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ABSTRACT Objective: Despite the potential ofmachine learning techniques to improve dementia diagnostic
processes, research outcomes are often not readily translated to or adopted in clinical practice. Importantly,
the time taken to administer diagnostic assessment has yet to be taken into account in feature-selection based
optimisation for dementia diagnosis. We address these issues by considering the impact of assessment time
as a practical constraint for feature selection of cognitive and functional assessments in Alzheimer’s disease
diagnosis. Methods: We use three different feature selection algorithms to select informative subsets of
dementia assessment items from a large open-source dementia dataset. We use cost-sensitive feature selection
to optimise our feature selection results for assessment time as well as diagnostic accuracy. To encourage
clinical adoption and further evaluation of our proposed accuracy-vs-cost optimisation algorithms, we also
implement a sandbox-like toolbox with graphical user interface to evaluate user-chosen subsets of assessment
items. Results: We find that there are subsets of accuracy-cost optimised assessment items that can perform
better in terms of diagnostic accuracy and/or total assessment time than most other standard assessments.
Discussion: Overall, our analysis and accompanying sandbox tool can facilitate clinical users and other
stakeholders to apply their own domain knowledge to analyse and decide which dementia diagnostic
assessment items are useful, and aid the redesigning of dementia diagnostic assessments. Clinical Impact
(Clinical Research): By optimising diagnostic accuracy and assessment time, we redesign predictive and
efficient dementia diagnostic assessments and develop a sandbox interface to facilitate evaluation and testing
by clinicians and non-specialists.

INDEX TERMS Cost-sensitive feature selection, dementia and Alzheimer’s disease diagnosis, assessment
speed-accuracy trade-off, cognitive and functional assessments, sandbox GUI application.

I. INTRODUCTION
Dementia, of which Alzheimer’s disease (AD) is the most
common type, causes enormous global socioeconomic bur-
den [1]. Adding to the urgency of the problem due to ageing
societies, is the sub-optimal dementia care pathway, that
impacts everything from diagnosis to management of care

(e.g. [2], [3]). For people with dementia to receive appropriate
treatment and support, careful assessment for diagnosing
dementia is necessary. There are several types of clinical
assessments and associated markers for dementia, from clin-
ical history, biological (e.g. blood- or brain-based) assess-
ments, to cognitive and functional assessments (CFAs) [4].
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CFAs provide information on dementia symptoms and are
highly accurate diagnostic markers [5], forming a key
component of the clinical care pathway [6]. Although they
vary in terms of diagnostic accuracy, sensitivity and speci-
ficity [6], and are not always administered in a standardised
way across clinical practices [4], they perhaps form the most
critical component in dementia diagnosis [4].

Many studies on dementia treatment pathways have ascer-
tained that the societal burden of dementia can be partially
reduced by early diagnosis, particularly from a reduction in
the potential cost of care home treatment [7]. Further, early
diagnosis and intervention can increase quality of life for
people with dementia and their carers [8]. Moreover, a meta-
analysis on dementia diagnosis in primary care suggests that
fewer than half of dementia patients were accurately diag-
nosed [9]. Critically, in addition to the difficulty of diagnos-
ing dementia, clinicians’ consultation time is also typically
limited [4]. In particular, general practitioners usually only
have about 10-15 minutes for a consultation [10], [11].

To deal with the above issues, recent studies have explored
composite (assessment) scales as tools for dementia assess-
ments (e.g. [12], [13]). Specifically, a composite test assesses
different domains of cognition or everyday life function-
ing, and then combines over the scores for each domain to
yield an overall score. Many of these composite assessments
are mere combinations of previously developed assessment
scales, which could be unwieldy or potentially duplicate
information [12]. Importantly, it is unclear whether composite
assessments can actually perform better (e.g. higher sensitiv-
ity and specificity) than the current battery of assessments
used in clinical practice. Moreover, these studies often did
not consider large sets of assessments, which may require
automation in the selection process, e.g. using machine
learning algorithms.

The use of machine learning approaches in dementia
research has been facilitated by openly available demen-
tia datasets [4]. They often include a wide range of
dementia assessments, including CFAs, with large sample
size, thus providing a rich data source to develop and apply
machine learning techniques towards improving dementia
diagnosis and prognosis [14], [15]. In particular, with the
large number of variables in these open datasets, and in
clinical datasets, a frequently employed machine learning
approach is feature selection [16], which seeks to identify
which variables (features) are relativelymore useful for build-
ing a computational (e.g. predictive) model. The resultant
computational model can then guide effective clinical diag-
nosis (e.g. identifying level or class of disease severity using
only a small subset of data features). Thus, this makes them
appropriate for use in clinical decision support systems [4].

Feature selection methods can be classified as either uni-
variate methods, which evaluate individual features without
considering feature dependencies, or multivariate methods,
which evaluate patterns in subsets of features [16], [17]. Fea-
ture selection techniques are also grouped as filter techniques
(independent of the classifier algorithm), wrapper techniques
(interact with the classifier to find the features which are most

useful for classification), and embedded techniques (some
form of feature selection is incorporated within the training of
the classifier algorithm) [16], [17]. An emerging field in the
realm of feature selection for medical data is cost-sensitive
feature selection methods, which penalise ‘costly’ features
(e.g. time cost to administer an assessment) in the evaluation
criteria [16].

Feature selection could be used for modelling prognosis of
dementia. For example, a study that used cognitive assess-
ment items to build a machine learning prognostic model
could predict progression from mild cognitive impairment
(MCI, frequently a prodromal stage of dementia) to demen-
tia in both 3-year and 5-year time windows [18]. Another
dementia progression study had performed meta-analysis
across multiple studies that use CFAs to classify MCI and
predict MCI-to-dementia progression, and found them to per-
form better for diagnostic than prognostic predictions [19].
In terms of data pre-processing, issues such as missing data
handling and class balancing were addressed, and genetic
algorithm was applied to select features predictive of dis-
ease status at different stages [20]. In terms of AD diagno-
sis, a study had trained a deep learning network and used
Recursive Feature Elimination feature selection in building
a classifier to diagnose AD stage, and found the time orienta-
tion features of the Mini Mental State Examination (MMSE)
to be the most powerful predictors of the evaluated
features [21].

Despite such studies, there are only a few studies focusing
on evaluating the finer assessment units or items (i.e. specific
questions) for dementia diagnosis. For instance, in terms of
applying feature selection algorithms on specific assessment
items for AD diagnosis, a study had used false-discovery rate
feature selection algorithm combined with expert input from
neuropsychologists to select specific assessment items which
are diagnostic of AD stage [22]. Another study that evaluated
the granular aspects of the cognitive and functional assess-
ments found 4 neuropsychological features which could dif-
ferentiate between clinically impaired (MCI or dementia)
and non-impaired individuals with 94.5% sensitivity and dis-
cussed that using these 4 features to diagnose could reduce
assessment time to an average 15 minutes testing time plus a
15 minute delay [23].

Despite the above studies, it is still unclear to what
extent such feature selection approaches for searching opti-
mal dementia assessments are conducive in clinical practice.
Importantly, the cost of dementia assessment time, a prac-
tical constraint, has not been considered in the above stud-
ies. In fact, some CFAs take much longer to administer
than others [6] and thus may not be considered suitable for
screening appointments in primary care (more comprehen-
sive assessments are often conducted in secondary care).
In fact, assessment or physician time is one of the most
critical resources which must be optimised in the context of
dementia assessment to relieve pressure within the healthcare
service [23]. Hence, to properly translate feature selection
techniques to clinical use, diagnostic accuracy versus assess-
ment time trade-off must be considered.
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In this paper, we address this issue by applying a
cost-sensitive algorithm for feature selection which takes
into account the trade-off between classification accuracy of
dementia severity and the total time available for dementia
diagnostic assessment. In particular, we apply this algorithm
to an open dementia dataset to identify CFA features that bal-
ance the classification accuracy of dementia severity and the
time cost of individual items within each assessment. Further,
to encourage clinicians, health economists, policy-makers
and other stakeholders to be more involved in the adoption
of machine learning based solutions, we develop, on top of
this algorithm, a user-friendly graphical user interface (GUI)
to act as a cost-based assessment optimisation sandbox-like
toolbox for such users to update or test any assessment infor-
mation using their domain knowledge, to rediscover the most
efficient assessment items based on the individual clinician’s
available consultation time, and to redesign and streamline
dementia diagnostic assessments.

II. METHODS AND PROCEDURES
A. DATA
We made use of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) open datasets (adni.loni.usc.edu).
In particular, we focus on the CFAs of the data as they form a
key component of dementia clinical assessment [6]. Further,
previous studies have shown that CFAs, when considered
in machine learning approaches, can achieve relatively high
accuracy in identifying AD severity [5], [20]–[24].

Specifically, the considered CFAs were MMSE [3], Mon-
treal Cognitive Assessment (MoCA) [25], Alzheimer’s Dis-
ease Assessment Scale (ADAS) [2], Functional Activities
Questionnaire (FAQ) [26], Everyday Cognition - Patient
scale [27], Geriatric Depression Scale [28], and Neuropsy-
chological Battery (NB). Within these CFAs, 113 assessment
items were combined with patient demographic variables
(age and education level) into one data table for feature selec-
tion. Although the ADNI data is longitudinal, we retained
CFA data from participants’ first visits only to avoid potential
confounding effects such as those due to practice effects [29].
Further, assessment items that cannot be assessed separately
were combined with each other. For instance, the MMSE
item Spell WORLD backwards, where each letter is
scored separately in the data, was combined into a single
item labelled as mmse_MMWORLD. Detailed information of
all included assessment items is shown in Supplementary
Table 1.

We used Clinical Dementia Rating Sum-of-Boxes
(CDR-SB) rating as the objective measure of dementia sever-
ity due to its ability to track both cognitive and functional
disability in AD and dementia stages [30]–[32], and our
previous work that shows strong correlation with clinical
diagnosis [5] and practical use for clinical decision sup-
port system [24]. CDR-SB was re-coded into 5 classes of
Alzheimer’s disease (AD) severity as described in [31].
As there were very few cases of moderate or severe AD in
the dataset, all AD subcategories were amalgamated into one
category, creating 3 groups: Cognitively Normal (CN); Mild

Cognitive Impairment (MCI); andAlzheimer’s Disease (AD),
incorporating the mild, moderate and severe AD classes.

B. COMPUTATIONAL METHODS
1) FEATURE SELECTION FOR THE MOST DIAGNOSTICALLY
VALUABLE ASSESSMENT ITEMS
Three different feature selection methods were used. The
feature selection methods were chosen because they are mul-
tivariate (i.e. they evaluate each feature in the context of
other features rather than ranking individual features) and
their approaches of evaluation are very different. Specifically
they were: (i) Correlation-Based Feature Selection (CFS)
[33], [34], which evaluates the worth of every possible subset
of features by considering the individual predictive ability of
each feature along with the degree of redundancy between
them (see Supplementary Algorithm 1); (ii) Boruta [35],
a wrapper-based feature selection algorithm based around
a Random Forest (RF) classifier, which evaluates all fea-
tures to see if they perform better than randomised ‘‘shadow
features’’ when the classifier is applied (see Supplementary
Algorithm 2); and (iii) Consistency [34], [36], which selects
features based on whether they are consistent - i.e. whether
the same feature values consistently co-occur with class label
(see Supplementary Algorithm 3). Each algorithm was run
on five different folds of the data (five-fold cross-validation),
creating five sets of items selected by each algorithm (Fig. 1).

FIGURE 1. Pre-processing and analytical pipeline for selecting
accuracy-optimised sets of dementia assessment items. Note: Step
2 shows an instance of feature selection - performed on Fold 3.

As previous work [37] testing multiple classification algo-
rithms has shown the RF classifier to be an effective clas-
sifier on ADNI data, and also more robust to different data
pre-processing methods than other classifiers [38], we built
RF models using the RandomForest package in R [39] to pre-
dict CDR-SB using each of the assessment item sets selected
by the above three feature selection algorithms. The fold
of the data which had been used for feature selection was
excluded from the training and testing datasets, with each of
the remaining folds of data in turn used as the test dataset,
while the remaining three folds are used as the training dataset
(Fig. 1). The multiclass receiver operating characteristics
area-under-curve (AUC) of these models was averaged over
the four folds for each of the five sets of selected features.
Multiclass AUCwas calculated by the process defined in [40]
using the pROC package [41]. This method of calculating
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multiclass AUC extends the binary AUC concept to multiple
classes by calculating the pairwise AUCs of each class against
every other class and then averaging the results.

2) ACCURACY-COST OPTIMISATION
We use multiclass AUC, as defined in the section above,
as our diagnostic accuracy metric in this section and the
Results section. The costs being optimised are the assessment
times for the individual diagnostic assessment items.We used
known overall assessment times for CFAs in clinical practice
to estimate an assessment time for each assessment item that
was selected more than once - i.e. in multiple folds and/or
by multiple algorithms - by our feature selection algorithms.
These items are shown in Supplementary Table 2. In most
cases, to assign a time cost to an assessment item, the total
time for the whole assessment (e.g. MMSE) as given in the
literature [2], [3], [25]–[28] was divided by the total number
of items in that assessment. We used the ADNI procedures
manual and the comprehensive information in [42] to aug-
ment the process. (Supplementary Table 2 provides further
details on the time-cost estimation process.) These values
were then used as the default values in the GUI tool (see
Section III-C) where they can be amended by the GUI user,
depending on e.g. the user’s experience of conducting the
assessments in practice.

We modified the code for the CFS algorithm [33] from the
FSelector package [34] in R, to use the cost-sensitive feature
selection framework [43]. This modified version of CFS
(cost-sensitive CFS) incorporates a cost weighting parameter,
λ, which can be varied to reflect different values of cost
weighting for the features. If λ is set to zero, the algorithm
performs like a typical CFS without time cost. We used CFS
here as its evaluation function (a mathematical formula which
is applied to every feature set to determine its usefulness) can
be easily modified to incorporate time costs, unlike Boruta
which does not use an evaluation function (see Supplemen-
tary Algorithms 1 and 2), and the features sets selected by
CFS performed better than the feature sets selected with the
Consistency algorithm (see Fig. 4).

Specifically, the CFS algorithm finds an optimal set of
features which correlate with the class variable and do not
correlate with each other. It uses a ‘‘Merit’’ heuristic to
evaluate the best feature set, described by

Merit =
krcf√

k + k(k − 1)rff
(1)

where k is the number of features in the set, rcf is the aver-
age feature-class correlation, and rff is the average feature-
feature correlation. In the implementation in the FSelector
package [34], correlation between discrete features is mea-
sured by mutual information, and for continuous features
the correlation coefficient is used. It can be seen that the
merit heuristic incorporates a penalty to favour smaller sets
of features over larger sets. The best first search is used to
find the subset with the highest ‘merit’. It should be noted
that since the best first search is not exhaustive, a different
randomisation may lead to travelling down a different search

path, and therefore the results from CFS will not necessarily
be identical every time the algorithm is applied to the same
dataset.

The cost-based CFS extends the above function by adding
a cost penalty to the evaluation function [43]

Merit =
krcf√

k + k(k − 1)rff
− λ

∑i=1
k Ci
k

(2)

where Ci is the feature cost of item i, which in our case is
the time of each assessment item, and λ is the cost weighting
parameter which can be varied to increase or decrease the
importance of feature cost in the merit heuristic.

We restricted the columns of the dataset to the features
selected more than once by feature selection methods and
applied cost-sensitive CFS to this data. We varied the λ
parameter from 0 to 0.05 and recorded the set of assessment
items selected at each point of variation, along with the total
estimated time for the selected set of items. The appropriate
range of values for the λ parameter will be different depend-
ing on the values of the feature costs. For the case of λ having
zero value, the algorithm is identical to CFS. Values of λ
greater than 0.01 did not generate additional sets of features
for analysis.

To predict CDR-SB using each of the assessment item
sets selected by the cost-sensitive CFS, we again built RF
models. Also as before, each of the five folds of data used
in Section II-B.1 was used in turn as the test dataset, with
the remainder of the data used as the training dataset (Fig. 1).
The multiclass AUC was calculated and averaged over the
five folds as described in Section II-B.1. The entire process
for the accuracy-cost optimisation is summarised in Fig. 2.

FIGURE 2. Analytical pipeline for optimising accuracy-cost dementia
assessment items.

C. GUI DEVELOPMENT
We developed a GUI-based sandbox-like toolbox using
the accuracy-cost optimisation algorithms described above,
which can allow non-technical users to input their own time
estimates for any of the 113 assessment items in our dataset,
perform cost-sensitive feature selection, and calculate the
AUC of an RF model to predict AD severity (CDR-SB value)
using any chosen set of assessment items from the base
dataset.

4900809 VOLUME 10, 2021



N. Mccombe et al.: AD Assessments Optimized for Diagnostic Accuracy and Administration Time

We implemented the GUI in RShiny [44] using the DT
package [45] in R to create an editable data table, and the
shinyWidgets package [46] to build the interface for user
selection. For computational efficiency, this GUI interface
does not use cross-validation as above, but uses 25% of
the underlying data for feature selection, and 75% of the
remaining 75% for model training, while the remainder is test
data.

D. SOFTWARE AND HARDWARE
The above analyses and algorithms were run within R Stu-
dio version 1.146 on a Windows machine with eight mem-
ory cores, Intel i7 processor, 16GB RAM and R version
3.5.2 installed. The codes, including the RShiny code for the
GUI, are available at: https://github.com/mac-n/Rshiny-app.

III. RESULTS
A. SMALL SUBSETS OF HIGH-PERFORMING ASSESSMENT
ITEMS CONSISTENTLY SELECTED
There were variations in the mean number of data features
selected by each feature selection algorithm; 19 features per
fold for CFS, 16 for Consistency, and 19 for Boruta. All the
data features selected more than once in the 5 × 3 iterations
(Fig. 1) during feature selection are shown in Fig. 3 and in
Supplementary Table 2. Fig. 3 also shows that a small number
of features were selected consistently by the algorithms. The
features selected 10 or more times are labelled in bold text
in Fig. 3; there were 9 of them. Most of the data features do
not appear in Fig. 3 because they were selected only once
(16 of the features) or never selected (54 of the features).
Note that the assessment items from the FAQ assessment
were frequently selected by the 3 feature selection algorithms,
and this was consistent with our previous work that showed
the total FAQ score to be highly accurate for classifying AD
severity [5], [24]. The multiclass AUC of each set of features
selected is shown in Fig. 4, varying around between 0.86 and
0.94. The AUC of the complete feature set without feature
selection is shown by the dashed line in Fig. 4; most of
the selected feature subsets outperformed this complete set.
Information on the constituent item sets of every item in Fig. 4
has been uploaded to GitHub at https://github.com/mac-
n/Rshiny-app/blob/master/JTEHM_McCombe_data.xlsx.

B. SELECTED ASSESSMENT ITEM SETS OPTIMISED FOR
ASSESSMENT TIME AND CLASSIFIER AUC
For convenience, we made use of the selected features
in Fig. 3 for the cost-sensitive feature selection. The plot
of total assessment time against classification AUC for
different values of the cost weighting parameter λ (see
Section II-B.2) is shown in Fig. 5. Information on the
constituent item sets of every item in Fig. 5 has been
uploaded to GitHub at https://github.com/mac-n/Rshiny-
app/blob/master/JTEHM_McCombe_data.xlsx. It should be
noted that when λ was above a certain value (0.01),
only two items were selected (mmse_MMDATE and
mmse_MMHOSPIT) and the AUC declined rapidly to 0.6.
With this single exception, the selected assessment subsets

FIGURE 3. The most consistently selected CFA items. Only data features
selected more than once in the 5 × 3 iterations feature selection process
are shown. Bold text: Features consistently selected 10 or more times.

FIGURE 4. Multiclass AUC of each selected feature set. Dashed line: AUC
using all features.

(Fig. 5, top filled circles) were comparable in terms of
multiclass AUC values. The limited range of AUC values was
expected due to our earlier feature selection process, i.e. these
subsets of assessment items had been previously optimised
in terms of AUC (see above). In particular, these selected
assessment subsets generally had higher AUC values than
standard individual (and not optimised) assessments such as
MMSE, MoCA, and ADAS (compare filled circles to opened
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FIGURE 5. Wide range of (estimated) total assessment times of
accuracy-cost optimised feature sets. Vertical axis: AUC values based on
3-class RF classifier. Horizontal axis: Logarithmic scale of (estimated)
total assessment time. AUCs of accuracy-cost optimised sets (filled
circles) higher than ADAS, MMSE and MoCA complete standardised
assessments while on par with FAQ complete assessment (black opened
circles). Orange filled circle: Optimal item set with the shortest total
assessment time (see Table 1 for details on its specific items).

circles in Fig. 5). However the AUC value of FAQ was on par
with the optimised assessment subsets, which was consistent
with our earlier work supporting FAQ’s high predictive power
of AD severity [5], [24].

In contrast to AUC values, the assessment times of the
selected item sets varied much more widely. When λ was
set to zero (i.e. time cost not being considered in the fea-
ture selection process), the total assessment time was found
to be relatively long at 2288 seconds, although the AUC
value was 0.879 (the highest in Fig. 5). The constituent
items of this item set, with associated estimated assess-
ment times, were: faq_FAQSHOP (60); faq_FAQREM
(60); faq_FAQTRAVL ((60); adas_Q4SCORE (600);
faq_FAQEVENT (60);faq_FAQFINAN (60);faq_FAQ
FORM (60); gd_GDMEMORY (28); faq_FAQMEAL (60);
RAVLT.immediate (900);ecog_MEMORY1 (60));ada
s_Q7SCORE (200); faq_FAQGAME (60); faq_FAQTV
(60); mmse_objects (300); and adas_Q8SCORE
(200).

The shortest assessment time calculated for any of the
viable assessment time sets was 416 seconds. This item set,
with an AUC of 0.865, is highlighted in blue in Fig. 5 and its
features detailed in Table 1.

Although the selected assessment subset had both AUC
value and overall assessment time similar to those for FAQ,
it should be noted that this optimal assessment subset con-
tained a combination of orthogonal items (due to the nature of
our feature selection algorithm) from both cognitive (MMSE)
and functional (FAQ) assessments (Table 1) - this would
probably be preferred to FAQ alone in clinical practice,
as cognitive impairment is a necessary criterion for dementia
diagnosis [6].

Taken together, we found that there were subsets of
assessment items optimised for diagnostic accuracy and total
assessment time which could perform better, in terms of clas-
sification AUC and/or assessment time, than several of the
individual standard complete (MMSE, MoCA and ADAS)
assessments (Fig. 5) and the full set of complete assessments
(Fig. 4), while on par with the complete FAQ assessment
(Fig. 5) (despite its lack of evaluating the cognitive aspects).

TABLE 1. Accuracy-cost optimised feature set with the fastest total
assessment time.

C. GUI TOOL FOR FURTHER EXPLORATION
The method for estimating assessment item time costs
described in Section II-B.2 can be refined for future use. For
instance, clinicians who work with dementia patients may
have access to their own estimates. Further, health economists
or policy-makers who are considering the re-designing of
dementia diagnostic assessments may experiment with var-
ious scenarios for trading off the time cost of assessment
with diagnostic accuracy. To extend the impact of our
work, we developed an R Shiny based graphical user inter-
face (GUI) sandbox-like tool for exploring cost-sensitive
feature selection and diagnostic accuracy on subsets of the
CFA assessment items, building on top of the abovemen-
tioned algorithms. This software application is made avail-
able at https://mac-n.shinyapps.io/costcfs/. A video demon-
strating the use of the app is available in the GitHub repos-
itory: https://github.com/mac-n/Rshiny-app. A screenshot of
the application’s full interface upon opening the application
is shown in Supplementary Figure 1. As illustrated, the
GUI design is minimalist and does not require computational
expertise. The app has been tested on OSX (Mohave version)
and Windows 10, on the Safari, Chrome, Firefox and Edge
browsers.

Upon opening the application, a selection box (Fig. 6a)
allows users to choose any subset of the assessment items in
our dataset for analysis. For instance, some clinicians may
only use specific assessment items (e.g. specific assessment
questions withinMMSE andMoCA) due to the nature of their
practice. To further assist this, we also created a drop-down
menu (Fig. 6b) listing subsets expected to be of interest
to users, including: (i) assessment items shown in Fig. 3
which were used for the analysis described in Section II-B.2;
(ii) complete set of assessment items inMMSE; (iii) complete
set of assessment items in MocA; (iv) complete set of assess-
ment items in ADAS; and (v) complete set of assessment
items in FAQ. These specific assessments were placed here
as MocA and MMSE are often used in clinical practice [6],
while ADAS is more frequently used as a benchmark for
dementia symptom evaluation in drug trials [6]. Moreover,
FAQ was highlighted in the menu since our current work and

4900809 VOLUME 10, 2021



N. Mccombe et al.: AD Assessments Optimized for Diagnostic Accuracy and Administration Time

FIGURE 6. Different features of the cost-benefit analytical sandbox tool.
(a)-(e): Order of features appearing during usage.

previous studies (e.g. [5], [24]) have indicated its potential
strong diagnostic utility.

Upon choosing the subsets of assessments for analysis,
the items will be displayed in a table (Fig. 6c). The user
may then edit the costs (time, in seconds) associated with
these features. Note that we have not estimated time costs for
features other than those shown in Fig. 3; other features have
been assigned a default value of 1001 seconds, which a user
can easily edit.

Cost-sensitive CFS feature selection is toggled on and off
with a checkbox (Fig. 6d) and the cost parameter is varied
with a slider (Fig. 6d.) If the user wishes to perform feature
selection without considering feature costs, the parameter
may be set to zero. The algorithm is activated with the ‘‘Run
Tests’’ button. (Fig. 6d). If feature selection is toggled on,
an RF classifier will be built and tested using the subset
of user-chosen assessment items selected by the algorithm.

Otherwise, the classifier will be built using all the user-chosen
assessment items.

Upon completing the calculation, the classifier for the
3-class classification AUC, the overall assessment time for
the assessment items used in the classifier, the names of all
the assessment items used and their feature importance value
in the model will be displayed (Fig. 6e).

IV. DISCUSSION AND CONCLUSION
Our cost-sensitive feature selection analysis had led to the
identification of combinations of cognitive and functional
assessment (CFA) items (see Table 1 optimised for total
assessment time and classification AUC of (CDR-SB based)
AD severity. The identified subsets of accuracy-cost opti-
mised assessment items were found to outperform existing
assessments. Despite the small sets of assessment items, our
3-class classification AUC values resided within the range of
0.86-0.94, which were rather high. Importantly, most of the
identified accuracy-cost optimised assessment sets had total
assessment times under the typical clinical consultation time
of 15 minutes.

In comparison, previous work had only optimised for the
accuracy for classifying AD (e.g. [19], [22]). In particular,
a study [22] had used the ADNI dataset with CDR-SB as
the outcome variable and found very high sensitivity and
specificity for the sub-assessments selected by its false dis-
covery rate feature selection algorithm. Many of the same
sub-assessments were selected as in our work, e.g. FAQ items
and ADAS Q4, but the previous study [22] also included
total scores from assessments such as FAQ, MMSE etc, and
total scores frequently emerged as highly predictive in feature
selection. In comparison, ourwork did not include total scores
andwe optimised for assessment time as well as classification
accuracy (AUC) of AD severity.

In another study [21], which used a different dataset (the
Seoul Neuropsychological Screening Battery), 46 data fea-
tures (most of which did not overlap with those in ADNI)
and a deep learning classifier were used. It was shown
that 3-class classification accuracy of over 90% could be
obtained using only 12 of the 46 features. Of the features
which did overlap with ADNI, it was found that MMSE
orientation to time and MMSE 3-word recall were highly
predictive for cognitive impairment classification. Our cur-
rent study also found these features to be predictive, with the
mmse_objects, mmse_MMSEASON and mmse_MMDATE
items consistently selected by feature selection methods
(Fig. 3) and the mmse_MMSEASON and mmse_MMDATE
items selected by the accuracy-cost optimisation algorithm
(Table 1).

A separate work [23] had optimised CFA features in the
ADNI dataset to detect MCI and found a set of 4 neuropsy-
chological features which could classify MCI with 94.5%
sensitivity. Unlike other work discussed here, this work did
explicitly discuss assessment time, although they did not
computationally optimise for assessment time. Notably, they
estimated that their 4 identified features (delayed WAIS
Logical Memory, trail-making, patient and
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informant memory questions) would take about
15 minutes of clinician’s time to administer. However,
an additional 15-minute delay would entail due to the delayed
memory recall task within the delayed WAIS logical
memory assessment. Such a long delay would likely render
this set of assessments to be unsuitable for use in brief clin-
ical consultation routinely available in primary care. Inter-
estingly, their best assessment set included patient and
informant memory questions, and thetrail-making
assessment, which were also highly selected by our algo-
rithms (gd_GDMEMORY, faq_FAQREM and TRABSCOR;
see Fig. 3 and Supplementary Table 2). Our final optimised
assessment also included the patient and informant
memory questions (gd_GDMEMORY and faq_FAQREM; see
Table 1.

Cost-sensitive analysis is an important aspect of feature
selection for medical applications [16]. However, in demen-
tia data science research, such analysis is often not taken
into consideration. Hence, this leads to many machine learn-
ing based solutions not reaching their fuller impacts, and
not readily adopted or widely used by non-technical users,
which constitute the bulk of the stakeholders. Importantly,
cost-sensitive analysis, such as in this work, could perhaps
inform new hybrid CFAs that may play a role in dementia
diagnosis. Notably, our identified optimal set of assessment
items included several items from the Functional Assessment
Questionnaire (FAQ), which is often used in research study
settings but less so in clinical practice. The effectiveness and
high predictiveness of FAQ for AD diagnosis has also been
identified in our previous work and the work of others [5],
[20], [24].

Our analysis here is contingent on our estimation of the
time duration to conduct an assessment item. Individuals
with clinical expertise in performing these assessments might
estimate assessment times differently from our estimates
e.g. depending on their experience. This has motivated our
development of a GUI-based sandbox-like tool which enables
non-technical users to assign cost values (assessment time)
to any of the CFA assessment items and specify parameters
to perform cost-sensitive feature selection on the dataset.
In the spirit of machine learning model operationalisation
management (MLOps) [47], [48], we hope our GUI tool can
help bridge the gap between machine learning research and
other communities and stakeholders, especially clinicians,
health economists and policy-makers. This can be achieved
by providing hands-on experience of analysing the effective-
ness and efficiency of various diagnostic assessments. More-
over, the intuitive use of our GUI tool can guide pedagogical
training in health, biomedical or data science courses on
cost-sensitive optimisation. However, it should be noted that
clinical diagnosis involves assessments beyond CFAs, and
that consideration of dementia assessment redesigning will
have to involve other resource constraints e.g. financial costs
of tests and biomarker acquisition [4], [49], [50]. These will
be considered in future work.

To conclude, we have demonstrated the feasibility of
cost-sensitive feature selection for Alzheimer’s disease

diagnosis. The application of cost-sensitive feature selection
within health and medical informatics is still an emerging
field [16]. Given the importance of feature cost in a medical
or clinical context, and the growing need to resolve over-
burdened healthcare systems, it is likely that this research
area will continue to expand. In this work, although we have
applied a time-based cost-sensitive feature selection algo-
rithm to dementia CFAs, we foresee the same approach could
be applied to many other medical and clinical settings where
various types of costs or constraints have to be considered.
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