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Abstract: The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major
public health concern worldwide. In this narrative review, we have summarized the characteristics
of major in vitro and in vivo PCa models including their utility in developing treatment strategies.
Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor
(AR) signaling pathway that facilitates the development and progression of castration resistant PCa.
Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from
dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the
backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been
possible through the development of several in vitro and in vivo research models. Generally, tissue
culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity
of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and
treatment since they can simulate the tumor microenvironment that plays a central role in initiation
and progression of the disease. Moreover, the availability of several genetically engineered mouse
models has made it possible to study the metastasis process. However, the conventional models are
not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the
variation of metastatic characteristics in xenograft models are obviously challenging. Additionally,
due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa
encompassing different ethnicities is urgently needed. New models should continue to evolve to
address the genetic and molecular complexities as well as to further elucidate the finer details of the
steroidogenic pathway associated with PCa.
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1. Introduction

Prostate cancer (PCa) is a frequently diagnosed malignancy that ranks second in
cancer-related deaths in men in the United States [1]. The growth and survival of PCa
have been attributed to the androgens that act by both stimulating proliferation and
suppressing apoptosis. Thus, hormone therapy or androgen deprivation therapy has
become the standard approach for PCa treatment. Despite an improved outcome with
androgen deprivation therapy in the initial stages or in castration-sensitive PCa patients, the
majority of the patients succumb to metastatic castration-resistant prostate cancer (CRPC).
Androgen receptor (AR) amplification and mutations in AR are the most critical molecular
aberrations, which basically trigger the development of CRPC. CRPC is characterized by
the presence of androgen-refractory cells that are more aggressive and highly metastatic
compared to androgen-dependent cells [2]. Although the recent FDA-approved agents
(e.g., abiraterone, cabazitaxel) offer some benefist, the five-year survival rate of CRPC
patients is only about 28.2% [3]. Figure 1 delineates the flow of research from preclinical
to clinical components. Essentially, the development of PCa involves several steps that
begin with the formation of prostate intraepithelial neoplasia (PIN). This arises due to
the overexpression of glutathione S-transferase pi 1 gene (GSTP1), B-cell lymphoma 2
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(BCL-2), and proto-oncogene MYC [4–6]. The subsequent loss of phosphatase and tensin
homolog (PTEN), NK3 Homeobox 1 (NKX3.1), and retinoblastoma protein (RB1) results
in prostate adenocarcinoma [7–9]. The condition is aggravated when metastatic PCa
develops due to the mutations in AR, ATM, BRCA1/2, and loss of SMAD Family Member
4 (SMAD4) [10,11].

Life 2022, 12, 1607 2 of 19 
 

 

the formation of prostate intraepithelial neoplasia (PIN). This arises due to the overex-
pression of glutathione S-transferase pi 1 gene (GSTP1), B-cell lymphoma 2 (BCL-2), and 
proto-oncogene MYC [4–6]. The subsequent loss of phosphatase and tensin homolog 
(PTEN), NK3 Homeobox 1 (NKX3.1), and retinoblastoma protein (RB1) results in prostate 
adenocarcinoma [7–9]. The condition is aggravated when metastatic PCa develops due to 
the mutations in AR, ATM, BRCA1/2, and loss of SMAD Family Member 4 (SMAD4) 
[10,11]. 

 
Figure 1. Schematic diagram of the flow of research from preclinical to clinical components. 

AR usually displays preferential binding to heat shock proteins (HSP) in its dormant 
form [12]. Upon binding of androgens to its ligand binding domain (LBD), AR gets acti-
vated and translocated to the nucleus. Subsequent binding of AR to androgen response 
elements (AREs) results in the transcription of several downstream genes. This also pro-
motes the upregulation of various signaling pathways such as the PI3K/AKT pathway, 
which has enormous implications for different cancers [13]. Moreover, AR is closely 
linked to cell growth, proliferation, and metastasis. De novo steroidogenesis drives the 
maintenance of intratumoral androgens that may deliver an adaptive response in CRPC 
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androgen sensitivity that is mediated by an overexpression of AR. This event is associated 
with the androgen independence of PCa cells. Overall, AR upregulation results in andro-
gen-hypersensitivity that can lead to hormone-resistance in PCa patients [18]. Hence, AR 
antagonists are heavily employed in the treatment of PCa and a better understanding of 
AR function as well as AR sensitivity is of paramount importance to devise more effective 
PCa therapeutics. Apart from AR, a good number of markers are also available in PCa. 
These include but are not limited to cytokeratins, p53, PTEN, Rb, NKx3.1, Ki-67, β-catenin, 
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Figure 1. Schematic diagram of the flow of research from preclinical to clinical components.

AR usually displays preferential binding to heat shock proteins (HSP) in its dormant
form [12]. Upon binding of androgens to its ligand binding domain (LBD), AR gets activated
and translocated to the nucleus. Subsequent binding of AR to androgen response elements
(AREs) results in the transcription of several downstream genes. This also promotes the
upregulation of various signaling pathways such as the PI3K/AKT pathway, which has
enormous implications for different cancers [13]. Moreover, AR is closely linked to cell
growth, proliferation, and metastasis. De novo steroidogenesis drives the maintenance
of intratumoral androgens that may deliver an adaptive response in CRPC by activating
the AR signaling pathway [14]. Androgens comprise different sex hormones of which
testosterone and dihydrotestosterone (DHT) are the most prominent androgenic ligands of
AR; others include androstenedione, androstenediol, and dehydroepiandrosterone. Usually,
the Leydig cells in testes produce testosterone that gets converted to DHT by 5α-reductase
(SRD5A) in the prostate [15]. Two types of steroidogenesis are observed that are designated
as “classical” and “backdoor” pathways. In the classical pathway, pregnenolone and
progesterone get converted to Dehydroepiandrosterone (DHEA) and androstenedione by
the sequential hydroxylase and lyase activity of CYP17A1. After entering the prostate,
these adrenal androgens yield testosterone with the help of enzymes HSD3B and HSD17B.
Finally, testosterone gets converted to the more potent androgen dihydrotestosterone in
the presence of SRD5A [16]. In the backdoor pathway, progesterone is first converted
to pregnan-3,20-dione that ultimately gets converted to androstanediol via the enzymes
CYP17A1 and HSD17B. Subsequent formation of DHT occurs from androstanediol by the
actions of RDH5 and AKR1C [17]. PCa cells elicit an alteration in androgen sensitivity
that is mediated by an overexpression of AR. This event is associated with the androgen
independence of PCa cells. Overall, AR upregulation results in androgen-hypersensitivity
that can lead to hormone-resistance in PCa patients [18]. Hence, AR antagonists are heavily
employed in the treatment of PCa and a better understanding of AR function as well as AR
sensitivity is of paramount importance to devise more effective PCa therapeutics. Apart
from AR, a good number of markers are also available in PCa. These include but are not
limited to cytokeratins, p53, PTEN, Rb, NKx3.1, Ki-67, β-catenin, EGFR, etc.

Several PCa cell lines were developed in the early 1970s and 1980s, such as LNCaP,
DU145, and PC-3 which are still indispensable in research [19–21]. Nevertheless, the com-
mon PCa cell lines are not devoid of limitations. For example, these cell lines do not
accurately simulate the heterogeneity that is frequently observed in human tumors [22].
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Therefore, patient-derived cancer models such as patient-derived xenografts (PDXs) are
a better alternative to drug screening since they can more precisely simulate clinical re-
sponses in patients [23]. Presently, several PCa PDX models are used worldwide [24].
Human prostate tissue and PCa patients are one of the most sought PCa research models.
In this narrative review article, we have summarized the major in vitro and in vivo PCa
models that could be helpful for the investigators to decide on the appropriate models for
conducting research and developing treatment strategies. Overall, PCa research models
can be classified into preclinical and clinical models, where preclinical models are higher in
both number and frequency of use. Preclinical models include primary and secondary cell
lines, patient-derived or cell-line derived xenografts, transgenic mouse, knockout mouse,
and cancer-related inflammation models. Likewise, clinical models are limited in nature
and mainly comprised of human prostate tissues and patients.

2. Cell Culture Models
2.1. Androgen-Dependent Cells: LNCaP

The androgen responsive LNCaP cell line possesses the mRNA/protein expression
of both AR and prostate specific antigen (PSA). This cell line was established from lymph
node metastasis [19]. In the AR coding sequence, LNCaP displays a mutation in T877A
that results in unsolicited affinity to different steroid compounds [25]. Their doubling
time is 60–72 h and they express IGF-1-R, EGF/TGF-α-R, and FGF-R [26,27]. Moreover,
they exhibit wild type (WT) p53 and PTEN inactivation [28–30]. Some sublines that
were established from LNCaP showed the ability to grow in vivo after subcutaneous
or orthotopic implantation. Among the sublines, LNCaP-LN3 produced lymph node
metastases more frequently after being implanted into the prostate. Additionally, after
intrasplenic implantation LNCaP-LN3 resulted in liver metastases. LNCaP-LN3 furnished
high levels of PSA and showed less androgen sensitivity [31,32]. This cell line shows a high
expression of SRD5A1, a very low level of SRD5A2, and no expression of CYP17A1 [33,34].

2.2. Androgen-Independent Cells
2.2.1. PC-3

PC-3 cells that do not exhibit AR or PSA mRNA/protein were obtained from vertebral
metastasis of prostate tumor. Their doubling time is about 33 h. This cell line expresses
aberrant p53 with a nonsense codon that demonstrates a loss of heterozygosity [35,36]. They
also express transferrin receptor [37,38] and their independent growth is due to elevated
expression of TGF-α and EGF-R [39]. Due to its robust tumorigenicity, PC-3 remains a
frequently used cell line that can grow easily in vivo [40]. It is worth mentioning that PC-3
is more characteristic of neuroendocrine rather than adenocarcinoma [41]. A metastatic
variant of PC-3 is PC-3M. Tumors were excised from the prostate or lymph nodes and later,
these tumor cells were reintroduced into the prostate. The cycle was repeated several times
that generated the sublines, PC-3M-Pro4 and PC-3M-LN4. PC-3M-LN4 cells exhibited
a greater level of lymph node, lung, and bone metastasis [32]. PC-3 shows very low
expression of CYP17A1, moderate level of SRD5A1, and very low level of SRD5A2 [33,42].

2.2.2. C4-2B

LNCaP C4-2B subline is androgen independent and has a doubling time of 48 h.
These cells possess a greater metastatic potential than the parental LNCaP cell line. When
these cells are injected intraosseous or intracardially into the immunodeficient mice, they
produce osteoblastic or mixed osteolytic–osteoblastic lesions. Due to the elimination of
different molecular properties of localized and treatment-naive PCa, this cell line attains
the most undifferentiated state of PCa [40]. LNCaP and human osteosarcoma MS cells were
subcutaneously co-injected into the mice from which C4 cells were generated. Later, C4
cells were subcutaneously injected into a castrated mouse followed by the culturing of the
tumor cells and development of C4-2 cells. These cells finally resulted in a cell line that



Life 2022, 12, 1607 4 of 18

produced bone metastasis and this metastatic line was named C4-2B [43]. The steroidogenic
enzyme expression in C4-2B is yet to be reported.

2.3. Wild-Type AR
2.3.1. LAPC-4

LAPC-4 cell line was generated from the lymph node metastasis of a hormone-
refractory PCa patient through sequential subcutaneous xenografting into SCID mice.
While developing this cell line, the explants from the PCa patients were xenografted into
mice from which the tumor cells were later grown in culture dishes [44]. The doubling time
of this cell line is about 72 h and the cells can grow subcutaneously, orthotopically, or intrat-
ibially in nude mice [45]. They express wild type AR, PSA, and PTEN and demonstrate p53
mutations (P72R and R175H) [46]. The available evidence also reported the expression of a
basal epithelial and a luminal epithelial marker called CK5 and CK8 [44]. LAPC-4 displays
the high expression of SRD5A1 [47].

2.3.2. VCaP

The VCaP cell line was generated from a hormone-refractory metastatic PCa pa-
tient [48]. This cell line displays AR, PSA, prostatic acid phosphatase (PAP), and retinoblas-
toma (Rb). Moreover, it expresses CK-8, CK-18, PTEN, and p53 which have an A248W
mutation. Its doubling time is about 51 h and it grows reasonably well both in normal and
castrated mice [49]. VCaP cells exhibit the TMPRSS2:ERG fusion gene that was reported
to form tumors orthotopically [50]. It is also tumorigenic to SCID mice when injected
subcutaneously [51]. VCaP cell line exhibits a high expression of CYP17A1 [52].

2.4. Normal Prostate Epithelium Cells RWPE-1

The RWPE-1 cell line was obtained from a 54-year-old man’s prostate and human pa-
pillomavirus 18 (HPV-18) was used to make the cell immortalized [53]. Their doubling time
is about 120 h and they express AR, PSA, and luminal prostatic epithelium markers, CK8
and CK18. They also display heterogenous nuclear staining for p53 and Rb proteins [54].
The epidermal growth factor (EGF) and fibroblast growth factor (FGF) promote the growth
of RWPE-1 and TGF-β suppresses their growth [55,56]. It is important to note that the
RWPE-2 cell line that can form a tumor in the nude mice after subcutaneous injection was
developed by the transformation of RWPE-1 with Ki-ras [54]. The steroidogenic enzyme
expression is absent in this cell line. Table 1 summarizes the primary characteristics of
major PCa cell lines.
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Table 1. General properties of prostate cancer cell lines. Compiled from published literature [19,21,26,33,34,42–44,47,48,52,54].

Cell Line Source Doubling Time PSA AR Markers Steroidogenesis Markers Advantage Disadvantage

LNCaP Lymph node
metastasis 60–72 h + + p53, absence of PTEN,

vimentin
SRD5A1—high

SRD5A2—very low
Sublines have growth

potential in vivo
Insensitivity to androgen

and mutated AR

PC-3 Vertebral
metastasis 33 h - - Absence of p53, loss of

PTEN, TGF-α, EGFR

CYP17A1—very low,
SRD5A1—moderate,
SRD5A2—very low

Greater extent of
metastasis AR-negative

C4-2B
Xenograft of

LNCaP cell in
nude mice

48 h + + p53, absence of PTEN Undocumented
Very good growth

potential both in intact
and castrated mice

LAPC-4
Lymph node of

androgen
insensitive patient

72 h + + Mutation in p53 SRD5A1—high Hormone-responsive

Possibility of
androgen-independence

if grown in female or
castrated male mice

VCaP Vertebral
metastasis 51 h + + Mutation in p53,

PTEN, Rb CYP17A1—high
Sensitivity to

androgen; expresses
PSA, and AR

The availability of
wild-type TMPRSS2 and
ERG genes obstructs the
probe of TMPRSS2-ERG
rearrangement in vitro

RWPE-1 HPE cells from the
peripheral zone 120 h + + P53, Rb No expression

Beneficial to
investigate the

molecular
mechanisms of benign
prostatic epithelial cell

proliferation

No tumor formation
in mice
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2.5. Drug Resistant Cell Lines

Like most other cancers, the development of drug resistance is frequently observed
in PCa. Therefore, drug-resistant cell lines can be employed in research to identify novel
molecular mechanisms of chemoresistance. Mohr et al. reported the generation of docetaxel-
resistant PCa cell lines. In their study, they initially treated DU145 and 22Rv1 cells with
10 nM of docetaxel followed by an increase in drug concentrations (25 nM, 50 nM, 100 nM
and 250 nM). They confirmed docetaxel resistance by colony formation assay and pheno-
typic characterization by qRT-PCR [57]. Hongo et al., generated cabazitaxel-resistant DU145
and PC-3 cells where they began cabazitaxel treatment at a concentration of 0.3 nmol/L and
later, progressively increased the dose to a final concentration of 3 nmol/L. In this study,
they found that DU145CR cells exhibited resistance against cabazitaxel-mediated G2/M
arrest through the upregulation of ERK signaling and PC-3CR cells displayed amplified
PI3K/AKT signaling [58]. In a follow-up study, they reported an elevated expression of
AURKB and KIF20A in DU145CR compared to a non-CBZ-resistant cell line [59]. Kregel
et al., reported the development of enzalutamide-resistant (EnzR) cell lines where they
treated CWR-R1, LAPC4, LNCaP, and VCaP cell lines with 10 Mm enzalutamide for at
least 6 months before carrying out experiments. They found that enzalutamide-resistant
LNCaP and CWR-R1 cells presented enhanced castration-resistant and metastatic growth
in vivo [60]. Liu et al., reported the development of abiraterone resistant C4-2B cells that
were exposed to 5–20 Mm abiraterone acetate over 12 months. They demonstrated that
the overexpression of AR-V7 was associated with resistance to abiraterone, which sug-
gested that the addition of an AR-V7 inhibitor could be instrumental for treating advanced
CRPC [61].

3. Xenograft Models

LNCaP cell line is very commonly used for developing mouse xenografts. This cell
line was isolated from lymph node metastasis [19]. After isolation, its tumor forming ability
in mice was about 50% through subcutaneous injection [62]. Nowadays, matrigel use can
produce higher rates of tumor and form faster in male mice. It is unique due to its ability
to express both AR and ER. They carry a mutated androgen receptor (AR) (T877A) [25].
Its tumorigenicity is inadequate in athymic nude mice and that is why LNCaP sublines
were created that have better growth potential in vivo [31,32]. These include LNCaP-Pro3–5
and LNCaP-LN3–4. LNCaP-LN3 cells generate lymph nodes and liver metastases to a
greater extent.

The PC-3 cell line can also be used for developing mouse xenografts. Stephenson
et al. reported the formation of lymph node metastases through orthotopic implantation of
PC-3 cells [63]. PC-3M is a metastatic variant of PC-3. Basically, tumors were harvested
from the prostate or lymph nodes, and these tumor cells were reinjected into the prostate.
This resulted in the cell lines, PC-3M-Pro4 and PC-3M-LN4. PC-3M-LN4 cells were reported
to display significantly more metastatic potential in lymph node, lung, and bone [32].

The DU145 cell line is another variant that is also used for developing xenografts.
Both PC-3 and DU145 cells are androgen-independent and they do not express AR. Culig
et al. created an LNCaP-abl cell line after culturing LNCaP cells 87 times in a medium
devoid of androgen. These cells exhibit a greater amount of AR and display an amplified
proliferation to androgen until passage 75. In nude mice, bicalutamide promoted the
growth of LNCaP-abl xenografts while testosterone suppressed it [64]. LNCaP-IL6C cells
have a tremendous growth potential in nude mice and this cell line was established after
serial passaging in the absence of IL6 [65]. LNCaP-IL6C cells show an upregulation of
cyclin-dependent kinase 2 and diminished expression of the tumor suppressors pRb and
p27. Loberg et al., reported the generation of an androgen-independent PCa cell line
through subcutaneous implantation and serial passaging of VCaP cells in castrated male
SCID mice [66]. VCaP expresses high levels of PSA, prostatic acid phosphatase (PAP),
cytokeratin-18, and wild-type AR [48]. Figure 2 describes the steps involved in cell and
patient-derived xenografts development.
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Although cell derived xenograft models are useful to assess the efficacy and mecha-
nisms of drugs, they are devoid of heterogeneity and cannot mimic the complexity of the
tumor microenvironment. Hence, PDX models are advantageous that are developed by
relocating patient tumor samples into host animals. These models can better replicate tumor
heterogeneity which is helpful to design more effective therapeutics. In 1976, Schroeder
et al. first reported the transplantation of PCa tissues into nude mice [67]. Despite being
a popular PDX model, nude mice can retain some humoral adaptive immunity and an
innate immune system, thereby restricting PDX engraftment. SCID mice lack both T- and
B-cells, but they are sensitive to radiation-induced DNA damage and can produce T and B
cells with increasing age. IL2rg mutations resulted in the development of NSG, NOG, and
NRG mice. NSG and NOG mice were reported to demonstrate an escalated sensitivity to
drugs [2]. Considering the limitations of different models, orthotopic xenografting of tissue
is accepted as the finest model that offers a more physiologically relevant microenviron-
ment and the tumor take rate in this model is approximately 70% [68]. Table 2 illustrates
the major features of PCa xenograft models.

Table 2. Properties of xenograft models of prostate cancer. Compiled from published
literature [31,63,66,69].

Cell Line Source Androgen
Dependence PSA AR Metastasis to

Organs

LNCaP Lymph node + + + Bone

PC-3 Bone - - - Bone

DU145 Brain - - - No

VCaP Spinal cord + + + Bone

4. Transgenic Mouse Models (Genetically Engineered Mouse, GEM)
4.1. PTEN

The deletion of phosphatase, PTEN takes place about in 86% CRPC [70]. While the
homozygous PTEN knockout results in lethality to mouse embryos, the heterozygous
PTEN+/− knockout leads to multifarious lesions such as endometrial complex atypical
hyperplasia, dysplastic intestinal polyps, lymphomas, and PIN [71,72]. This PTEN knock-
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out model is useful to validate the role of the tumor microenvironment in the growth and
progression of PCa. It is worth mentioning that Nkx3.1-PTEN double mutant mice can
better mimic the early stages of human PCa since these mice have an increased tendency to
develop high-grade prostatic intraepithelial neoplasia (HGPIN) [73].

Ding et al. generated PTENpc−/− Smad4pc−/− mice that were later used to study the
effects of combination therapy of a hypoxia-prodrug, TH-302, and checkpoint blocker. This
combination therapy markedly extended the survival of PTENpc−/− Smad4pc−/− mice [11].
Furthermore, Wang and colleagues reported that polymorphonuclear myeloid-derived
suppressor cells (MDSCs) are a major source of infiltrating immune cells in PCa and their
reduction can suppress the progression of PCa [74]. Liu et al., reported a novel PTEN
knockout (PTENadcre+) mouse model where they generated prostate-specific Cre-LoxP
genes through the delivery of adenovirus to the anterior prostate lobes. This model was a
significant milestone to compare the age difference in PCa since the result showed that the
old mice group has a greater frequency of PCa development and progression compared
to young mice [75]. Table 3 depicts the genetic alterations and metastatic potential of
genetically engineered PCa mouse models.

Table 3. Mouse model of prostate cancer developed by genetic manipulation. Compiled from
published literature [70,76].

Model Genetic Alteration Metastasis to Organs Time to Develop

PTEN

Cre recombinase-mediated
removal of PTEN coding
sequence between two

loxP sites

Lymph node
and lung

PIN: 6 weeks
Invasive carcinoma:

9–29 weeks

TRAMP

Combination of prostate
specific promoter PB and APR2

to induce SV40 large/small
T antigen

Bone, lung, lymph
node, adrenal gland,

kidney

Mild hyperplasia:
8–12 weeks

Metastatic lesion:
18 weeks

4.2. TRAMP

The transgenic adenocarcinoma of the mouse prostate (TRAMP) model was developed
by Norman Greenberg and his group in 1995 [76]. In this model, the development periods
of PIN and lymphatic metastases were 18 weeks and 28 weeks, respectively, and hence,
it is a very useful model to study PCa pathology, prevention, and treatment [77,78]. This
TRAMP model first presented castration-resistant disease progression [79]. In TRAMP
mice, the rat prostate governs the expression of large and small SV40 T antigens through a
prostate specific promoter probasin (PB or Rpb) [80]. Chloramphenicol acetyl transferase
induced the expression of SV40 large T antigen and luciferase reporter assays confirmed
the presence of two androgen receptor binding sites (ARBS) in the PB promoter [81]. The
hemizygous TRAMP mice result in PCa with metastasis and can show different disease
states such as mild intraepithelial hyperplasia and large multinodular malignant neoplasia.
These mice can result in the formation of PIN and adenocarcinoma at the ages of 12 and
24 weeks, respectively in the dorsal and lateral lobes of the prostate. At the age of 12 weeks,
the mice were castrated; however, this event did not impact the development of primary
tumors or metastasis in most of the TRAMP mice. A major drawback of the TRAMP
model is the development of neuroendocrine PCa that could be due to the loss of Rb and
p53 [82,83]. A major drawback of the TRAMP model is the development of neuroendocrine
PCa which could be due to the loss of Rb and p53 [82,83]. Therefore, the TRAMP model is
more appropriate to study PCa of neuroendocrine origin.

5. Knockout Models (Androgen Receptor Knockout (ARKO) Mice)

Androgen receptor knockout (ARKO) models are outstanding models since they are
useful to study AR physiological roles in selective cell types within reproductive systems.
To develop the ARKO mice, C57-B6/129/SvEv loxP-floxed AR mice were first generated
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and then they were mated with Cre recombinase expressing mice [84,85]. Floxed AR mice
were mated with the transgenic mice that harbored Cre expression driven by the strong
β-actin (ACTB) promoter human cytomegalovirus (CMV) promoter, or phosphoglycerate
kinase (PGK) promoter [84–86]. Some other ARKO models are prostate epithelial ARKO
(PEARKO) mice, Leydig cell–specific ARKO (L-AR−/y) mice, and germ cell–specific ARKO
(G-AR−/y) mice [87–89]. AR signaling is important due to the fact that the global female
ARKO mice exhibited impaired mammary gland development along with subfertility [90].
The ARKO male mice displayed reduced levels of testosterone and cancellous bone volumes
than their wild-type counterparts. Moreover, they had a female-like appearance and ARKO
female mice presented fertility impairment. The floxed AR mice are beneficial since they
could be used to generate tissue-specific ARKO such as liver, breast, and prostate where
the roles of AR could be determined [85]. Niu et al. (2008) reported that AR exerted distinct
attributes in the stromal and epithelial cells of the prostate as evidenced in two models
namely, inducible (ind)-AR knockout (ARKO)-TRAMP and prostate epithelial-specific
ARKO TRAMP (pes-ARKO-TRAMP) models. They found that although AR was missing
in both epithelium and stroma, pes-ARKO-TRAMP mice produced bigger tumors with a
higher proliferation index [91]. Overall, the generation of ARKO model is of paramount
importance since this offers a fresh avenue to determine the impact of androgens in the
target tissues.

6. PCa Inflammation Models

The PCa inflammation models are heavily impacted by carcinogens, animal genetics,
hormonal imbalance, fat-enriched diet, cholesterol, and advanced age. For example, an
elevated expression of estrogen receptor-α (ER-α) and a decreased expression of ER-β
and androgen receptor (AR) promoted the oncogenic effect of 17β-estradiol on NRP-152
cells [92]. Chronic inflammation was evident in 48 weeks old FVB/N mice due to the
upregulated expression of estrogens such as 17β-estradiol as well as inflammatory markers
namely, macrophages, neutrophils, and T-lymphocytes that resulted in prostatic intraep-
ithelial neoplasias (PINs) [93]. Yatkin et al., showed that androgen replacement therapy
was able to prevent the 17β-estradiol-induced inflammatory reaction in the prostates of
castrated Noble rats [94].

The causative factors for prostatic infection are usually bacteria, fungi, uric acid crystals
or urine reflux. All these stimuli result in the activation of proinflammatory cytokines in
the prostate that promote tumor development. Reports suggest that an elevated expression
of inflammasome complex in the prostate of a rat model may mimic an inflammatory state
similar to BPH in humans [95]. Elkahwaji et al., demonstrated that inflammation triggers
prostate carcinogenesis by inducing oxidative stress-mediated DNA damage and injury [96].
A high grade PIN developed in humanized mice due to prostate inflammation was the
result of treatment with the carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine
(PhIP). This was associated with an expression of AR while the expression of PTEN and
P63 was diminished. When these mice were fed high-fat diet, they developed carcinoma in
situ [97]. Overall, there lies a strong relation between persistent prostatic inflammation and
PCa development.

7. Clinical Research Models of PCa

Clinical models of PCa research are primarily limited to human prostate tissues and
PCa patients. Though preclinical models offer the advantage of ready availability and
flexibility of treatment, clinical models provide the targeted endpoint of the research in
question.

7.1. Human Prostate Tissues

Prostate tissues from healthy humans or patients represent a unique but challenging
opportunity to understand the disease pathogenesis and key players that are involved in
the disease. Higher expression of steroidogenic enzymes in human prostate homogenates
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(HPH) compared to cell lines offers significant advantages in terms of experimental ease
and clinical relevance. Typically, human prostate tissues are homogenized which are
termed HPH in laboratory terminology. Based on the maturity pattern, histology, and
activity, the human prostate gland can be classified into several zones such as fibromuscular,
transition, central, and peripheral [98,99]. Clinical studies have deduced that tumors
from the peripheral zone have unfavorable long-term survival compared to tumors from
the transition zone [100]. Biopsy and prostatectomy provide tissue samples for research
purposes which are eventually categorized as normal or cancerous based on Gleason score
and staging by a pathologist [101]. Both types of tissues are useful to understand normal
prostatic physiology and pathological conditions that drive cancerous growth. Often,
PCa patients are treated with hormonal agents (e.g., LHRH agonists) to shrink the size
(neoadjuvant therapy) before radical prostatectomy [102]. These tissues are invaluable as
both the biomarkers driving the disease as well as the effect of neoadjuvant therapy on
disease biomarkers can be determined using these types of tissues.

De novo steroidogenesis in the tissues reveals the intratumoral dynamics in CRPC [34,103].
Determination of protein expression by Western blot and immunohistochemistry is achiev-
able [104]; however, gene expression profiling is not possible due to the flash frozen
nature of the samples in wax blocks. HPH is one of the most reliable models to evaluate
steroidogenic enzyme inhibition by experimental therapeutic agents [105,106]. Because
steroidogenic enzyme levels are relatively higher in tissues than in secondary cell lines,
the measurement of steroidogenesis is much more robust and measurable in HPH [34].
Both the classical and backdoor steroidogenesis pathways are observed in HPH with DHT
as the end product [107–109]. SRD5A isoforms and CYP17A1 enzymes are detected in
Western blot and activity studies in HPH [104] which provides mechanistic insight into
steroidogenesis and its inhibitors. Figure 3 shows the steroidogenesis in humans including
both classical and backdoor pathways.
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between rodents and humans can pose a discrepancy in outcome [112]. While it is recog-
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nizable that humans should not be involved in research on PCa, or as a matter a fact for
any disease, until the safety and efficacy of the compounds have been established with rea-
sonable confidence, the pharmacokinetics, DDI, and other drug deposition-related studies
face lesser regulatory stringency than during drug development stage. Identification of
resistant treatment regimen is primarily derivative of post-approval clinical studies where
lower treatment efficacy provide the impetus for research at the preclinical level to develop
drug-resistant cell lines and research design [113,114].

8. Utility of Prostate Cancer Models in Drug Development

Till today, a perfect model for PCa does not exist and this makes the research somehow
ineffectual on a lot of occasions. Since there are legitimate ethical issues in relation to
research on humans, the use of a mouse is still the choice of model. It is, indeed, impera-
tive to find out the underlying cellular and molecular mechanisms of PCa development,
progression, metastasis, and drug resistance to devise more effective therapeutic strategies.
Despite being powerful, GEMMs are barely used to determine the effects of drugs. This is
primarily due to their lengthy time course [115]. Similar to GEMMs, PDX is also used less
frequently for drug studies [116]. Another reason is that metastatic lesions are uncommon
in GEMMs. Extrapolatory evidence shows the absence of metastases in most of the cases
where the mice have to be euthanized due to excessive tumor burden or sometimes due
to immunosurveillance mechanisms [117]. The xenograft models that are developed by
injecting human cell lines are most commonly used to investigate the effects of drugs. This
is accomplished by subcutaneously injecting PCa cells, allowing the tumor to be palpable,
treating it with drugs, and then determining the difference in tumor volume as per the
study protocol. Some subcutaneous xenograft models can be beneficial to study metastasis
and a drug’s effect based on the cell lines involved [118]. Orthotopic injection models
that offer more patient-relevant tumor microenvironments are developed by seeding PCa
cells directly into the murine prostate [119]. Nevertheless, this model is not devoid of
disadvantages. For example, the establishment of the orthotopic model requires delicate
surgical skills. Moreover, the measurement of tumor volume is complicated since the tumor
in this model is not always visible. PDX models are useful as they have the advantages
of cellular heterogeneity, molecular diversity, and histology of primary patient tumors.
One disadvantage of this model is that reproducibility is comparatively low because of the
heterogeneity of PCa [24]. Clinical models such as human prostate tissues and patients
are obviously most desirable research models of PCa as the results are either directly or
most closely translatable in understanding the disease, identifying drug targets, and/or
developing treatment strategies.

The use of PCa cells in cancer stem cell (CSC) research has also been reported that
introduced a new horizon in PCa research. PCa stem cells were identified by Collins et al.
from primary human PCa [120]. These CSCs can self-renew, differentiate, and result in
tumor development. While currently available agents are effective against proliferating
cells, CSCs are quite invulnerable that can render metastasis and drug resistance [121].
A very recent study by Li et al. demonstrated the use of PCa cells in CSC research where
they showed that angiogenin and plexin-B2 regulate the stemness of prostate CSCs. In this
study, they employed the CSCs that were cloned from PC-3, DU145, and LNCaP cells [122].
Similarly, Miolo et al. demonstrated that photoactivated 4,6,4′-trimethylangelicin (TMA)
can reduce the expression CD44 when they conducted the study using DU145 cells [123].
Expression of CD44 serves as a viable marker of CSC and overexpression of CD44 is linked
to PCa staging and response to therapy [124,125]. Silencing of CD44 results in inhibition
of nuclear translocation of β-catenin in PCa [126]. Moreover, Assoun et al. characterized
iPS87 PCa cell line and reported its stem cell-like properties [127]. These studies show that
PCa cells possess enormous potential to be used in the development of novel treatment
strategies involving CSC.
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9. Limitations of Prostate Cancer Models and Future Direction

The currently available PCa cell line models have several limitations. For example,
these cell lines are devoid of heterogeneity that is frequently detected in patient-derived
tumor samples [22]. Indeed, growing these cells in monolayer cultures is the reason behind
this lack of heterogeneity. Moreover, these cell lines are grown under in vitro culture
conditions that do not properly represent the human tumor microenvironment [128].

Compared to cell line models, patient-derived xenografts (PDXs) are preferred since
they are grown in immunocompromised mice that can more precisely mimic the hetero-
geneity of human PCa cells. Additionally, they have their endocrine system unaffected, and
they can be used in metastatic conditions. In the earlier days, the success with PDX was very
limited; however, presently a good number of PDX models are being employed globally for
evaluating the effects of different chemotherapeutics with enhanced success [129]. How-
ever, PDX models also entail some limitations. First, time constraint is a major drawback in
these models since PDX engraftment and drug testing may take several months. Second,
these models are beneficial for testing the effects of few drugs only and are not a good
candidate for high-throughput screening. Third, metastatic characteristics of tumor cells
may be variable due to the variation in clinical conditions. In addition, human prostate
tissue models are difficult to obtain with access in research centers attached to a major PCa
hospital. Furthermore, the swiftness of freezing the samples and method of freezing the
samples after radical prostatectomy can have implications on the stability of proteins in
those samples. Availability of pathologists to carry out the staging may restrict the proper
interpretation of the PCa tissues and related biomarkers.

Considering all these downsides, three-dimensional (3-D) cultures have emerged as
a novel and suitable alternative to patient-derived cancer models. For example, spheroid
culture model is created by using culture plates with low attachment properties and they
offer substantial success rates [130]. Another model namely, 3-D organoid culture models
can better imitate the morphological and genetic characteristics of actual tumors by virtue
of retaining tumor heterogeneity [131].

10. Conclusions

The availability of a number of models has remarkably advanced the field of PCa
research. Although the in vitro models offer convenience to study cancer-related pathways,
in vivo models are useful to better understand the different steps of tumor progression.
Nevertheless, the cell line models have a significant drawback of not producing the precise
human tumor microenvironment and that is why in vivo models are of paramount impor-
tance since PDX in mice can better mimic the human tumor environment. Moreover, GEMs
provide with a huge advantage of developing different types of PCa tumors. However,
a model that can represent PCa of multifarious ethnicity is still lacking and hence, further
investigation is unquestionably necessary to better understand the oncological drivers of
PCa as well as to devise more effective therapeutic strategies.
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