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Purpose of review

Osteoarthritis is a debilitating disease leading to joint degeneration, inflammation, pain, and disability.
Despite efforts to develop a disease modifying treatment, the only accepted and available clinical approaches
involve palliation. Although many factors contribute to the development of osteoarthritis, the gut microbiome
has recently emerged as an important pathogenic factor in osteoarthritis initiation and progression. This
review examines the literature to date regarding the link between the gut microbiome and osteoarthritis.

Recent findings

Studies showing correlations between serum levels of bacterial metabolites and joint degeneration were the
first links connecting a dysbiosis of the gut microbiome with osteoarthritis. Further investigations have
demonstrated that microbial community shifts induced by antibiotics, a germ-free environment or high-fat
are important underlying factors in joint homeostasis and osteoarthritis. It follows that strategies to
manipulate the microbiome have demonstrated efficacy in mitigating joint degeneration in osteoarthritis.
Moreover, we have observed that dietary supplementation with nutraceuticals that are joint protective may
exert their influence via shifts in the gut microbiome.

Summary

Although role of the microbiome in osteoarthritis is an area of intense study, no clear mechanism of action
has been determined. Increased understanding of how the two factors interact may provide mechanistic
insight into osteoarthritis and lead to disease modifying treatments.
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Osteoarthritis is a multifaceted whole joint disease
involving degeneration of articular cartilage, sub-
chondral bone sclerosis and synovial inflammation
with these combine symptoms culminating in joint
pain and disability [1]. Impacting more than 10% of
the US population, osteoarthritis poses an enormous
economic burden comprised of medical care costs,
lost wages, and reduced economic productivity,
with significant impact on the quality-of-life of its
sufferers [2,3]. Despite its clinical and financial ram-
ifications, there are currently no approved disease
modifying osteoarthritis drugs available, with symp-
tom palliation the only alternative [4]. Osteoarthri-
tis is now recognized as a disease of complex cause,
including age, injury, genetics, sex, and obesity as
central contributing factors [S5]. A commonality
shared by many of these contributors is chronic
systemic inflammation [6-11], and emerging
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KEY POINTS

e Dysbiosis contributes to the development
of osteoarthritis.

e Shifts in gut microbiome composition may reduce
progression of osteoarthritis.

e The microbiome is an emerging target for osteoarthritis
therapeutics.

e Joint protective nutraceuticals may act by shifting the
gut microbiome.

research has firmly linking the inflammation of
obesity and osteoarthritis initiation and progression
[11,12,13.

The microbiome is the totality of the microbial
ecosystems that exist within and on the human body,
including both organisms and their secreted products
[14-16]. The microbiome is a crucial component of
the holobiont, and has significant ramifications for
human health [17]. A growing understanding of the
gut microbiome ascribes to it both endocrine and
immunological function [18,19]. The number of bac-
terial cells in the human microbiome likely exceeds
the number of host cells, with this ratio ranging
anywhere from 1:1 up to estimates that bacterial
cells outnumber human cells by a factor of 100
[20,21]. Wet mass of the microbiome has been calcu-
lated to equal that of the human kidney, supporting
the notion that it could fundamentally serve an
endocrine-like regulatory role.

Defining a healthy microbiome is a difficult
endeavor owing to the large variations in what could
be considered ‘normal’ caused by diurnal rhythms,
immune status, diet, genetics, and many other var-
iables [22-26]. However, shifts in the microbiome
have an established role in numerous diseases,
including amyotrophic lateral sclerosis, Parkinson'’s
disease, Alzheimer’s disease, rheumatoid arthritis
(RA), Crohn’s disease, type 2 diabetes, metabolic
syndrome, and osteoporosis [27-32,33"]. A com-
mon factor in many of these diseases is chronic local
and systemic inflammation, and itis now understood
that the gut microbiome contributes to inflamma-
tion by inducing the production of proinflammatory
cytokines by host immune cells and by production of
inflammatory bacterial metabolites [34]. Given that
osteoarthritis is now understood to involve an
inflammatory component, particular in the context
of obesity [35,36], and as it is established that the gut
microbiome is a regulator of inflammation [37-39],
studies investigating the connections between the
gut microbiome and the degenerative processes of
osteoarthritis are crucial. In this review we will
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provide a state of the field assessment on work con-
necting the gut, joint, and osteoarthritis.

Most of our knowledge about the role of the gut
microbiome in the development of inflammation-
driven diseases has been generated outside the con-
text of the skeletal system. Recently, however, a
number of studies have provided data suggesting a
role for the gut microbiome in bone homeostasis, RA,
and most recently in osteoarthritis initiation and
progression. In the context of osteoarthritis, these
studies have used various rodent models of joint
degenerative disease such as high-fat diet (HFD)-
induced obesity, mechanical over-loading, surgical
induction, and genetically prone rodent models; in
all cases potential contributions of the gut microbiota
to progression of osteoarthritis have been suggested.
Table 1 provides a summary of the key published
works that contribute to the current state of the field.
Hinting at human relevance, a couple studies have
suggested that patients diagnosed with osteoarthritis
possess a quantifiable dysbiosis in the gut micro-
biome, supporting the concept that there is an oste-
oarthritis-associated microbial shift that may be
pathogenic. As obesity and metabolic syndrome are
known to be caused by gut microbiome dysbiosis and
are important risk factors in the development of
osteoarthritis [6,40], it follows that among all causes
of osteoarthritis, potential causation in this context
has been the most extensively investigated. Studies
have shown that human obesity is associated with
increased osteoarthritis risk in both weight bearing
and nonweight bearing joints [41], suggesting the
possibility of systemic players in the development of
the osteoarthritis of obesity. In addition, studies on
obesity in conjunction with other causes of osteoar-
thritis, such as injury [destabilization of the medial
meniscus (DMM) or intra-articular fracture surgery]
have reported an enhanced osteoarthritis severity,
thus suggested a synergic effect of obesity [41,42].

Study of a potential gut microbiome-joint axis in
homeostasis and disease is a nascent area of study.
Early work involved rodent models of osteoarthritis
and in humans diagnosed with osteoarthritis,
revealing a correlation between increased levels of
circulatory inflammatory markers including bacte-
rially produced lipopolysaccharides (LPS) that cor-
relate with osteoarthritis severity, suggesting that
microbiome-derived proinflammatory metabolites
are players in osteoarthritis [43,44]. In a study of
rats fed high-fat/high-sugar diet for 28 weeks, Col-
lins et al. showed increased cartilage damage in
obese animals and established a direct correlation
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between serum LPS levels and Mankin histological
scores. When the gut microbiome composition was
examined by 16S sequencing, they detected an
increase in Lactobacillus spp. and Methanobrevibacter
spp- abundance with a strong predictive relation-
ship with histological score [43]. Significantly, in
gnotobiotic mice, Ulici et al. [45%] showed a decline
in the severity of posttraumatic osteoarthritis in the
germ-free situation; this provided evidence for arole
of the gut microbiome in osteoarthritis pathogene-
sis in this model. Suggesting relevance in humans,
in 25 patients with knee osteoarthritis, Huang et al.
[44] established a link between serum and synovial
fluid LPS levels with activated macrophages in the
knee joint capsule and synovium, joint space nar-
rowing, osteophyte formation, and increased
WOMAC scores (i.e., worse symptoms). Connecting
these LPS-osteoarthritis associations with a possible
dysbiosis in the gut microbiome occurred in a study
of the Rotterdam cohort. In 1444 participants
enrolled in the Rotterdam study-III with hip and/
or knee osteoarthritis, an association between
increased WOMAC score and abundance of
microbes in the proinflammatory Streptococcus taxa
was identified [46%]. This study further established
human relevance, prompting the field to more care-
fully examine the role of a dysbiotic community or
individual taxa as pathogenic in osteoarthritis.

To investigate the role of metabolic dysfunction
in the absence of overt obesity on gut-joint associ-
ations and the involvement of individual taxa in
this context, Guss et al. used a murine genetic model
of metabolic syndrome (Toll-like receptor-5 defi-
ciency) in combination with osteoarthritis-inducing
mechanical overloading (2 or 6 weeks). The authors
compared the impact of the metabolic disorder in
this context to previously studied HFD-induced
osteoarthritis models. Evaluation of histological
changes in the cartilage indicated more severe oste-
oarthritis in the HFD-fed group; in this group they
detected metabolic irregularities, increased body fat,
systemic inflammation and the expected gut micro-
biome dysbiosis which included an increased abun-
dance of Firmicutes. They concluded that while
metabolic irregularities were observed in Toll-like
receptor-5 deficient mice, alone they were not suffi-
cient to induce osteoarthritis. Rather, they showed
that increased levels of LPS in HFD-fed mice was
associated with higher OARSI scores and a dysbiosis
involving expansion of Firmicutes, suggesting an
association between microbial components and
development of osteoarthritis [47].

In an article providing evidence that gut micro-
biome dysbiosis in obesity is more than just associ-
ated with osteoarthritis, Schott et al. [13""] examined
microbial community shifts in HFD-fed obese mice
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with an overlay of DMM injury to synchronize
initiation of disease. Histological evaluation showed
increased cartilage degradation in HFD-fed obese
mice and 16S sequencing confirmed a gut dysbiosis.
Importantly, when HFD-fed obese mice were sup-
plemented with the indigestible fiber oligofructose,
the obese gut dysbiosis was mitigated and osteoar-
thritis progression was essentially halted. Bifidobac-
terium pseudolongum, a species with known anti-
inflammatory properties [48] that was lost in
HFD-fed mice, was restored following oligofructose
supplementation [13""]. Conversely, proinflamma-
tory Peptococcaceae and Peptostreptococcaceae family
members that were present in the obese cohort were
completed ablated in oligofructose-supplemented
mice. These findings provided the first published
evidence that shaping of the microbial community
with an indigestible prebiotic fiber, lacking direct
effects on host biology, could be disease modifying
in osteoarthritis; implication from the work indicate
a causal link between gut microbiome dysbiosis
and osteoarthritis.

Consistent with the Schott et al. findings, HFD-
fed rats supplemented with oligofructose also showed
delayed development of obesity-associated osteoar-
thritis [49™]. In this report, Rios et al. demonstrated
that a maximum protection could be achieved by
combining the supplement with exercise. Paralleling
the Schott et al. study, 16S sequencing demonstrated
an increase in Bifidobacterium and Roseburia and a
decrease in Clostridium leptum and Akkermansia muci-
niphila levels as a result of oligofructose supplemen-
tation [49""]. Another recent study in a guinea pig
model of spontaneous osteoarthritis showed that
the oral administration of a lyophilized inactivated
culture of Bifidobacterium longum CBi0703 reduces
cartilage structural lesions and cartilage degrada-
tion markers, providing an overall joint protective
effect [50"]. Future studies on microbes from the
Bifidobacterium taxa and their metabolites may be
important in establishing a gut-joint axis and may
represent a subset of new approaches to treat osteo-
arthritis that involve targeting the gut microbiome.

Glucosamine, chondroitin sulfate, and undenatured
type 2 collagen (UT2C) are nutraceuticals marketed
as dietary supplements supportive of joint health. In
the US alone, these compounds make up a multibil-
lion-dollar industry that spans both human and
animal use [51]. In the first major article detailing
the protective effects of nutraceuticals on joint
disease, Trentham et al. [52] demonstrated that oral
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consumption of rooster comb type 2 collagen had
beneficial effects on biological, structural, and pain
outcomes in patients with RA flare. Although this
provocative finding was met with broad skepticism
because of uncertainty regarding mechanism of
action, it was an important early piece of evidence

for use of cartilage component-based nutraceuticals
to treat joint arthropathies. Various preclinical
experiments have also supported the notion that
oral supplementation with ‘joint protective’ nutra-
ceuticals is effective at mitigating osteoarthritis.
For example, Dar et al. [53] demonstrated that daily
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FIGURE 1. Glucosamine and undenatured type Il collagen ameliorate posttraumatic osteoarthritis compared with vehicle control.
Sham or DMM surgery was initiated on the knee joint 2 weeks after either glucosamine or undenatured type Il collagen were
introduced in the diet. Representative Safranin O/Fast Green stains collected from mice fed vehicle control (a) glucosamine (b) or
undenatured type Il collagen (c) are presented (Yellow dotted line =tidemark, Black dotted line box = region of interested viewed
at higher magnification, F =femur, M =meniscus, T=tibia, Scale bar at 100x = 100 um, Scale bar at 200x = 50 pum). Sections
like those in (a—c) were used for histomorphometry. Tibia cartilage areq, tibia uncalcified cartilage area, and SafO+
chondrocytes were quantified for mice fed glucosamine (d) and undenatured type Il collagen (e) compared with vehicle control.
Dashed black lines indicate measurement on sham knee joints. Data shown represent mean (n > 5) 4 SD; statistical significance
was determined using Student's ttest “P< 0.5, **P< 0.01. DMM, destabilization of the medial meniscus.
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oral consumption of hydrolyzed type 1 collagen
is chondroprotective in murine post traumatic oste-
oarthritis. Similarly, Bagi et al. [S4] demonstrated that
oral supplementation with undenatured native
chicken type 2 collagen reduced joint degeneration
in a rat model of posttraumatic osteoarthritis. As oral
supplements composed of cartilage and soft tissue
matrix components are the only agents with clinical
data supporting positive patient-reported functional
improvement in osteoarthritis [55-57], we and
others have speculated that positive results may be
due to an unappreciated action of these agents as
prebiotics that can affect the gut microbiome.
Suggesting a potential mode of biological action
that involves shaping of the gut microbiome, several
studies have documented microbial shifts is response
to chondroitin sulfate [S8-60]. In the Liu ef al. [58]
study particularly, supplementation was associated
with reductions in inflammatory Proteobacteria and
increases in a Bacteroidetes taxa that blocks stress-
induced intestinal inflammation. These shifts sug-
gest a potential mode of action in osteoarthritis. To
address this possibility, we supplemented mice on a
chow-based diet with two popular joint-protective
nutraceuticals (see Supplementary data, http://links.
Ilww.com/COR/A48). Mice were supplemented daily

The gut microbiome-joint connection Favazzo et al.

with either 0.31 mg/g of body weight of glucosamine
or 2 ng/g of body weight of UT2C to examine their
joint protective capabilities and to examine changes
in the gut microbiome. In chow fed mice, osteoar-
thritis was initiated by trauma (DMM surgery), and as
expected, we observed degenerative change to
the cartilage in injured joints compared with sham-
operated controls. In mice given the same injury but
fed a diet supplemented with either glucosamine or
UT2C, we observed a deceleration of degenerative
change (Fig. 1a—c), evidenced by a general improve-
ment in OARSI scores of mice supplemented with
glucosamine (2.16+0.98) or UT2C (1.88+0.84)
compared with the vehicle control (2.54 +0.52). His-
tomorphometric analysis of joint cartilage revealed
increased tibia total cartilage area, tibia uncalcified
cartilage area, and number of Safranin O* chondro-
cytes all in both glucosamine and UT2C supple-
mented mice compared with the vehicle control
(Fig. 1d and e).

16S sequencing of DNA extracted from fecal
pellets harvested from these mice revealed changes
in the abundance of Bacteroidetes, Actinobacteria,
and Firmicutes, among others (Fig. 2a). Firmicutes
and Bacteroidetes are typically the dominant phyla
of the vertebrate microbiome [61], and an increase

(a) M Other
[ Actinobacteria
[ Bacteroidetes
[ Cyanobacteria
@ Firmicutes
I Proteobacteria
W TM7
M Tenericutes
W Verrucomicrobia

Bacteroidetes/Firmicutes
0.026
Population Ratio i

(b)

M Rikenellaceae
@ 524-7

M Lactobacillus sp.
W Turicibacter sp.
M Clostridiales
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Vehicle Control

Glucosamine uT2C

0.095 0.10

Supplementation with glucosamine or undenatured type Il collagen impacts the gut microbiome. (a) Phylum level
relative abundances change when either glucosamine or undenatured type Il collagen are included in the diet for 12 weeks
following injury compared with a vehicle control. Data shown are average relative abundances of phyla in each experimental
group (n=3). (b) Relative abundance of operational taxonomic unit in the gut microbiome determined by fecal sampling is
changed by supplementation with either glucosamine or undenatured type Il collagen. Data shown are average relative
abundances of operational taxonomic unit in each experimental group (n=3).
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Individual operational taxonomic unit are significantly changed by supplementation with glucosamine or
undenatured type Il collage. (a) Supplementation with glucosamine for 14 weeks caused significant changes in abundance of
three operational taxonomic unit compared with vehicle control. (b) Supplementation with undenatured type Il collagen for
14 weeks caused significant changes in 5 operational taxonomic unit. Data shown represent mean % abundance (n>5) +SD.
Significance was determined using Student's ttest. “P<0.05; **P<0.01; **P<0.001.

in Firmicutes and decrease in Bacteroidetes has been
associated with proinflammatory states in both
humans and mice [62,63]. The change in the ratio
may be linked with inflammation as an effect of
both different responses to caloric intake and
increased ability to extract calories from food
[64,65]. Related to this, we found an increased Bac-
teroidetes/Firmicutes ratio in the microbiome of
mice fed either glucosamine or UT2C compared
with the vehicle control (Fig. 2a), consistent with
a potential anti-inflammatory shift.

Numerous differences at the level of individual
operational taxonomic units (OTUs) were found

98 www.co-rheumatology.com

when either glucosamine or UT2C supplemented
mice were compared with the vehicle control
(Fig. 2b). The family Rikenellaceae and the Bacteroi-
dales family $24-7 were significantly increased in
mice fed glucosamine, while the supplement caused
the opposite trend in an Oscillospira species (Fig. 3a).
Dietary supplementation with UT2C produced even
more changes in the abundance of individual OTUs
than glucosamine when compared with the vehicle
control. As with glucosamine, UT2C increased the
abundance of $24-7 and decreased the amount of
Oscillospira (Fig. 3b). Both Lactobacillus and Turici-
bacter levels were increased in mice given UT2C
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compared with vehicle control, and certain Clostri-
diales taxa decreased as well (Fig. 3b). Significantly,
Rikenellaceae family members are reduced in proin-
flammatory models of induced colitis [66]. Their
increased abundance in mice fed glucosamine may
suggest that this family can contribute to a lower
inflammatory state. The absence of a change in Rike-
nellaceae in the UT2C-fed mice may indicate a
glucosamine-specific effect. We also found Turici-
bacter to be significantly increased in mice fed
UT2C compared with vehicle control or glucos-
amine. This genus has been found to be expanded
in RA [67] although it has also been shown to be
reduced in HFDs [68].

The family 524-7, also known as Muribaculaceae
and Candidatus Homeothermaceae, is a dominant
member of the murine gut microbiome [61,69]. Like
Rikenellaceae, they have also been shown to decrease
in colitis [66], and here we demonstrate their
increase with both glucosamine and UT2C supple-
mentation. Recent work has shown that HFD, a
cause of systemic inflammation, is associated with
a decrease in both Rikenellaceae and S24-7 [70]. In
addition, §24-7 are most often found in herbivores
or omnivores with a high percentage of plant mate-
rial in the diet; they ferment glucans to yield short-
chain fatty acids that can have anti-inflammatory
effects [61,71]. The biological impact of changes
in $24-7 may be more complex than a simple anti-
inflammation as they are increased in diabetes-
sensitive mice fed a HFD as well as after remission
of induced colitis [61].

Nutraceuticals are long standing supplements
implicated in joint health whose efficacy has been
difficult to define with biological measures. Defin-
ing the mechanism of action has been problematic
due to their relative inability to reach the joint. New
findings presented here reveal that mice fed either
glucosamine or UT2C supplements demonstrate
changes in both joint health and microbiome. Tibia
cartilage, uncalcified cartilage, and Safranin O™
chondrocytes are all increased in supplemented
mice compared with vehicle controls. Global
changes in phyla, Bacteroidetes/Firmicutes ratio,
and individual OTUs in mice given supplements
mirror improvements in the joint. Together, these
parallel phenotypes suggest that nutraceuticals
may exert beneficial action on joint health
through modulation of the gut microbiome; fur-
ther proof of causal links will require deeper inves-
tigation.

Emerging research provides compelling evidence of a
link between the gut microbiome and development
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of osteoarthritis. Most of the studies to date have
identified interesting associations, with candidate
interventions involving indigestible prebiotics pro-
viding the best evidence of a causal linkage between
the gut and joints. Moving forward, the field must
perform deep analysis of causation using fecal micro-
biota transplant methods and metabolomic study of
molecular mediators produced by microbiota that
can impact host biology and induce — or protect
from - joint degenerative disease. In addition to
defining the pathogenic role the gut microbiome
plays in osteoarthritis, establishing this connection
provides the opportunity for development of new
and effective disease modifying osteoarthritis thera-
peutics. In fact, it is possible that the only commonly
used intervention with evidence of improvement in
osteoarthritis symptoms, namely nutraceuticals, act
indirectly via effects on the gut niche.
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