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Abstract

Schwannomatosis comprises a group of hereditary tumor predisposition syndromes

characterized by, usually benign, multiple nerve sheath tumors, which frequently

cause severe pain that does not typically respond to drug treatments. The most

common schwannomatosis‐associated gene is NF2, but SMARCB1 and LZTR1 are also

associated. There are still many cases in which no pathogenic variants (PVs) have been

identified, suggesting the existence of as yet unidentified genetic risk factors. In this

study, we performed extended genetic screening of 75 unrelated schwannomatosis

patients without identified germline PVs in NF2, LZTR1, or SMARCB1. Screening of the

coding region of DGCR8, COQ6, CDKN2A, and CDKN2B was carried out, based on

previous reports that point to these genes as potential candidate genes for

schwannomatosis. Deletions or duplications in CDKN2A, CDKN2B, and adjacent

chromosome 9 region were assessed by multiplex ligation‐dependent probe

amplification analysis. Sequencing analysis of a patient with multiple schwannomas

and melanomas identified a novel duplication in the coding region of CDKN2A,

disrupting both p14ARF and p16INK4a. Our results suggest that none of these genes

are major contributors to schwannomatosis risk but the possibility remains that they

may have a role in more complex mechanisms for tumor predisposition.

K E YWORD S

candidate genes, CDKN2A, CDKN2B, COQ6, DGCR8, schwannomatosis screening

1 | INTRODUCTION

Schwannomatosis comprises a group of autosomal dominant tumor

predisposition syndromes characterized by the development of

multiple schwannomas. The most common form is associated with

the NF2 gene, but at least two further genetically distinct forms exist.

Causative variants for non‐NF2‐related schwannomatosis have been

primarily identified in two genes; SMARCB1 (SWI/SNF‐related,

matrix‐associated, actin dependent regulator of chromatin, subfamily

b, member 1) and LZTR1 (leucine zipper like transcription regulator 1),
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both located in the chromosome 22q region although these

variants only account for 30%−40% of sporadic cases and

70%−80% of familial cases (Evans et al., 2018; Hulsebos et al., 2007;

Kehrer‐Sawatzki et al., 2017; Piotrowski et al., 2014). In addition, the

majority of non‐NF2‐related schwannomatosis cases are sporadic

(MacCollin et al., 2005), suggesting the existence of novel schwan-

nomatosis variants and/or genes.

Previous studies have proposed a role for additional genes in the

pathogenesis of schwannomatosis. Whole exome sequencing (WES)

analysis of 10 Korean sporadic schwannomatosis patients, identified

26 variants of which 13 were predicted to be pathogenic from in

silico analysis. One of these potentially pathogenic variants (PVs) was

a missense change (NM_000077.4:c.85C>A; p.Ala29Ser) located in

exon 1 of the cyclin dependent kinase inhibitor 2A (CDKN2A) gene, in

the chromosome 9p21.3 region (Min et al., 2020).

CDKN2A encodes two proteins, p16INK4a and the alternatively

translated p14ARF, both of which have a role in tumor suppression,

through regulation of Rb and p53 pathways (Quelle et al., 1995; Zhang

et al., 1998a,b). Loss of function of both CDKN2A and its tandemly

linked gene CDKN2B, which encodes p15INK4b, another regulator of

the Rb pathway (Hannon & Beach, 1994), have been implicated in a

variety of cancers from central nervous system (CNS) tumors, including

schwannomas (Ali et al., 2021; Almeida et al., 2008; Cancer Genome

Atlas Research, 2008; S. Zhang et al., 1996) pancreatic cancer, renal

cancer, and melanoma (Goldstein et al., 2006; Jafri et al., 2015;

McNeal et al., 2015; Patel et al., 2020; Tu et al., 2018). Indeed,

CDKN2A is one of the main susceptibility genes for familial melanoma

with both point mutations and gene deletions implicated in patho-

genesis (Goldstein & Tucker, 1997; Hussussian et al., 1994; Kamb

et al., 1994; Pollock et al., 1998; Whiteman et al., 1997). In addition, a

splicing variant in CDKN2A (NM_000077.4:c.151–1G>C), responsible

for loss of p16INK4a and p14ARF has been reported in a number of

families affected by multiple neoplasms, including nerve sheath tumors

and melanomas (Petronzelli et al., 2001; Prowse et al., 2003; Sargen

et al., 2016). Notably in the most recent of these reports, Sargen et al.

(2016) observed that a number of nerve sheath tumors, across

affected family members carrying the CDKN2A variant, presented

features consistent with both schwannoma as well as neurofibroma

histopathology.

Other proposed candidate genes for schwannomatosis include the

coenzyme Q6, monooxygenase (COQ6) gene, and DGCR8 micro-

processor complex subunit (DGCR8). There has been one report of a

constitutional missense variant in exon 6 of COQ6 (NM_182476.2:

c.622G>C; p.Asp208His) segregating with disease in a schwannomatosis

affected family (K. Zhang et al., 2014). More recently, a study identified

a germline variant in exon 7 of DGCR8 (NM_022720.6:c.1552G>A;

p.Glu518Lys) in all affected members of a family with both euthyroid

multinodular goiter (MNG) and schwannomatosis (Rivera et al., 2020).

This variant, which was predicted to be pathogenic by a number of

algorithms and by in silico models, was subsequently characterized to

determine its role in disruption of micro RNA biogenesis. Furthermore, a

recent analysis of 13 schwannomas from patients affected by

schwannomatosis and MNG identified the p.Glu518Lys pathogenic

variant in DGCR8 as the only germline pathogenic variant in four of

these tumors (Nogué et al., 2022). All 13 tumors were found to have

loss of heterozygosity (LOH) in the chromosome 22q region containing

DGCR8, LZTR1, SMARCB1, and NF2. For 5/13 tumors, all from the same

individual, no other germline PVs in other schwannomatosis genes were

identified and no somatic NF2 variants were identified in 4/5 tumors

resected from this patient. The authors propose a new model for

schwannoma formation in which the inactivating mutation in DGCR8

constitutes the first hit, whereas loss of the second DGCR8 allele, along

with LZTR1, SMARCB1, and NF2 constitute hits 2, 3, 4, and 5. For some

of these tumor, a sixth somatic hit was also seen in NF2 in the remaining

22q allele.

The purpose of this study was to assess the contribution of

variants in COQ6, DGCR8, CDKN2A, and CDKN2B to pathogenesis

in a group of patients whose clinical features are consistent with

schwannomatosis diagnosis, but for whom routine genetic analysis

failed to identify PVs in the known schwannomatosis genes;

NF2, SMARCB1, and LZTR1. These individuals were also negative

for germline chromosome 22q11.2 deletions, to confirm schwanno-

matosis diagnosis.

2 | MATERIALS AND METHODS

DNA extracted from lymphocytes of 77 schwannomatosis patients

from 75 schwannomatosis families, from the local register at the

Manchester Center for Genomic Medicine was used for analysis.

Demographic data for our cohort is summarized in Table 1. All

patients included in the study met current clinical diagnostic criteria

for schwannomatosis (Evans et al., 2018). These patients had also

previously undergone routine genetic screening from which no PVs in

NF2, SMARCB1, or LZTR1 were identified. Routine analysis for

schwannomatosis consists of screening of the coding region of

NF2, SMARCB1, and LZTR1, including 15 base pairs of intronic

region at each side of exon−intron boundaries as well as part of

the untranslated regions where PVs are known to occur. Forty‐

two patient samples in our cohort were received in or after 2013 and

have been screened using next generation sequencing (NGS) with a

mean coverage of ×1000 for NF2, optimized for detection of

mosaicism to a level of 5%. NGS analysis was also carried out at a

read depth of ×350 for SMARCB1 and LZTR1 on 46/77 and 52/77

patients, respectively. For patients for whom NF2 screening was

carried out by Sanger sequencing only (34/77 individuals), one or

TABLE 1 Summary of demographics for cohort of
schwannomatosis patients

% of total
Age at the time of
genetic screening

Male Female Familial Sporadic 0−30 >30

57 43 12 88 19 81
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more tumor samples were analyzed when available (10/34). Clinical

genetic testing techniques used for screening of index cases are

summarized in Supporting Information: Table S1. Genetic testing of

two anatomically distinct tumor samples ruled out a diagnosis of

mosaic NF2 for 2 of these patients. A summary of molecular testing

of these tumors is presented in Supporting Information: Table S2. The

remaining 32/35 whose samples were collected before 2013, and did

not undergo NGS screening for NF2 variants, were classified as

schwannomatosis patients based on current clinical diagnostic criteria

(Evans et al., 2018), but mosaic NF2 has not been excluded

genetically. A summary of clinical details and results from clinical

genetic testing for patients in our cohort is provided in Supporting

Information: Table S2.

The presence of copy number variants is also routinely assessed

through multiplex ligation‐dependent probe amplification (MLPA)

analysis of NF2 (probe‐set P044; MRC Holland), SMARCB1 (probe‐set

P258; MRC Holland), and LZTR1 (probe‐set P455; MRC Holland).

Finally, LOH is assessed in tumor samples, when available, with NF2

intragenic and flanking polymorphic microsatellite markers. Ethical

approval for the study was obtained from the North West—Greater

Manchester Central Research Ethics Committee (reference 10/

H1008/74). Research based sample screening and analysis were

carried out under ethics approval (reference 10/H1008/74) obtained

from the North West 7–Greater Manchester Central Research Ethics

Committee. Patient data from large clinical databases was anon-

ymized for this study.

Primers were designed to target flanking sites at each side of

exons for regions of COQ6 (NM_182476.2), DGCR8 (NM_022720.6),

CDKN2A (NM_000077.4), and CDKN2B (NM_004936.3) and are

listed in Supporting Information: Table S3. In addition, two intronic

regions of SMARCB1 known to harbor PVs for schwannomatosis

(Piotrowski et al., 2021; Smith et al., 2020) were also screened.

Sanger sequencing of amplicons was then carried out using BigDye™

Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) and

an ABI 3100 automated sequencer (Applied Biosystems).

MLPA was performed for 70 of the 77 samples (for which DNA

was available), using the SALSA MLPA kit, P419 probemix

(MRC‐Holland) probe set from MRC Holland. Briefly, 100 ng DNA

was used for the hybridization, ligation, and amplification of exon

probes for control and test samples according to the manufacturer's

instructions and analyzed on an ABI 3100 automated sequencer

(Applied Biosystems).

In silico analysis was performed for all variants identified in our

cohort. Potential pathogenicity of missense variants was assessed using

REVEL v4.2 (Ioannidis et al., 2016) and BayesDel v4.2 (Feng, 2017).

Nonsense and intronic variants were assessed using CADD v1.4

(Rentzsch et al., 2019). Maximum credible population allele fre-

quency values (Whiffin et al., 2017) and, when applicable, constrain

metrics from gnomAD v2.1.1 (Karczewski et al., 2020) and DECIPHER

v11.9 (Firth et al., 2009) were also used to aid in classification of variants

according to the American College of Medical Genetics and Genomics

(ACMG) guidelines (Richards et al., 2015; Tavtigian et al., 2018) and the

Association for Clinical Genomic Science (ACGS) best practice guidelines

for variant classification in rare disease (Ellard et al., 2020). Potential

splicing effects of variants were assessed using SpliceAI (Jaganathan

et al., 2019), as well as MaxEntScan (Yeo & Burge, 2004), GeneSplicer

(Pertea et al., 2001), NNSPLICE (Reese et al., 1997), EX‐SKIP (Raponi

et al., 2011), and SpliceSiteFinder‐Like (Shapiro & Senapathy, 1987) as

implemented in Alamut® Visual software.

3 | RESULTS

No pathogenic or likely PVs were identified in DGCR8, COQ6, or

CDKN2B. Bidirectional sequencing revealed a heterozygous single

nucleotide duplication in exon 2 of CDKN2A (NG_007485.1:g.28291dup)

in DNA from a patient with five nerve sheath tumors (two were

considered hybrid tumors with high schwann cell content but some

neurofibroma features). As the patient had no clinical features of NF1

and no vestibular schwannomas she was considered to have presumed

schwannomatosis. Molecular analysis was carried out in one of the two

independent hybrid tumors, found no PVs in NF2, SMARCB1, or LZTR1

and no evidence for LOH for NF2 markers. This patient also had family

history of melanoma (affected paternal grandfather and uncle) and

previously presented with two melanomas, which were a malignant

melanoma Clark stage 3 and a superficial spreading melanoma in

situ. The duplication identified in this patient disrupted both isoforms

of CDKN2A, which code for p16INK4a (NM_000077.4:c.158dup;

p.Met53fs) and p14ARF (NM_058195.3:c.201dup; p.Asp68Ter), respec-

tively. This is similar to a previous report of a splicing variant in CDKN2A

(NM_000077.4:c.151–1G>C) that resulted in inactivation of both gene

isoforms (Sargen et al., 2016) and which was observed in DNA samples

from three members of a family affected by melanoma and multiple

nerve sheath tumors, some of which showed overlapping schwannoma

and neurofibroma features.

The variant we identified in CDKN2A has not been reported

previously but it is located in a highly conserved region and has been

classified as pathogenic based on ACMG and ACGS guidelines (Figure 1).

To investigate this duplication in schwannomatosis, we screened the

coding sequence of CDKN2A in one schwannoma sample from this same

patient. The NM_000077.4:c.158dup/NM_058195.3:c.201dup was also

present in heterozygous form. No other variants were identified, except

previously reported polymorphisms. Previous analysis of this tumor

sample revealed no evidence of 22q involvement. The variant was

inherited from her unaffected father. Her paternal grandfather and uncle

both had a history of melanoma; however DNA was not available from

these family members for molecular testing.

MLPA analysis was carried out in 70 people for whom high

quality DNA was available. No copy number abnormalities were

detected in CDKN2A or CDKN2B for any of the samples analyzed. A

reproducible decrease in signal of a single control probe for the

transmembrane channel like 1 (TMC1) gene on chromosome 9q21.13,

was seen in a patient with thyroid cancer and schwannomatosis.

Sequencing of the probe region found no known polymorphisms,

suggesting the possibility of hemizygosity. Mutations in the TMC1

gene have been associated with congenital and progressive hearing
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loss (Kurima et al., 2002) but no links to thyroid disorders or

predisposition to nervous system tumors have been established.

However, the significance of this result remains unclear. Previous

analysis of schwannoma DNA identified LOH on chromosome 22, but

subsequent MLPA analysis for CDKN2A failed for this sample.

4 | DISCUSSION

The predominant model of inheritance for familial non‐NF2‐related

schwannomatosis is a dominant model, similar to that of NF1 and

NF2‐related schwannomatosis. However, whilst routine genetic

analysis is able to identify around 92%−95% of variants responsible

for familial cases for NF1 and NF2‐related schwannomatosis, the

proportion of familial non‐NF2‐related schwannomatosis cases that

can be attributed to known variants is much lower (70%−80%). This

proportion is even lower for sporadic schwannomatosis cases

(30%−40%) (Evans et al., 2018; Kehrer‐Sawatzki et al., 2017). The

genetic architecture of non‐NF2‐related schwannomatosis appears to

be more complex than that of NF1 and NF2‐related schwannoma-

tosis with constitutional SMARCB1 PVs contributing in much higher

proportion to familial schwannomatosis than they do to sporadic

cases, whereas germline LZTR1 PVs seem to contribute similarly to

familial and sporadic cases (Evans et al., 2018). This has prompted

F IGURE 1 Duplication in CDKN2A in a schwannomatosis patient also diagnosed with melanoma. Schematic representation of both isoforms
of CDKN2A, indicating the position of a single base pair (T) duplication that results in a frame shift for both proteins, p16INK4a
(NM_000077.4:c.158dup; p.Met53fs) and p14ARF (NM_058195.3:c.201dup; p.Asp68Ter). The duplication was identified by bidirectional
sequencing of a lymphocyte derived DNA sample from a schwannomatosis patient who was also diagnosed with melanoma. Additionally, a
schwannoma sample was available for sequencing analysis, which confirmed the presence of this variant in the tumor.
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increasing efforts to identify novel PVs for schwannomatosis, some

of which might turn out to be located in hitherto undiscovered

schwannomatosis loci.

Many of these efforts have benefitted from advances in

technologies for genomic analysis. WES of DNA from both sporadic

and familial schwannomatosis samples have implicated a number of

genes and variants of interest (K. Zhang et al., 2014; Min et al., 2020;

Rivera et al., 2020). However, the extent to which these variants can

be considered causative for schwannomatosis has proved to be

harder to determine. In some cases, such as the recently reported

germline variant in DGCR8 (NM_022720.7:c.1552G>A; p.Glu518Lys),

functional characterization has provided strong evidence of the

pathogenic nature of the variant. Additionally, clinical features of

individuals carrying this variant prompted the authors to conclude

that the variant might define a novel syndrome, characterized by the

cooccurrence of schwannomatosis and familial MNG. Of note, only

one of the schwannomatosis patients in our cohort had a thyroid

related comorbidity, which was not classified as familial and no

DGCR8 variant was identified in this patient.

In contrast to DGCR8, evidence supporting the involvement of

variants in CDKN2A and COQ6 in schwannomatosis pathogenesis is

less conclusive. Previous variants reported as potentially associated

with schwannomatosis for these genes (K. Zhang et al., 2014; Min

et al., 2020) have not been fully characterized, so the mechanisms

through which they might contribute to disease remain unclear.

In the case of COQ6, there is need for more exhaustive functional

analysis to establish a plausible mechanism through which dys-

function of COQ6 might lead to schwannomatosis, particularly in the

absence of evidence for bi‐allelic inactivation of this gene in tumor

tissue from affected members of the family in which the variant was

originally identified. Indeed, questions have been raised about the

role of this variant as a causative variant for schwannomatosis

(Trevisson et al., 2015), since there were other variants that were

identified by the same study that originally reported the COQ6

variant, but that were not deemed of interest by the authors. To date,

no other studies have identified COQ6 variants in schwannomatosis

patients, including our present study.

A link between malignant melanoma and nervous system tumors

has been established by a number of studies. Particularly, germline

whole gene deletions of CDKN2A and CDKN2B are known to be

associated with familial syndromes predisposing to malignant

melanoma as well as other nervous system tumors, including

meningioma, astrocytoma, and schwannoma (Azizi et al., 1995;

Bahuau et al., 1997, 1998; Chan et al., 2017; Kaufman et al., 1993).

At the somatic level, inactivation of CDKN2A and CDKN2B has been

identified as an important feature in a number of tumors, most

notably melanomas and tumors in the CNS (Boström et al., 2001;

Casula et al., 2019; Ghasimi et al., 2016; Gonzalez‐Zulueta et al., 1995;

McNeal et al., 2015; Rousseau et al., 2003). Interestingly, loss of

CDKN2 proteins in meningiomas has been established as an

important consideration for tumor classification and, in some cases,

a determinant of tumor progression (Goutagny et al., 2010; Suppiah

et al., 2019). This raises the possibility for a more prominent role of

variants in CDKN2A and CDKN2B genes as modulators of clinical

phenotypes. The role of CDKN2A dysfunction in the pathology of

schwannomatosis has not been established but some clues may

emerge from the study of the mechanisms involved in transformation

of neurofibromas into malignant peripheral nerve sheath tumors

(MPNSTs) resulting from bi‐allelic inactivation of CDKN2A (Chaney

et al., 2020; Magallón‐Lorenz et al., 2021; Nielsen et al., 1999). These

mechanisms appear to be relevant not only to MPNSTs tumor

progression but also to multiple malignant and benign tumor

predisposition (Sargen et al., 2016). It is therefore possible that the

in CDKN2A we report here might be contributing to a similar complex

syndrome.

The absence of germline PVs in DGCR8, COQ6, or CDKN2B

within a group of clinically well characterized schwannomatosis

patients suggests that none of these genes is likely to be a major

contributor to schwannomatosis pathogenesis on its own, although

the possibility remains that they may have a role in complex clinical

phenotypes. There is also a possibility that at least a proportion of the

schwannomatosis cases that remain genetically unexplained might be

caused by a variant within NF2, SMARCB1, or LZTR1 that has been

missed by routine diagnostic methods. This could help explain the

fact that previous studies using whole genome sequencing of

schwannomatosis patients have either been unable to identify novel

candidate genes (Hutter et al., 2014) or have reported potentially

PVs in a number of loci, which have not been validated (K. Zhang

et al., 2014; Min et al., 2020). Indeed a deep intronic PV,

NM_003073.5:c.795+1498C>T, leading to the inclusion of a cryptic

exon and a truncated product, has previously been reported in intron

6 of SMARCB1 (Smith et al., 2020). In addition, a recent deep massive

parallel sequencing study of 35 schwannomatosis cases (Piotrowski

et al., 2021) reported two novel deep intronic variants in intron 4

of SMARCB1 (NM_003073.5:c.500+883T>G and NM_003073.5:c.

500+887G>A). Both of these variants were further characterized by

means of RNA analysis and demonstrated to result in retention of

part of intron 4 and a truncated transcript. We have screened these

intronic regions in our cohort and found that none of our patients is a

carrier for any of these three variants. The variants in intron 4 were

covered by our clinical NGS panel, but deep‐intronic regions are not

typically scrutinized for diagnostic purposes. The intron 6 variant was

not captured by the panel. Furthermore, limitations of some of the

techniques used in the past for genetic molecular testing might mean

that for some individuals, low level mosaic variants in NF2 have been

missed. This in turn may result in misdiagnosis of mosaic NF2 cases as

non‐NF2‐related schwannomatosis, particularly for cases where

there is limited availability of tumor tissue (Evans et al., 2018;

Kehrer‐Sawatzki et al., 2018). The current use of high read depth

NGS analysis in clinical genetic testing has improved the rate of

detection for mosaic PVs in NF2 (Contini et al., 2015; Evans

et al., 2020; Louvrier et al., 2018), however reanalysis of patient

samples is not always possible. Future efforts to find novel PVs for

schwannomatosis might be greatly aided by a similar approach to the

one used by Piotrowski and colleagues, which involved deep

sequencing of the full gene region of NF2, SMARCB1 and LZTR1,

1372 | PEREZ‐BECERRIL ET AL.



which will help detect noncoding PVs that are difficult to identify by

standard NGS panels or WES.

In addition, there is accumulating evidence for PVs contributing

to schwannomatosis combined with other conditions has been set by

the case for families affected by more than one condition in which a

particular variant is observed to cosegregate with disease, such as the

previously described variant in DGCR8 (Rivera et al., 2020) or for

families affected by CDKN2A‐associated melanoma, who also have an

increased risk for other cancers present (Goldstein et al., 2006). This

is also the case for people affected by melanoma along with nervous

system tumors due to deletion of both CDKN2A and CDKN2B, with

suggestions that inactivation of CDKN2A/B genes might be responsi-

ble for the melanoma phenotype, while loss of adjacent genes might

contribute to the development of other neoplasms (Chan et al., 2017).

The presence of schwannomas in our melanoma patient and the

retention of the single base duplication in CDKN2A in tumor DNA

suggest that inactivation of p14ARF and p16ink4a, may be enough for

schwannoma formation. The presence of additional factors con-

tributing to risk for both conditions has also been explored in

previous studies. One intriguing possibility is the potential effect of

noncoding elements on the observed phenotype. One of these

elements, a long noncoding RNA (CDKN2B‐AS1) spanning the two

exons of CDKN2B, was discovered by a study aimed to determine the

size of a 9p21 deletion in a large family affected by melanoma‐

astrocytoma syndrome (Pasmant et al., 2007). The authors suggest,

p14ARF and CDKN2B‐AS1 might share a promoter, a fact supported

by their discovery of a significant correlation in transcript levels of

CDKN2B‐AS1 with those of p14ARF, p16INK4a, and CDKN2B in

healthy tissue as well as breast tumor samples and NF1‐associated

tumor samples.

Exploration of the possible interactions of potential candidate

genes for schwannomatosis with the known causative genes, might

provide some insight into the type and location of novel PVs in

cases where no variants in SMARCB1, LZTR1, or NF2 have been

identified. Furthermore, functional characterization of known

causative variants for schwannomatosis will undoubtedly advance

our understanding of potentially new mechanisms of disease in

schwannomatosis, particularly for variants located in noncoding

regions of both SMARCB1 and LZTR1. This in turn might lead to

elucidation of important correlations of these genes with other loci,

and ultimately to an increased ability for accurate diagnosis and

classification of schwannomatosis cases based on their clinical and

molecular features.
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