTLs including MQTL7A.2 involving 10 QTLs and

MQTL3A.2 involving 13 QTLs (Figure 4C). Among the

7 QTL hotspots, 4 QTL hotspots were mapped on

chromosome 5D and one each on chromosomes 2A, 4A, and 4B.

The average LOD score of the identified MQTLs varied

from 2.80 (MQTL7D.1) to 18.40 (MQTL6B.2)

(Supplementary Table S3, Figure 4D). The average PVE for

MQTLs ranged from 3.80 (MQTL3B.3) to 21.34%

(MQTL7D.1) (Figure 4E). The 57 MQTL and 7 QTL

hotspots chromosome wise physical position, LOD score

and PVE and CI are given (Tables 1, 2). Of the identified

FIGURE 2
Marker density on consensus genetic map used for meta-QTL analysis in the current study. The number of loci mapped on individual
chromosome.
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FIGURE 3
Distribution of MQTLs and QTL hotspots on different wheat chromosomes. GWAS-validated MQTL and QTL hotspots are shown with red
boxes.
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57 MQTLs, nine MQTLs (viz., MQTL2B.1, MQTL2D.1,

MQTL3A.2, MQTL3B.1, MQTL4A.1, MQTL4A.4,

MQTL6A.1, MQTL7B.2, and MQTL7D.1) had more than

15% of PVE. Whereas the average PVE for QTL hotspots

ranged from 6.60 to 24.78% and the number of QTLs involved

in each hotspot ranged from 2 to 4 (Supplementary Table S4).

With an average of 4.6 cM, the CI ranged from 0.3 to

17.71 cM for the reported MQTLs and QTL hotspots

(Figure 4F). The CI reduction among the different wheat

chromosomes varied significantly, with the average CI of

MQTLs and QTL hotspots being 2.71 times less than that

of original QTLs. The mean CI of MQTLs present on 4A

reduced by 8.31 times followed by 5.23 and 5.15 times of

MQTLs located on 3B and 5A, while, a slight reduction in CI

was observed for MQTLs present on 3A (0.93 times) and 7D

(0.77 times). The physical regions covered by MQTLs ranged

from 140 bp to 224.02 Mb with an average of 15.2 Mb,

whereas the physical regions occupied by QTL hotspots

ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb

(Supplementary Table S3).

Verification of meta-QTLs with genome
wide association study

The genomic positions of theMQTLs andQTL hotspots were

compared with the genomic locations of marker-trait

associations (MTAs) or significant SNPs identified in

15 earlier GWA studies (Supplementary Table S5) which

utilized the association panels of hexaploid wheat (spring and

winter type) and tetraploid wheat (durum and wild emmer type).

This comparison enabled the identification of 19 MQTLs and

2 QTL hotspots which co-localized with 41 MTAs/SNPs

identified in these previous studies (Supplementary Table S6,

Figure 3). The number of MTAs/SNPs co-localized with an

individual MQTL also differed. Of the 19 MQTLs, MQTL1B.4

co-localized with a maximum of 7 MTAs/SNPs identified in

5 GWA studies (Rapp et al., 2018; Muhu-Din Ahmed et al., 2020;

Jiang et al., 2021; Lou et al., 2021; Leonova et al., 2022), followed

by MQTL2B.1 co-localized with 6 MTAs/SNPs detected in

4 GWA studies (Liu et al., 2018; Chen J. et al, 2019; Liu et al.,

2019; Rathan et al., 2022) and MQTL4A.1 co-localized with

FIGURE 4
Key characteristics of MQTLs and QTL hotspots. (A) Proportion of MQTLs and QTL hotspots associated with GPC, (B) chromosome-wise
distribution of MQTLs, (C) Number of QTLs involved in MQTLs and QTL hotspots, (D) LOD scores of the individual MQTLs, (E) PVE values of the
MQTLs, (F) Fold reduction in CI of QTLs after meta-analysis.
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TABLE 1 MQTLs associated with GPC in wheat identified in the present study.

MQTL name Chr. Position CI (95%) Flanking markers N QTLs Avg. LOD Avg. PVE

MQTL1A.1 1A 108.15 1.5 RAC875_c34888_65/Excalibur_c48152_563 3 4.50 9.23

MQTL1A.2 1A 128.94 3.35 Excalibur_c20777_428/BS00110358_51 7 4.34 9.78

MQTL1A.3 1A 168.63 6.03 Tdurum_contig98378_452/IWB12795 2 5.21 7.10

MQTL1B.1 1B 162.82 4.94 BS00091126_51/Tdurum_contig9811_127 5 4.80 8.44

MQTL1B.2 1B 175.82 2.65 Kukri_c83200_268/BS00067003_51 2 4.15 7.65

MQTL1B.3 1B 188.02 4.35 Excalibur_c3510_159/BS00067290_51 3 4.43 11.00

MQTL1B.4 1B 245.16 12.07 Ex_c67582_735/IWB69702 2 4.05 8.30

MQTL2A.1 2A 31.12 4.14 BS00019744_51/GENE-1397_630 7 5.90 9.77

MQTL2A.2 2A 169.53 11.01 IAAV8700/Kukri_c31508_91 3 3.25 6.75

MQTL2A.3 2A 214.17 7.14 wsnp_Ex_rep_c103167_88182254 2 5.63 7.93

MQTL2B.1 2B 41.78 2.17 BS00061187_51/GENE-0559_171 3 4.99 16.31

MQTL2B.2 2B 106.73 0.68 Ku_c63748_1270/RAC875_rep_c110344_370 3 3.07 7.23

MQTL2B.3 2B 124.23 3.06 wsnp_Ex_c34303_42642389/BobWhite_c12911_788 7 5.48 9.28

MQTL2B.4 2B 164.06 4.86 RFL_Contig1445_1192/Kukri_c46361_295 3 5.60 6.20

MQTL2B.5 2B 217.06 0.46 IWB56961/Excalibur_c42364_134 5 5.38 7.32

MQTL2D.1 2D 77.9 0.47 wsnp_Ex_c1508_2881921/Excalibur_c18353_55 7 3.53 17.55

MQTL2D.2 2D 84.48 3.72 RFL_Contig2460_547/RAC875_rep_c105150_589 6 5.33 10.78

MQTL2D.3 2D 118.76 2.93 BS00067584_51/BS00009458_51 4 6.40 7.67

MQTL3A.1 3A 64 1.3 BobWhite_rep_c49374_348/TA003589-0518 2 3.90 11.50

MQTL3A.2 3A 168.01 8.56 wsnp_BE497169B_Ta_2_1/Excalibur_rep_c68267_309 13 8.89 15.10

MQTL3A.3 3A 241.52 7.44 BobWhite_c13210_115/Tdurum_contig86206_149 2 3.00 9.78

MQTL3B.1 3B 105.2 5.26 RAC875_c5966_1854/CAP7_c1576_371 7 5.44 18.03

MQTL3B.2 3B 151.5 2.01 IWB40683/IWB985 4 4.63 13.48

MQTL3B.3 3B 180.64 2.85 RAC875_c5799_170/BS00065934_51 2 4.30 3.80

MQTL3D.1 3D 113.92 3.61 RAC875_c22095_1545/IAAV5635 4 4.05 10.41

MQTL3D.2 3D 218.61 6.23 Xcdo407/AX-111337684 4 3.82 7.34

MQTL4A.1 4A 73.83 0.6 Tdurum_contig12696_528/BS00003914_51 3 5.39 20.47

MQTL4A.2 4A 144.99 2.68 IWB47937/AX-89398002 5 4.84 15.06

MQTL4B.1 4B 51.09 5.48 Tdurum_contig5427_314/Xwmc8 2 6.22 9.00

MQTL4B.2 4B 59.32 0.3 wPt-1046/SBG_21726/IWB8981 2 6.50 8.64

MQTL4B.3 4B 88.44 0.83 4B_s49916/Xcnl7 6 6.82 10.13

MQTL4B.4 4B 141.55 1.83 IWB1224/IWB3229 2 4.65 9.91

MQTL5A.1 5A 175.42 0.71 RAC875_c106584_1077/wsnp_Ex_c43642_49901192 2 5.23 6.97

MQTL5A.2 5A 190.16 2.26 BS00021708_51/Excalibur_c34426_723 4 6.67 12.96

MQTL5A.3 5A 234.54 6.27 Tdurum_contig42203_4222/CAP8_c2014_192 4 3.43 7.64

MQTL5A.4 5A 313.52 8.4 GENE-3344_224/Xwmc805 2 4.40 10.73

MQTL5B.1 5B 71.52 17.71 IWB8032/wsnp_BE497820B_Ta_2_1 2 3.50 11.45

MQTL5B.2 5B 109.96 4.1 IWB45714/Xbarc308 7 3.66 7.09

MQTL5B.3 5B 177.64 1.52 IWB8195/IWB29437 2 4.10 7.55

MQTL5D.1 5D 62.98 5.39 Xwmc289/Xwmc434 2 3.40 8.85

MQTL6A.1 6A 212.49 9.58 Jagger_c8913_220/RAC875_c104548_369 2 5.94 20.00

MQTL6B.1 6B 66.45 2.45 wsnp_RFL_Contig2223_1603535/Tdurum_contig10149_284 5 3.02 9.98

MQTL6B.2 6B 101.67 2.46 IWB7667/IWB22499 2 18.40 9.65

MQTL6B.3 6B 134.02 14.14 IWA4745/Kukri_c20894_1233 2 3.70 4.10

MQTL6D.1 6D 44.81 0.3 Excalibur_c1991_1504/RAC875_rep_c85994_258 2 3.00 5.78

MQTL6D.2 6D 96.95 9.69 RAC875_c37031_312/D_contig17879_55 2 7.25 12.55

MQTL7A.1 7A 6.51 5.11 Excalibur_c34115_727/Excalibur_c57160_208 2 5.85 11.35

MQTL7A.2 7A 153.85 2.97 Ra_c54443_444/Excalibur_c44734_935 10 4.89 8.88

(Continued on following page)
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4 MTAs/SNPs identified in one GWA study (Liu et al., 2018).

Three MQTLs viz., MQTL3D.1, MQTL5B.3 and MQTL7B.2

coincided with three MTAs/SNPs identified in different GWA

studies.

Candidate gene and expression analysis
associated with identified meta-QTLs

A total of 32 promising MQTLs based on at least three

original QTLs from different studies were chosen and

investigated further for the identification of available gene

models. This investigation enabled the identification of

705 gene models, with a maximum of 70 gene models

available from MQTL2D.2 and a minimum of only one

available from MQTL1A.2, MQTL1B.3, and MQTL7A.2 each

(Supplementary Table S7). The expression analysis of

705 genes resulted in the detection of 285 significantly

expressed genes with more than 2 TPM expressions in

relevant wheat tissues such as leaves, spikes, and grains

(Supplementary Table S7). Ninety-six promising candidate

genes (CGs) believed to be associated with GPC in wheat

were selected (Supplementary Table S7, Figure 5) from the

significantly expressed genes which encode different types of

proteins such as aminotransferases, early nodulin 93, glutamine

synthetases, invertase/pectin methylesterase inhibitors, protein

BIG GRAIN 1-like, cytochrome P450, Sec31, glycosyl

transferases, hexokinases, small GTPases, UDP-glucuronosyl/

UDP-glucosyltransferases, protein kinases, glycoside

hydrolases, and EamA, SANT/Myb, GNAT, thioredoxin,

phytocyanin, zinc finger, basic-leucine zipper, and homeobox

domains containing proteins.

Further, a comparison of known genes for GPCwith genomic

regions identified through meta-analysis may also assist the

efforts being made to unravel the molecular mechanisms

regulating GPC in wheat. Therefore, the association of known

GPC genes with MQTLs and QTL hotspots was also investigated

during the present study. Five such MQTLs (viz., MQTL1B.4,

MQTL3A.3, MQTL3D.1, MQTL6B.3, and MQTL6D.2) and

2 QTL hotspots (QTLhotspot_4B and QTLhotspot_5D.4) were

found to be associated with eight genes known to regulate GPC in

wheat (Supplementary Table S8). These genes include the

following- Glu-B1-1b (encoding for HMW glutenin subunit),

Glu-1By9 (HMW glutenin subunit), TaNAC019-A (endosperm-

specific transcription factor), TaNAC019-D (endosperm-specific

transcription factor), GSr (glutamine synthetase), bZIP

TABLE 1 (Continued) MQTLs associated with GPC in wheat identified in the present study.

MQTL name Chr. Position CI (95%) Flanking markers N QTLs Avg. LOD Avg. PVE

MQTL7A.3 7A 162 1.93 RAC875_c4336_208/BS00010282_51 2 8.07 5.01

MQTL7A.4 7A 167.62 3.03 wsnp_Ra_c63822_63288359/Excalibur_c34807_431 9 3.51 6.21

MQTL7A.5 7A 171.91 0.58 Xbarc222/Ra_c9427_300 2 8.96 11.91

MQTL7A.6 7A 205.68 3.48 IWB35185/IWB59328 2 2.98 7.27

MQTL7A.7 7A 256.45 2.45 IWB35275/IWB39743 4 6.23 4.50

MQTL7B.1 7B 58.74 2.64 Excalibur_c17927_284/BS00064146_51 5 6.71 4.85

MQTL7B.2 7B 71.42 10.22 Excalibur_c15405_808/Xgwm400/IWB36802 2 6.00 17.45

MQTL7B.3 7B 202.42 6.33 BobWhite_c44404_312/Excalibur_c18228_286 2 4.82 8.65

MQTL7D.1 7D 96.95 9.7 Xbarc214/Xgwm130 2 2.80 21.34

TABLE 2 QTL hotspots associated with GPC in wheat identified in the present study.

Name of QTL hotspots Chr. Position CI (95%) Flanking markers N QTLs Avg. LOD Avg. PVE

QTLhotspot_2A 2A 246.01 15.09 Excalibur_rep_c102244_1103/
BobWhite_c30988_361

2 3.50 6.60

QTLhotspot_4A 4A 114 4.12 AX-109576258/AX-110589926 2 3.25 7.00

QTLhotspot_4B 4B 196.93 1.24 wsnp_Ex_c25373_34639805/Excalibur_c23433_474 3 4.50 9.33

QTLhotspot_5D.1 5D 54.39 3.2 Xwmc818/Xcfd26/RAC875_rep_c72023 4 3.42 18.52

QTLhotspot_5D.2 5D 355.48 5.28 CAP11_c2809_169/D_contig19403_486 2 2.72 15.33

QTLhotspot_5D.3 5D 371.12 5.33 Kukri_rep_c102237_122/Excalibur_c76347_77 2 2.14 20.43

QTLhotspot_5D.4 5D 395.35 6.11 D_contig59863_627/Kukri_rep_c101289_99 2 2.75 24.78
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transcription factor SPA (Basic leucine zipper TF),GPC-B1 (NAC

transcription factor), and TaBiP1 (endoplasmic reticulum

chaperone binding protein).

Discussion

GPC is an essential trait that affects end-use quality and the

economic worth of common and durum wheat (Kumar et al.,

2018). Improvement in GPC content is the utmost breeding

objective in wheat as chapatti making, bread making, and pasta

preparation largely depend upon the GPC in both bread wheat

and durum wheat. Conventional breeding techniques have been

used to improve the GPC, but the expected rate of improvement

has not been reached because of the strong environmental

influence, the lack of a positive relationship betwixt grain

yield and GPC, and the quantitative nature of the trait and

low heritability (Balyan et al., 2013). With the introduction of

molecular markers and next-generation sequencing, as well as

other biotechnological interventions, multiple genomic regions

(genes/QTLs) linked to GPC have been discovered in wheat using

several mapping populations (Prasad et al., 2003; Zhao et al.,

2010; Wang et al., 2012; Kumar et al., 2018; Ruan et al., 2021).

Furthermore, it has been noted in several studies that QTLs

found in one population may not be useful for improving traits in

a different mapping population.

Meta-analysis is a novel and powerful tool which can help in

integrating QTL information generated in multiple studies

involving different types of populations and enable the

identification of reliable and stable MQTLs linked with the

target traits (Quraishi et al., 2017). Meta-analyses for different

traits have been reported in major food crops such as rice, wheat,

maize, etc., (Quraishi et al., 2017; Hu et al., 2021; Prakash et al.,

2022). In wheat, meta-analyses have been performed for several

traits which include yield and yield-associated parameters (Saini

et al., 2022c), quality traits (Quraishi et al., 2011; Shariatipour

et al., 2021; Soriano et al., 2021; Singh et al., 2022; Gudi et al.,

2022); disease resistance (Liu et al., 2009; Soriano and Royo, 2015;

Venske et al., 2019; Liu et al., 2020; Jan et al., 2021; Saini et al.,

2022a) and abiotic stress tolerance (Kumar et al., 2021; Pal et al.,

2021; Soriano et al., 2021). Previously, meta-analyses of QTLs

linked with quality attributes in wheat were also undertaken

(Quraishi et al., 2017; Soriano et al., 2021; Gudi et al., 2022).

Quraishi et al. (2017) found six MQTLs for GPC and eight

MQTLs for baking quality utilizing only 155 QTLs in hexaploid

wheat for the first time. Recently in 2021, Soriano et al. utilized

171 QTLs associated with different quality traits (viz.,

arabinoxylan, β-glucan, flour yellow color, grain mineral

contents, GPC, SDS-sedimentation volume, and yellow

pigment content) and identified 17 shared MQTLs (including

QTLs for different quality traits, biotic and abiotic stress

parameters) in durum wheat (Soriano et al., 2021). Most

recently in 2022, Gudi et al. utilized QTLs reported after the

year 2013 and identified several shared MQTLs for GPC (co-

localized with different processing quality traits, dough rheology

attributes, and nutritional traits). These earlier studies primarily

involved the prediction of MQTLs for different traits taken

together for different quality traits, biotic and abiotic stress

FIGURE 5
Expression patterns of selected high-confidence candidate
genes in different wheat tissues.

Frontiers in Genetics frontiersin.org11

Saini et al. 10.3389/fgene.2022.1021180

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1021180


parameters, and no effort was made to identify MQTLs for GPC

utilizing all the available QTLs from both bread and durum

wheat, thus reducing their utility in wheat breeding.

In contrast, the present study includes the projection of

304 QTLs out of 459 QTLs collected from literature published

to date for GPC. The proportion of GPC QTLs projected on the

consensus map in the current study is much greater than in

earlier studies (Quraishi et al., 2017; Soriano et al., 2021; Gudi

et al., 2022), which could be attributed to the presence of many

QTLs and the use of a highly dense consensus map in the current

study. In the present study, 57 MQTLs and 7 QTL hotspots

associated with GPC were identified which were distributed

across the three sub-genomes. The detection of 57 MQTLs

and 7 QTL hotspots from 304 QTLs resulted in a 4.68-fold

(304/65) reduction in the number of QTLs or genomic regions

linked with GPC in wheat. Physical positions of four MQTLs

(MQTL1B.4,MQTL4B.3,MQTL7B.2, andMQTL7B.3) predicted

during the current study were reported to be overlapped with

four MQTLs (durumMQTL1B.3, durumMQTL4B.4,

durumMQTL7B.1, and durumMQTL7B.9) earlier

identified to be associated with GPC in durum wheat (Soriano

et al., 2021).

From a breeding viewpoint, it is important to determine the

most reliable and robust MQTLs each based on numerous initial

QTLs found in the various populations and environments. In the

current study, 16 MQTLs each based on more than 5 original

QTLs were observed. There were up to 13 initial QTLs associated

with GPC in one MQTL on chromosome 3A (MQTL3A.2),

which is significantly more than what was reported in earlier

meta-analyses (Quraishi et al., 2017; Soriano et al., 2021; Gudi

et al., 2022). The present study compiled extensive data on QTLs

from different mapping populations. It effectively reduced the

QTLs’ CIs, enhancing the reliability of CG detection from

potential MQTL regions. The mean CIs of MQTLs were

2.71 times lower than the CIs of the original QTLs included

in the meta-analysis. As many as 15 MQTLs had CIs of less

than 2 cM.

Validating meta-QTLs/QTL hotspots with
genome wide association study

GWAS is an efficient approach for the dissection of

complex traits by utilizing natural genetic diversity (Korte

and Farlow, 2013). It is based on the principle of linkage

disequilibrium which provides high-resolution power and

allows the identification of significant MTAs or SNPs by

utilizing high throughput genotyping and precise

phenotypic data (Gupta et al., 2005). Meta-QTL analysis

and GWAS both have their advantages and limitations that

can complement each other. There were significant overlaps

between the MQTLs predicted in this study and the MTAs

identified by GWAS for GPC in wheat. Out of the

57 predicted MQTLs and 7 QTL hotspots, 19 MQTLs and

2 QTL hotspots overlapped with MTAs identified for GPC in

recent GWA studies in wheat. In some of the earlier studies of

meta-analysis, MQTLs for other traits of economic

importance have also been validated using this method

(Aduragbemi and Soriano, 2021; Gudi et al., 2022; Saini

et al., 2021; Pal et al., 2022; Yang et al., 2021). In these

earlier studies, only 38.66, 47.22, 78.57, 58.33, 69.23, and

61.37% of the physically anchored MQTLs were confirmed

using GWAS data.

The number of MQTLs found in the current study that

was confirmed by GWAS is within the range of MQTLs found

in earlier studies. The varying proportions of MQTLs

validated by GWAS-based MTAs/SNPs in different studies

may be due to either of the following reasons: (i) the genetic

material utilized in interval mapping (eventually in meta-

analysis) and GWAS was completely different, (ii) neither

method fully accounted for the genetic variations present in

the gene pool for the target trait(s), (ii) GWAS is intended to

detect MTAs with a minor allele frequency of more than 5%;

nevertheless, linkage-based mapping studies can uncover rare

alleles with more severe phenotypic effects, (iv) there were

varying number of GWAS-MTAs available for analysis, (v)

accuracy of physical positions of MQTLs to be compared

with MTAs.

MQTL-assisted breeding for grain protein
content improvement in wheat

Individual MQTL LOD scores varied from 2.80 to 18.40,

with a mean of 5.15, whereas PVE values ranged from 3.80 to

21.34 percent, with a mean of 10.14 percent. Based on the

above findings, the MQTLs were further filtered to identify

some of the promising MQTLs for breeding, which we termed

breeders’ MQTLs, based on the following criteria: (a) CI less

than 2.5 cM, (ii) PVE more than 10%, (iii) LOD more than

3.5, and (iv) dependency on at least three original QTLs from

multiple studies; this effort enabled the detection of six

breeder’s MQTLs (viz., MQTL2B.1, MQTL2D.1,

MQTL3B.2, MQTL4A.1, MQTL4B.3, and MQTL5A.2) each

located on different chromosomes 2B, 2D, 3B, 4A, 4B, and 5A

(Supplementary Table S9). Three of these MQTLs (viz.,

MQTL2B.1, MQTL3B.2, MQTL4A.1) were also validated by

GWA studies. The selected breeder’s MQTLs could be

effectively utilized in MQTL-assisted breeding for the

genetic enhancement of GPC in wheat. Two other MQTLs

(viz., MQTL3A.2 and MQTL3B.1) located on chromosomes

3A and 3B, respectively, explained more than 15% of the

phenotypic variations but had large CIs (8.56 and 5.26 cM,

respectively) making them unsuitable for breeding programs.

Although, these MQTLs could be considered for fine

mapping and cloning in future studies.
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TABLE 3 High-confidence candidate genes associated with GPC in wheat.

MQTL Gene ID Start (bp) End (bp) Function description

MQTL1A.1 TraesCS1A02G025900 12363666 12369892 Protein kinase domain

MQTL1A.1 TraesCS1A02G027600 13081413 13086602 Elongation factor EFG, domain V-like

MQTL1A.2 TraesCS1A02G030900 14253391 14257167 Protein kinase domain

MQTL1B.1 TraesCS1B02G046800 26621671 26638285 F-box associated domain, type 3

MQTL2A.1 TraesCS2A02G026600 12287484 12289174 NADH:flavin oxidoreductase/NADH oxidase, N-terminal

MQTL2A.1 TraesCS2A02G026700 12289478 12291551 Oxoglutarate/iron-dependent dioxygenase

MQTL2A.1 TraesCS2A02G028000 12911511 12913256 UDP-glucuronosyl/UDP-glucosyltransferase

MQTL2A.2 TraesCS2A02G054200 22571240 22573616 UDP-glucuronosyl/UDP-glucosyltransferase

MQTL2B.1 TraesCS2B02G015700 7565607 7579969 Cytochrome P450

MQTL2B.1 TraesCS2B02G016000 7645446 7648835 Hexokinase

MQTL2B.2 TraesCS2B02G583300 770679795 770687184 Clathrin, heavy chain/VPS, 7-fold repeat

MQTL2B.2 TraesCS2B02G582300 769949352 769950767 Signal transduction response regulator, receiver domain

MQTL2B.2 TraesCS2B02G584000 771184907 771188118 Pentatricopeptide repeat

MQTL2B.2 TraesCS2B02G582500 770055312 770056235 Phytocyanin domain

MQTL2B.3 TraesCS2B02G594500 779101022 779102772 TRAF-like

MQTL2B.3 TraesCS2B02G594700 779179160 779184177 Glycoside hydrolase, family 32

MQTL2B.3 TraesCS2B02G594900 779251292 779256095 Glycoside hydrolase, family 32

MQTL2B.3 TraesCS2B02G596600 779861522 779864156 Zinc finger, RING-type

MQTL2B.3 TraesCS2B02G596500 779854577 779858004 GHMP kinase, ATP-binding, conserved site

MQTL2B.3 TraesCS2B02G596700 779880390 779882468 Protein kinase domain

MQTL2B.4 TraesCS2B02G452400 646411925 646417556 Protein kinase domain

MQTL2B.4 TraesCS2B02G452200 646210092 646214150 Glycosyl transferase, family 14

MQTL2B.5 TraesCS2B02G380600 544981351 544984884 GDSL lipase/esterase

MQTL2B.5 TraesCS2B02G380800 544990354 544996445 WD40 repeat

MQTL2D.1 TraesCS2D02G518100 608537487 608541232 EamA domain

MQTL2D.1 TraesCS2D02G516000 607418412 607425112 Zinc finger, RING-type

MQTL2D.1 TraesCS2D02G515900 607283456 607284936 AP2/ERF domain

MQTL2D.1 TraesCS2D02G517200 608196430 608200931 Carbohydrate kinase, FGGY

MQTL2D.1 TraesCS2D02G516500 607933268 607938429 Zinc finger, UBP-type

MQTL2D.2 TraesCS2D02G533300 617965028 617967864 Zinc finger, CCHC-type

MQTL2D.2 TraesCS2D02G530400 616952435 616955208 Glycosyl transferase, family 8

MQTL2D.2 TraesCS2D02G529500 616625519 616627949 Zinc finger, RING-type

MQTL2D.2 TraesCS2D02G532800 617894612 617897359 Glycosyltransferase 2-like

MQTL2D.2 TraesCS2D02G534400 618138520 618143248 Protein kinase domain

MQTL2D.2 TraesCS2D02G529000 616525223 616530794 Basic-leucine zipper domain

MQTL2D.2 TraesCS2D02G531819 617414356 617417584 Pentatricopeptide repeat

MQTL2D.3 TraesCS2D02G571200 637649854 637652332 Sugar phosphate transporter domain

MQTL3A.2 TraesCS3A02G055500 32145925 32149547 Glycosyl transferase, family 1

MQTL3A.2 TraesCS3A02G056000 32251515 32253338 SANT/Myb domain

MQTL3A.2 TraesCS3A02G056100 32384710 32387330 SANT/Myb domain

MQTL3A.2 TraesCS3A02G056500 32639616 32642710 Small GTPase

MQTL3A.2 TraesCS3A02G056600 32646665 32650869 Small GTPase

MQTL3A.2 TraesCS3A02G056800 32716216 32718252 Small GTPase

MQTL3B.1 TraesCS3B02G023300 10013879 10014906 Zinc finger, RING-type

MQTL3B.1 TraesCS3B02G023700 10198656 10202090 Glycosyltransferase 61

MQTL3B.1 TraesCS3B02G024300 10388175 10392856 Protein kinase domain

MQTL3B.1 TraesCS3B02G024500 10562122 10573523 Protein kinase domain

MQTL3B.2 TraesCS3B02G034400 16439668 16444830 WD40 repeat

(Continued on following page)
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TABLE 3 (Continued) High-confidence candidate genes associated with GPC in wheat.

MQTL Gene ID Start (bp) End (bp) Function description

MQTL3B.2 TraesCS3B02G035600 17558579 17563046 SUF system FeS cluster assembly, SufBD

MQTL3D.1 TraesCS3D02G120000 75733615 75740231 Serine incorporator/TMS membrane protein

MQTL3D.1 TraesCS3D02G120200 75946541 75948546 UDP-glucuronosyl/UDP-glucosyltransferase

MQTL3D.2 TraesCS3D02G113400 67470659 67484580 WD40 repeat

MQTL3D.2 TraesCS3D02G113600 67541388 67544595 Transferase

MQTL3D.2 TraesCS3D02G114100 67710273 67713074 Phosducin, thioredoxin-like domain

MQTL3D.2 TraesCS3D02G114300 67717667 67729719 Homeobox domain

MQTL4A.2 TraesCS4A02G010000 5835053 5839914 Protein kinase domain

MQTL4A.2 TraesCS4A02G011700 6801496 6803203 PsbQ-like domain superfamily

MQTL4A.2 TraesCS4A02G011900 6884841 6888795 GNAT domain

MQTL4A.2 TraesCS4A02G012100 6921978 6923456 Protein BIG GRAIN 1-like

MQTL4A.4 TraesCS4A02G028800 21057927 21058645 Phytocyanin domain

MQTL4A.4 TraesCS4A02G028900 21062686 21066407 Myc-type, basic helix-loop-helix (bHLH) domain

MQTL4A.4 TraesCS4A02G029100 21215068 21220471 SLC26A/SulP transporter

MQTL4A.4 TraesCS4A02G029800 21845172 21854022 Protein kinase domain

MQTL4B.3 TraesCS4B02G034300 25263926 25266948 Ribosomal protein S21

MQTL4B.3 TraesCS4B02G034400 25267031 25270444 Ribosomal protein L18

MQTL4B.3 TraesCS4B02G035500 25842359 25852716 CBS domain

MQTL4B.3 TraesCS4B02G037000 26791996 26794269 Zinc finger, CCCH-type

MQTL4B.3 TraesCS4B02G037300 27104920 27110487 BRCT domain

MQTL4B.5 TraesCS4B02G241100 500052749 500054910 Cytochrome P450

MQTL4B.5 TraesCS4B02G241500 500252893 500257371 Protein kinase domain

MQTL4B.5 TraesCS4B02G242200 500868125 500871590 Protein kinase domain

MQTL4B.5 TraesCS4B02G240900 499898695 499901767 Glutamine synthetase, catalytic domain

MQTL5A.2 TraesCS5A02G035100 32702327 32704442 Methyltransferase type 11

MQTL5A.3 TraesCS5A02G235300 451454753 451458817 Glycosyl transferase, family 31

MQTL5A.3 TraesCS5A02G236100 451731021 451736139 Aminotransferase, class I/classII

MQTL5A.3 TraesCS5A02G237200 452933936 452937774 Basic-leucine zipper domain

MQTL5B.2 TraesCS5B02G358300 537960131 537964109 Cytochrome P450

MQTL5B.2 TraesCS5B02G358600 538541865 538548795 Zinc finger C2H2-type

MQTL5B.2 TraesCS5B02G357900 537530437 537537053 F-box-like domain superfamily

MQTL5D.1 TraesCS5D02G364500 441919689 441927139 Cytochrome P450

MQTL5D.1 TraesCS5D02G364900 442330660 442339062 Zinc finger C2H2-type

MQTL5D.1 TraesCS5D02G363500 441327117 441328139 Sulfotransferase domain

MQTL6B.1 TraesCS6B02G026100 15780439 15788214 Ancestral coatomer element 1, Sec16/Sec31

MQTL6B.1 TraesCS6B02G026900 15929467 15933792 Aspartate/other aminotransferase

MQTL7A.4 TraesCS7A02G091800 55918294 55919130 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G091900 55922722 55923573 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G092700 56244809 56245904 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G092800 56324077 56324854 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G092900 56430737 56431572 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G093100 56658022 56658811 Early nodulin 93 ENOD93 protein

MQTL7A.4 TraesCS7A02G093300 56738537 56739378 Early nodulin 93 ENOD93 protein

MQTL7A.7 TraesCS7A02G486300 676584400 676591905 Thioredoxin domain

MQTL7A.7 TraesCS7A02G486600 677692146 677692709 Invertase/pectin methylesterase inhibitor domain superfamily

MQTL7A.7 TraesCS7A02G486700 677694300 677697668 Zinc finger, RING-type

MQTL7A.7 TraesCS7A02G487900 678152379 678157242 Protein kinase domain

MQTL7B.1 TraesCS7B02G387200 653168095 653169641 Aspartic peptidase domain superfamily
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Candidate genes associated with grain
protein content

In the present study, a total of 705 genemodels available from

32 promisingMQTL regions were detected. Out of these 705 gene

models, as many as 285 gene models (available from 30 MQTLs)

showed significant expressions in different wheat tissues. The

MQTL2D.2 had the maximum number of 35 significantly

expressed genes, whereas, MQTL1B.3, MQTL7A.2 had no

significantly expressed gene. Among the 285 significantly

expressed genes, 96 high-confidence CGs were selected based

on their probable roles in the regulation of GPC in wheat

(Table 3). These genes encode for different proteins such as

follows-aminotransferases, early nodulin 93, invertase/pectin

methylesterase inhibitors, protein BIG GRAIN 1-like,

cytochrome P450, glycosyl transferases, hexokinases, small

GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and

EamA, CBS, SANT/Myb, GNAT, thioredoxin, phytocyanin,

and homeobox domains containing proteins. In an earlier

study, Quraishi et al. (2017) identified three genes Triticin,

Gliadin, Tri-ribulose-1,5-bisphosphate carboxylase/Viviparous

as the candidates for three MQTLs located on chromosomes

1A, 2A, and 3A. Most recently in the year 2022, Gudi et al.

identified 44 CGs for different quality traits in wheat. The

majority of these genes were linked to proteins that bind

metal ions, Zn-transporters, small hydrophilic seed proteins,

amino acid transporters, sweet-sugar transporters, UDP-

glucuronosyl/UDP-glucosyltransferases, sugar/inositol

transporters, and other proteins (Gudi et al., 2022).

The association of these high-confidence CGs with GPC

may be discussed as follows- (i) Protein accumulation during

the grain-filling stage is aided by the remobilization of amino

acids from vegetative tissues, a procedure that is predicted to

involve both amino acid importers and exporters. In a recent

study in wheat, the UMAMIT family of transporters was

characterized, with the majority of them carrying EamA

domains. Gene TaUMAMIT17 exhibited significant amino

acid export activity and played a key role in the enhancement

of GPC (Fang et al., 2022). (ii) In a more recent study, semi-

dominant alleles for a class III homeodomain-leucine zipper

TF, HOMEOBOX DOMAIN-2 (HB-2) were identified which

generate more flower-bearing spikelets and significantly

improve GPC. (iii) Aminotransferases are known to

enhance root absorption of a range of amino acids and to

affect GPC positively (Peng et al., 2014). (iv) The endoplasmic

reticulum produces the seed storage proteins glutelin and

beta-globulin, which are then put into protein storage

vacuoles. Small GTPase Sar1, which transports secretory

proteins from the endoplasmic reticulum to the Golgi

apparatus, is known to act as a molecular switch to

regulate the assembly of coat protein complex II (Tian

et al., 2013). (v) CBS domain-containing proteins are

believed to have regulatory functions; therefore, such

proteins may be functional in improving GPC in wheat

grains (Leonova et al., 2022). (vi) Secretory24 (Sec24) and

Sec31 (Sec31) promote anterograde transport of newly

generated proteins from the endoplasmic reticulum to

distinct compartments in the plant endometrium through

shell protein complex II (Lv et al., 2021). (vii) Glutamine

synthetases are known to play key roles in plant nitrogen

assimilation and ammonium detoxification thereby

regulating GPC in durum wheat (Nigro et al., 2016). (viii)

Several members of the basic leucine zipper (bZIP) family

have been identified to play a key role in the regulation of

wheat grain storage protein synthesis (Li et al., 2020; Pfeifer

et al., 2014). (ix) ENOD93 encodes early nodulin 93 proteins

which are known to regulate nitrogen use efficiency in

different crops including rice and wheat (Kant et al., 2010;

Saini et al., 2021), thereby believed to play key roles in the

regulation of GPC in wheat grains. Some of the key CGs

discovered in this study may be validated or functionally

characterized utilizing various methods such as over-

expression, genome editing, knockout techniques, etc.

Comparing genomic regions identified through meta-

analysis to known GPC genes can assist researchers in

better comprehending the genetic architecture

underpinning GPC. As a result, during the current study, a

connection of MQTLs with known GPC genes was also

explored. This study detected the co-localization of eight

functionally known GPC genes with different MQTL

regions, including Glu-B1-1b (Ravel et al., 2006), Glu-1By9

(Chen J. et al., 2019), GPC-B1 (Uauy et al., 2006), TaBiP1

(Zhu et al., 2014), GSr (Bernard et al., 2008), TaNAC019-A

(Gao et al., 2021), TaNAC019-D (Gao et al., 2021), and bZIP-

TF SPA (Boudet et al., 2019). MQTL1B.4 contained the Glu-

B1-1b and Glu-1By9 genes, which are precursors of high-

molecular-weight glutenin subunits, which produce glutenin

when combined with low-molecular-weight subunits. Gluten

proteins, which account for over 80% of total GPC, are

produced by roughly the same amount of glutenins and

gliadin (Ravel et al., 2006; Chen Q. et al., 2019).

MQTL6B.3 contained the major gene GPC-B1 which

encodes a NAC TF that causes 10–15% increase in GPC in

wheat (Uauy et al., 2006). TaBiP1, co-localized with

MQTL6D.2, encodes an important functional protein

i.e., endoplasmic reticulum chaperone binding protein

which is involved in the bio-synthesis of subunit types of

high molecular weight-glutenin subunit (Zhu et al., 2014).

GSr, which is co-localized with QTLhotspot_4B, encodes

glutamine synthetase, which is important in absorbing

ammonia at the key stages of nitrogen remobilization to

the grain, hence regulating the GPC in wheat grains

(Bernard et al., 2008). TaNAC019-A and TaNAC019-D,

available from MQTL3A.3 and MQTL3D.1, respectively,

encode NAC TFs that regulate starch and glutenin

accumulation and its elite allele increases grain quality in
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wheat (Gao et al., 2021). bZIP transcription factor SPA, co-

localizing with QTLhotspot_5D.4, is known to repress

glutenin synthesis in common wheat (Boudet et al., 2019).

Conclusion

The current work is the first thorough meta-analysis of GPC

QTLs in common and durum wheat. The meta-analysis

identified 57 MQTLs and 7 QTL hotspots associated with

GPC, of which 19 MQTLs and 2 QTL hotspots were also

validated with GWA studies. Within these MQTL regions,

705 gene models were detected; of these genes, 285 genes

displayed significant expression across different wheat tissues

analyzed; and 96 high-confidence genes were chosen based on

functional annotation, expression analysis, and literature survey

and proposed for future basic studies. Additionally, data on the

markers flanking the MQTLs can be included in genomic

selection models to increase the precision of GPC predictions

in wheat. Wheat breeders may make greater use of selected

breeder’s MQTLs (viz., MQTL2B.1, MQTL2D.1, MQTL3B.2,

MQTL4A.1, MQTL4B.3, and MQTL5A.2) and CGs uncovered

in this study for genetic improvement of GPC in wheat.
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