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Abstract

Although chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of platinum drugs, the
mechanisms of this toxicity remain unknown. Previous work in our laboratory suggests that cisplatin-induced CIPN is
secondary to DNA damage which is susceptible to base excision repair (BER). To further examine this hypothesis, we studied
the effects of cisplatin, oxaliplatin, and carboplatin on cell survival, DNA damage, ROS production, and functional endpoints
in rat sensory neurons in culture in the absence or presence of reduced expression of the BER protein AP endonuclease/
redox factor-1 (APE1). Using an in situ model of peptidergic sensory neuron function, we examined the effects of the
platinum drugs on hind limb capsaicin-evoked vasodilatation. Exposing sensory neurons in culture to the three platinum
drugs caused a concentration-dependent increase in apoptosis and cell death, although the concentrations of carboplatin
were 10 fold higher than cisplatin. As previously observed with cisplatin, oxaliplatin and carboplatin also increased DNA
damage as indicated by an increase in phospho-H2AX and reduced the capsaicin-evoked release of CGRP from neuronal
cultures. Both cisplatin and oxaliplatin increased the production of ROS as well as 8-oxoguanine DNA adduct levels, whereas
carboplatin did not. Reducing levels of APE1 in neuronal cultures augmented the cisplatin and oxaliplatin induced toxicity,
but did not alter the effects of carboplatin. Using an in vivo model, systemic injection of cisplatin (3 mg/kg), oxaliplatin
(3 mg/kg), or carboplatin (30 mg/kg) once a week for three weeks caused a decrease in capsaicin-evoked vasodilatation,
which was delayed in onset. The effects of cisplatin on capsaicin-evoked vasodilatation were attenuated by chronic
administration of E3330, a redox inhibitor of APE1 that serendipitously enhances APE1 DNA repair activity in sensory
neurons. These outcomes support the importance of the BER pathway, and particularly APE1, in sensory neuropathy caused
by cisplatin and oxaliplatin, but not carboplatin and suggest that augmenting DNA repair could be a therapeutic target for
CIPN.

Citation: Kelley MR, Jiang Y, Guo C, Reed A, Meng H, et al. (2014) Role of the DNA Base Excision Repair Protein, APE1 in Cisplatin, Oxaliplatin, or Carboplatin
Induced Sensory Neuropathy. PLoS ONE 9(9): e106485. doi:10.1371/journal.pone.0106485

Editor: Rudolf Kirchmair, Indiana University School of Medicine, United States of America

Received March 14, 2014; Accepted August 7, 2014; Published September 4, 2014

Copyright: � 2014 Kelley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the manuscript.

Funding: This work was supported by grants from the National Institutes of Health, National Cancer Institute CA121168, CA121168S1, to MRK and MRV and
CA167291 and the Riley Children’s Foundation to MRK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: MRK declares that he is employed as a consultant at ApeX Therapeutics, which has licensed IP from his work. No other authors have any
potential conflicts of interest to declare. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

* Email: mkelley@iu.edu

Introduction

Cisplatin, oxaliplatin, and carboplatin, are widely used as

primary therapies in various types of tumors, including but not

limited to testicular, bladder, ovarian, lung, esophagus, stomach,

and colon cancer [1–5]. A major limitation with the use of

platinum drugs is the peripheral neuropathy that occurs in a

significant number of patients. With cisplatin, the neuropathy

develops during ongoing therapy in approximately 50% of patients

and its severity is, in part, dependent on the total amounts of drug

that the patient receives [4,6–8]. Furthermore, in a significant

number of patients, the neuropathy can persist long after therapy

is discontinued and in some cases is irreversible [4,7–9]. Chronic

administration of oxaliplatin also can result in peripheral

neuropathy that occurs during chronic therapy and is similar in

symptom presentation, in frequency, and in duration to cisplatin-

induced neurotoxicity [10–12]. In contrast to cisplatin, however,

acute administration of oxaliplatin in a large percent of patients

receiving the drug also causes an acute and reversible neurotox-

icity characterized by pain, focus weakness, and increased

sensitivity to cold [4,7,12–14]. High concentrations of carboplatin

have been reported to cause peripheral neuropathy in patients

receiving multiple drug therapy [15]. Despite this, most studies

suggest that the incidence of neuropathy after chronic carboplatin

therapy is less frequent and less severe than that observed with

cisplatin or oxaliplatin [16,17].

Although the mechanisms by which platinum drugs produce

peripheral neuropathy remain unknown, evidence supports the

notion that the neurotoxicity is secondary to DNA damage in

sensory neurons. Platinum-induced cytotoxicity involves formation

of intrastrand and interstrand adducts in DNA [18], and

accumulation of these adducts in rat sensory neurons correlates
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with damage in sensory neurons [19,20]. Chronic administration

of cisplatin or oxaliplatin to rodents or long-term exposure of

isolated sensory neurons damages sensory neurons and causes

apoptosis, depending on the doses/concentrations used [21–26].

Furthermore, cisplatin-induced neurotoxicity is exacerbated in

mice deficient in nucleotide excision repair (NER), compared to

mice with NER intact [27]. Like cisplatin and oxaliplatin,

administering carboplatin to rats also produces toxicity in sensory

neurons and accumulation of the drug in the dorsal root ganglia

[28]. Given that these drugs result in formation of platinum

adducts, but exhibit differences in incidence and types of

neurotoxicity in patients, the question remains whether the

neuropathy is secondary to formation of adducts in sensory

neurons or is mediated by other actions.

Recent studies suggest that cisplatin-induced toxicity also may

be mediated by the ability of the platinating agent to increase

formation of reactive oxygen species (ROS) [29–33]. An increase

in ROS could result in oxidative DNA damage, which could also

contribute to the neurotoxicity. The base excision repair (BER)

pathway is the major pathway for correctly repairing oxidative

DNA induced damage [34–39]. Within this pathway, apurinic/

apyrimidinic endonuclease/redox effector factor (APE1) is a

critical enzyme that is essential for repair by cutting the DNA

backbone at baseless sites (abasic) in DNA after the removal of the

damage base [38,40–42]. Our previous published work demon-

strated that augmenting the DNA repair function of APE1

significantly decreased cisplatin-induced toxicity in sensory neu-

rons [7,43,44]. However, the role of APE1 on carboplatin- and

oxaliplatin-induced neurotoxicity has not been studied, nor has the

use of a small molecule to enhance APE1 DNA repair activity and

neuronal cell protection. Consequently, we examined the effects of

the platinum compounds on cell survival and function of sensory

neurons in culture in the absence or presence of reduced

expression of APE1 and whether these agents produce significant

ROS. We also examined the difference in the effects of platinum

agents on alterations in vasodilation induced by activation of

sensory nerve endings in the rat hindpaw as a translational model

for neuropathy.

We demonstrate that the loss of APE1 function increases

sensitivity of sensory neuronal cultures to cisplatin and oxaliplatin,

but not to carboplatin. This relationship correlates with the level of

general ROS and DNA damage produced by the platinum agents,

as well as a marker for specific oxidative DNA base damage: i.e. 8-

oxoguanine. We also observe differences in the platinum agents on

peripheral blood flow and demonstrate the in vivo use of a small

molecule, which shows protective activity against cisplatin-induced

neuropathy. These findings are particularly noteworthy in light of

the recent report by the American Society of Clinical Oncology

(ASCO) which determined there are no current clinical agents

recommended for the prevention of CIPN [45].

Results

Reducing APE1 expression in sensory neuronal cultures
increases cisplatin and oxaliplatin, but not carboplatin-
induced cell loss

We have previously demonstrated that reducing the expression

of APE1 results in increased cell death in sensory neuronal cultures

after treatment with cisplatin and this correlates with an increase

in ROS production [24]. To determine whether this is a global

phenomenon with the other platinating agents, neuronal cultures

were exposed to APE1 siRNA or scramble siRNA (SCsiRNA) on

days 3–5 in culture, then exposed to various concentrations of

platins for 72 hours starting on day 9 in culture. Cell viability as

measured by trypan blue exclusion was determined on day 12 in

culture from 3 independent harvests. In these and subsequent

experiments, exposing cultures to APE1siRNA resulted in a

significant reduction in APE1 expression and endonuclease

activity (see Figure S1). In the combined studies using cisplatin,

oxaliplatin, or carboplatin, APE expression after APE1 siRNA was

reduced to 18 6 4%, 11 6 3% and 11 6 5%, respectively. As we

observed in our previous studies, cisplatin exposure resulted in a

concentration-dependent decrease in cell viability that was

significantly greater with reduced expression of APE1 (Figure 1A).

A significant loss of viability was observed with 10 mM cisplatin,

and there was a maximal loss in cells treated with APEsiRNA.

Treating neuronal cultures with oxaliplatin also reduced viability

in a concentration-dependent manner, and this effect was

significantly higher when APE1 expression was reduced by

APE1siRNA (Figure 1B). With oxaliplatin, significant loss in

viability was seen with 100 mM, and the maximal cell loss after

APE1 knockdown was seen with 1000 mM. Carboplatin treatment

also significantly reduced cell viability but at higher concentrations

than either cisplatin or oxaliplatin. In contrast to the other

platinating agents, reducing APE1 expression did not have any

significant effect on carboplatin-induced cell death (Figure 1C).

Platinum agents bind to DNA forming a variety of platinum-

DNA adducts [46] as well as increasing ROS production with can

cause oxidative DNA damage [47].These actions can lead to an

increase in cell death which is usually driven by apoptosis.

Consequently, we quantified the level of apoptosis induced by

platinating agents in sensory neuronal cultures. Cultures were

exposed to APEsiRNA on days 3–5 in culture then exposed to

various concentrations of platins for 72 hours starting on day 9 in

culture. Annexin-V and PI staining detected cell apoptosis and

FACS analyses after cells were grown for 12 days. As observed

with trypan blue exclusion, treating neuronal cultures with the

platins for 72 hours resulted in a concentration-dependent

increase in apoptosis (Figure 2). With cisplatin, apoptosis was

observed after exposure 30 or 50 mM, whereas with oxaliplatin

and carboplatin apoptosis was observed at 10-fold higher

concentrations. The platin-induced apoptosis was observed in

cultures pretreated with SCsiRNA or APE1siRNA. However, the

reduction of APE1 expression after APE1siRNA resulted in a

further increase in the percent of apoptotic cells in both cisplatin

and oxaliplatin treated cells (Figure 2A and 2B), but not in

carboplatin treated cells (Figure 2C); which is consistent with the

trypan blue exclusion studies in Figure 1.

APE1 knockdown increases DNA damage induced by
oxaliplatin, but not by carboplatin in sensory neuronal
cultures

To determine whether exposure to platinating agents produces

DNA double-strand breaks, we measured the ability of oxaliplatin

or carboplatin to augment that amount of phosphor-H2AX (P-

H2AX) in the absence or presence of reduced APE1 expression.

For these studies, cultures were transfected with SCsiRNA or

APE1siRNA on days 3–5 in culture then exposed to 300 mM

oxaliplatin or 500 mM carboplatin. The amount of P-H2AX was

determined by Western blotting on day 12 after 0, 8, 24, or

48 hours of exposure to the platins. When cultures treated with

SCsiRNA are exposed to platins for 8 or 24 hours, there is no

significant increase in P-H2AX compared to controls (Figure 3).

After 48 hours, however, there is a small increase in P-H2AX.

When cells are pretreated with APE1siRNA, there is a significant

increase in P-H2AX after 24 hours of exposure to oxaliplatin (2-

fold) and 48 hours of exposure to oxaliplatin (10-fold) or

carboplatin (2-fold) (Figure 3). The level of P-H2AX was higher

Role of APE1 in Platinum Induced Sensory Neuropathy

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e106485



in oxaliplatin treated cells (Figure 3A) than those treated with

carboplatin (Figure 3B). In addition, carboplatin did not show as

much of an increase in P-H2AX following APE1 reduction (2-fold

at 48 hours) when compared to cells treated with oxaliplatin (5-

fold). Similar studies with cisplatin have previously been published

[24].

Further studies to demonstrate the relationship of platinum

agent and oxidative DNA damage were performed using an

antibody that detects 8-oxoguanine (8-oxoG) adducts in DNA

[48]. Sensory neuronal cultures were treated with 50 mM cisplatin,

300 mM oxaliplatin, or 500 mM carboplatin. After 24 hrs, cisplatin

and oxaliplatin caused a significant increase in 8-oxoG levels, 25

and 30% respectively, while carboplatin did not show any 8-oxoG

production above background levels (Figure 4). When neuronal

cultures were treated with APE1 siRNA, there was a 2-fold

increase in the level of 8-oxoG with cisplatin treatment, while

oxaliplatin showed a 1.5-fold increase compared to control

cultures and cultures treated with SCsiRNA (Figure 4). Carbo-

platin did not induce any detectable levels of 8-oxoG regardless of

APE1 status. These data are congruent with the results observed

using the P-H2AX assay (Figure 3) and support our contention

that oxidative DNA damage is induced by cisplatin and

oxaliplatin, but not carboplatin.

Oxaliplatin and carboplatin reduce capsaicin-evoked
release of CGRP from sensory neurons

Previous studies by our group demonstrated that cisplatin

decreases the release of the neuropeptide CGRP from sensory

neurons, and that reducing APE1 expression augments this effect,

while overexpressing APE1 attenuates the effect [7,24]. The

question remains whether oxaliplatin and carboplatin treatment

also reduce transmitter release from sensory neurons and if

altering APE1 expression produces the same effect on this

endpoint of sensory neuronal function. When sensory neuron

cultures that were transfected with SCsiRNA were exposed to

30 mM oxaliplatin or 300 mM carboplatin for 24 hours, there was

a significant reduction in release of CGRP evoked by 30 nM

capsaicin (Figure 5) with no change in basal release. In cultures

not exposed to platins, capsaicin-evoked release was 141 6 4

fmol/well/10 min and 143 6 6 fmol/well/10 min, whereas after

oxaliplatin or carboplatin release was 99 6 5 and 97 6 4 fmol/

well/10 min, respectively. Reducing the expression of APE1 by

transfecting cells with APE1siRNA augmented the oxaliplatin-

induced decrease in CGRP release to 72 6 4 fmol/well/10 min

(Figure 5A). In contrast, reducing APE1 expression did not alter

the ability of carboplatin to diminish CGRP release (Figure 5B;

100 6 4 fmol/well/10 min).

ROS generation in sensory neuronal cultures by platinum
compounds

The data presented above show that all three platinating agents

have similar neurotoxic effects of sensory neurons as measured by

cell death, DNA damage, and the diminished release of

neurotransmitters. In the case of cisplatin and oxaliplatin, reducing

APE1 expression augments the neurotoxicity, whereas with

carboplatin, altering APE1 has little, if any, effect. Furthermore,

we have previously demonstrated that the neurotoxicity produced

by cisplatin is reversed by increasing APE1 repair activity [24].

These results suggest that cisplatin and oxaliplatin produce DNA

damage that is susceptible to BER repair, whereas carboplatin

does not. Previous studies have demonstrated production of ROS

by cisplatin as well as its widely known DNA cross-linking effects

[24,49,50]. Since ROS could result in DNA damage that is

susceptible to BER, we asked whether cisplatin, oxaliplatin, or

carboplatin could produce ROS in sensory neuronal cultures.

Exposing sensory neuronal cultures transfected with SCsiRNA to

50 mM or 100 mM cisplatin for 24 hours significantly increased the

number of ROS production as indicated by carboxy-H2DCFDA

staining (Figure 6A), similar to what we have previously shown

[24]. When transfecting APE1siRNA reduced APE1 expression,

there was a significant increase in the amount of ROS production

compared to those transfected with SCsiRNA (Figure 6A), again

similar to previous studies [24]. Exposing cultures to 300 mM

oxaliplatin for 24 hours, but not to lower concentrations, increased

the percent of ROS production and this was significantly

enhanced by reducing APE1 expression (Figure 6B). ROS

production by carboplatin was not detected using carboxy-

H2DCFDA even with doses up to 500 mM (Figure 6C). These

data support the notion that sensory neuron dysfunction and

therefore neuropathy secondary to cisplatin and oxaliplatin is due,

at least in part, to ROS production and oxidative DNA damage

that is acted upon by the BER pathway, particularly APE1. In

contrast, carboplatin produces less dysfunction and DNA damage

Figure 1. Reducing the expression of APE1 augments the ability of cisplatin and oxaliplatin, but not carboplatin to reduce cell
viability in sensory neuronal cultures. Neuronal cultures were treated with siRNAs on days 3–5 in culture then exposed to various
concentrations of platins for 72 hours starting on day nine in culture. Cell viability as measured by trypan blue exclusion was determined on day 12 in
culture from three independent harvests. Each column represents the mean 6 SEM of percent survival of cells from cultures treated with scrambled
siRNA (SCsiRNA; lightly shaded columns) or with APE1si RNA (heavy shaded columns), then exposed to various concentrations of cisplatin (panel A),
oxaliplatin (panel B), or carboplatin (panel C) as indicated. An asterisk indicates significant difference in survival in the absence or presence of drug
treatment, whereas a cross indicates significant difference in cultures treated with SCsiRNA versus APE1siRNA using ANOVA and Tukey’s post hoc test.
doi:10.1371/journal.pone.0106485.g001
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even at higher concentrations, which suggests that its toxicity is not

influenced by the BER pathway.

To ascertain whether ROS production secondary to exposure to

platins is more general in nature or specifically mitochondrial

generated by superoxide, we performed a series of experiments

using MitoSox Red which selectively targets mitochondria and is

oxidized by superoxide anion, the predominant ROS in

mitochondria, but not other ROS or reactive nitrogen species.

Although total ROS positive cells were dramatically increased

following 50 mM cisplatin (see Figure 6), there was no increase in

the percent of cells producing mitochondrial ROS at this

concentration (Figure 7A). At higher concentrations of cisplatin,

however, mitochondrial ROS generation increased (see Figure

S2). With oxaliplatin, 300 mM and 500 mM significantly increased

the number of cells showing mitochondrial ROS production: 17%

ROS positive cells at 300 mM and 24% at 500 mM (Figure 7B). In

contrast, carboplatin at the concentrations tested did not increase

the production of mitochondrial ROS in the neuronal cultures

(Figure 7C). The ROS production in mitochondria after cisplatin

treatment was not increased in cultures pretreated with APE1

siRNA to reduce expression of APE1 (see Figure S2).

In order to further to determine the production of ROS by the

platinum agents, we investigated whether a general anti-oxidant

scavenger, such as N-acetyl cysteine (NAC) would block the effects

of cisplatin on sensory neuronal cultures. We determined that

NAC blocks apoptosis in cultures following 50 mM cisplatin

Figure 2. Apoptosis induced by cisplatin and oxaliplatin, but not carboplatin, is increased by reducing the expression of APE1 in
sensory neuronal cultures. Neuronal cultures were treated with siRNAs on days 3–5 in culture then exposed to various concentrations of platins
for 72 hours starting on day nine in culture. Cell apoptosis was detected by Annexin-V and PI staining and FACS analyses after cells were grown for 12
days. The left panels show representative fluorescence-activated cell sorting (FACS) for cells treated with various concentrations of cisplatin (A),
oxaliplatin (B), or carboplatin (C) and scrambled siRNA (SCsiRNA) or APE1siRNA as indicated. The panels on the right show the quantification of data
from five independent harvests. Each column represents the mean 6 SEM of the percent of apoptotic cells from cultures treated with SCsiRNA (lightly
shaded) or with APE1siRNA (heavy shaded) and various concentrations of cisplatin (A); oxaliplatin (B) or carboplatin (C) as indicated. An asterisk
indicates significant difference in survival in the absence or presence of drug treatment, whereas a cross indicates significant difference in cultures
treated with SCsiRNA versus APE1siRNA using Student’s t-test.
doi:10.1371/journal.pone.0106485.g002
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treatment (see Figure S3a), and it blocks total ROS production at

both 50 and 100 mM cisplatin treatment levels (see Figure S3b).

These data support our hypothesis that the platinating agents, and

particularly cisplatin as an example, produce ROS as a function of

their action as previously discovered in other model systems

[24,31,51].

Chronic administration of platinum agents reduces
capsaicin-induced vasodilation in the rat hindpaw

It has long been appreciated that activation of the peripheral

endings of small diameter sensory nerves caused the release of

neuropeptides that contribute to neurogenic inflammation [52].

Thus, measuring changes in peripheral blood flow after activation

of sensory neurons provides a non-invasive and reproducible

measure of the function of these neurons in the absence or

presence of systemic administration of anticancer drugs [53].

Consequently, we used this technique to determine whether

repeated administration of platinum drugs alters the function of

sensory neurons in situ. When rats are administered 3 mg/kg

cisplatin i.p once per week for three weeks there is a significant

reduction in the vasodilation evoked by an intradermal injection of

capsaicin which is not observed until one week after the last dose

of drug and persists into week 2 post-dosing (Figure 8A; and see

Figure S4 for raw data). Similar results are observed with a weekly

administration of 3 mg/kg oxaliplatin, but the onset of the effect is

first observed in the second week of drug dosing (Figure 8B).

When rats received 10 mg/kg carboplatin weekly, there was no

effect on capsaicin-evoked vasodilation (data not shown), but a

diminished blood flow was observed after 30 mg/kg (Figure 8C).

These data demonstrate that weekly administration of platinum

drugs alters the function of small diameter sensory neurons in situ

and confirm functional neurotoxicity of these anticancer drugs that

could contribute to CIPN.

Systemic administration of E3330 is neuroprotective
against cisplatin-induced alterations in capsaicin-induced
vasodilation

Previous studies in our laboratory using isolated sensory neurons

have shown that augmenting APE1 repair activity attenuates

cisplatin-induced neurotoxicity in isolated sensory neurons [24].

Consequently, we examined whether augmenting APE1 activity in
situ with the drug E3330 would also be neuroprotective. We chose

to examine E3330 since we have previously shown in isolated

sensory neurons that it prevents neurotoxicity caused by ionizing

radiation [43]. Furthermore, when sensory neuronal cultures are

exposed to E3330 for 24 hours, there is a concentration-

dependent increase in APE1 repair activity (Figure S5). To

determine whether E3330 was neuroprotective, we performed

studies similar to those presented in Figure 8, but treated rats for

three weeks with 5 daily doses of 25 mg/kg E3330 given orally and

3 mg/kg cisplatin given on day three of each week. When control

rats were injected with cisplatin and vehicle controls, there was a

significant decrease in the ability of capsaicin to induce

vasodilation, which occurred one week post-dosing and was

maintained for the additional two weeks of testing (Figure 9). In

contrast, when rats were administered E3330 and cisplatin, there

was no significant effect on capsaicin-induced vasodilation 1 week

and 2 weeks post dosing (Figure 9). This protective effect was not

observed at three weeks postdosing when E3330 was not present.

However, there was a significant effect of cisplatin three weeks post

dosing, which was similar to the effect observed in control rats.

Figure 3. Platinum-induced phosphorylation of H2AX in sensory neuronal cultures is increased by reducing APE1 expression. The
top panels show representative Western blots of phospho-H2AX (P-H2AX) and actin from cultures prior to and after 8, 24 and 48 hours of exposure to
300 mM oxaliplatin (A) or 500 mM carboplatin (B). Cultures were exposed to SCsiRNA or APE1siRNA as indicated. The bottom panels represent the
densitometry of P-H2AX expression normalized to actin from three independent experiments. The columns represent the mean 6 SEM from cultures
treated with SCsiRNA (lightly shaded columns) or APE1siRNA (heavy shaded columns) prior to or after exposure to 300 mM oxaliplatin (A) or 500 mM
carboplatin (B). An asterisk indicates a statistically significant increase in P-H2AX density in cells treated with APE1siRNA compared to those treated
with SCsiRNA. Cisplatin data can be found in our previous publication [24].
doi:10.1371/journal.pone.0106485.g003
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These data support the notion that enhancing the repair activity of

APE1 is a viable approach to reversing cisplatin induced CIPN.

Discussion

The data presented here further our earlier findings relating to

the role of the BER pathway in altering the function of sensory

neurons after exposure to cisplatin [24] by comparing the

neurotoxicity caused by the three commonly used platinum

agents: cisplatin, oxaliplatin, and carboplatin. We confirmed our

previous work showing that cisplatin reduces cell viability,

increases apoptosis, augments production of ROS, and increases

8-oxoG adducts at concentrations lower then we previously

examined. We also demonstrated that oxaliplatin and carboplatin

significantly reduced cell viability, but at concentrations substan-

tially higher than cisplatin. With cisplatin and oxaliplatin, the

reduced cell viability and increased apoptosis were further

enhanced by APE1 knockdown. However, while carboplatin

reduced cell viability, the effect was not enhanced by APE1

knockdown. As we previously observed with cisplatin for P-H2AX

[24], oxaliplatin increased the amount of DNA damage as

indicated by an increase in P-H2AX and 8-oxoG DNA adducts,

and this effect was increased by reducing APE1 expression.

Carboplatin exposure resulted in a small increase in P-H2AX

compared to oxaliplatin with essentially no production of 8-oxoG

DNA adducts. With a functional assay, exposure to both

oxaliplatin and carboplatin decreased CGRP release evoked by

capsaicin without altering resting release or total content of

CGRP. The effect of these drugs on transmitter release is

analogous to our previous results using cisplatin [24]. Of interest,

although altering APE1 expression effects the inhibition of release

by oxaliplatin (see Figure 4) and cisplatin (see [24]), reducing the

expression of APE1 does not affect the actions of carboplatin.

It is well established that exposure of sensory neurons to various

platinating agents results in the formation of adducts [19], and this

formation correlates with platinum-induced neurotoxicity includ-

ing apoptosis [20,22,27]. Since adducts are repaired largely by

Figure 4. Platinum-induced oxidative DNA damage measured by 8-oxoG DNA adduct immunocytochemistry is increased by
reducing APE1 expression in cisplatin and oxaliplatin treated sensory neuronal cultures. The top panels (A) show representative
immunohistochemical staining for 8-oxoG DNA adducts in control (media), scrambled (SCsiRNA) or APE1 knockdown (APEsiRNA) from cultures after
24 hrs treatment with cisplatin (50 mM), oxaliplatin (300 mM) or carboplatin (500 mM). The bottom panels (B) represent the quantitation of the 8-oxoG
positive staining cells as described in ’’Methods.’’ The columns represent the mean 6 SEM from cultures treated with media along (lightly shaded
columns), SCsiRNA (medium shaded columns) or APE1siRNA (heavy shaded columns). An asterisk indicates a statistically significant increase in 8-oxoG
in cells treated with APE1siRNA compared to those treated with SCsiRNA.
doi:10.1371/journal.pone.0106485.g004
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NER, this pathway is thought to be of major importance [54]. Our

results, however, strongly support the notion that compromising

the BER pathway worsens the neurotoxicity secondary to cisplatin

and oxaliplatin, whereas with carboplatin, BER alteration does not

seem to influence toxicity. It is interesting to speculate that one

mechanism that could account for the augmented toxicity by

cisplatin and oxaliplatin secondary to decreasing APE1 (i.e.

reducing BER) is the observation that a 24-hour exposure to

either cisplatin or oxaliplatin resulted in a significant production of

ROS in the neuronal cultures, as well as 8-oxoG DNA adducts.

This also would explain why reducing APE1 expression does not

affect the actions of carboplatin, since this agent does not increase

production of ROS nor DNA damage (8-oxoG). Moreover, the

removal of APE1 from sensory neuronal cells resulted in an

increase in ROS production with cisplatin and oxaliplatin, but had

no effect with carboplatin. In the case of cisplatin, our results

confirm our previous studies and those by others showing that this

drug increases production of ROS [24,31,51]. Cisplatin-induced

ROS production does not appear secondary to mitochondrial

damage since at the concentrations which produce total ROS

there is no increase in ROS in mitochondria. In contrast,

oxaliplatin increases ROS in mitochondria at concentrations that

increase total ROS in the neuronal cultures. Since oxidative DNA

damage is repaired by the BER pathway [55] and because

decreasing APE1 expression augments cisplatin and oxaliplatin

toxicity, it seems likely that the oxidative DNA damage caused by

these agents in the neuronal cultures is the determining factor for

the observed effects. Interestingly, both cisplatin and carboplatin

produce a similar Pt-1,2 (CpG) intrastrand DNA adduct which

comprises greater than 90% of the crosslinks in the DNA [46,56],

yet there are clear differences between cisplatin and carboplatin in

our studies, attributed to the amount of ROS produced (cisplatin

and oxaliplatin) or not produced (carboplatin). These data are

supported by our finding of 8-oxoG DNA adducts being produced

by cisplatin and oxaliplatin, but not carboplatin and an

augmentation of the 8-oxoG levels for the former two agents,

but not the latter when APE1 levels are reduced.

We chose to examine the effects of the platinating agents on

sensory neurons grown in culture, since the neuropathy that is

observed after these drugs are given to patients is largely sensory

and characterized by either a gain of function as observed with

paraesthesia, allodynia and/or hyperalgesia, or a loss of function

characterized by numbness, loss of reflexes, loss of proprioception,

and/or cold intolerance in the extremities. It also is well

established that systemic administration of either cisplatin or

oxaliplatin result in platinum adduct formation in the cell bodies of

sensory neurons [19,20,22]. Furthermore, previous work demon-

strates that compromising either the BER or NER pathways in

rodents worsens cisplatin-induced neurotoxicity [24,27]. One

interesting observation of examining the effects on sensory neurons

in culture is that the level of toxicity correlates with the incidence

of CIPN in patients. We observe a greater degree of toxicity at

lower concentrations with cisplatin and oxaliplatin compared to

carboplatin. This occurs with cell killing, DNA damage, and with

production of ROS. Approximately 30–60% of patients admin-

istered cisplatin or oxaliplatin chronically develop significant

CIPN [4,6–8], whereas the number of patients developing CIPN

during carboplatin therapy is much less (,5% [16,17]). One

limitation of using sensory neuronal cultures, however is that we

do not distinguish between the various subtypes of sensory

neurons. For example, although we show apoptosis of cells in

culture, we do not define whether they are large diameter or small

diameter sensory neurons. Thus, we cannot correlate changes we

see in the neuronal survival or production of ROS with functional

changes seen in vivo. We do show that all three agents reduce the

capsaicin-evoked release of CGRP, and this supports the notion

that toxicity is occurring in small diameter peptidergic neurons

and in situ these neurons comprise one group of nociceptors.

To begin to translate our findings in isolated sensory neurons to

chronic dosing in animals, we employed a rat animal model to

measure the function of peptidergic sensory neurons in situ
[52,53]. In this model, after long-term administration we

measured the ability of the platinum drugs to alter capsaicin-

evoked vasodilatation which is regulated by release of CGRP from

the peripheral endings of small diameter sensory neurons [53,57].

Figure 5. Reducing APE1 expression enhances the ability of oxaliplatin but not carboplatin to reduce capsaicin-evoked release of
CGRP from sensory neurons in culture. Each column represents the mean 6 SEM of CGRP release in fmol/well/min for untreated sensory
neurons in culture (controls) or cultures treated with SCsiRNA or APE1siRNA as indicated. Cells were exposed to 30 mM oxaliplatin (A) or 300 mM
carboplatin (B) for 24 hours prior to release experiments. For release, wells of cells from three independent harvests were exposed for 10 min to
HEPES alone (basal; open columns), or HEPES in the presence of 30 nM capsaicin (solid columns) as indicated. An asterisk indicates a significant
difference in capsaicin-stimulated release compared to untreated cells, whereas a cross indicates a significant difference in cultures treated with
APE1siRNA versus those treated with SCsiRNA using Student’s t-test. Cisplatin analyses can be found in our previous publication [24].
doi:10.1371/journal.pone.0106485.g005
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While each chemotherapeutic agent had a slightly different pattern

of effect, all three caused a significant reduction in capsaicin-

induced vasodilatation that was delayed in onset. In the case of

cisplatin, the effect was not observed until after stopping the three

weeks of dosing, whereas with oxaliplatin, the onset was after the

second dose of the drug. The inhibitory effect of carboplatin was

observed during week three of dosing. In all cases, the effect of the

drugs was maintained for 2–3 weeks after dosing was discontinued.

This pattern of drug toxicity is analogous to the time course for the

development of CIPN in patients in that the onset of neuropathy is

delayed and is often maintained after therapy is discontinued [4,7–

9]. It also is important to note that the dose of carboplatin

necessary to produce the inhibition of capsaicin-induced vasodi-

latation is 10 times higher than that of cisplatin and oxaliplatin.

Although not shown, a dose of 10 mg/kg given weekly for three

weeks did not alter the capsaicin-induced vasodilatation, which is

consistent with the fact that carboplatin does not produce CIPN in

most patients treated with the drug [16,17].

When rats were treated systemically with the redox inhibitor of

APE1, E3330, the inhibitory effects of cisplatin on capsaicin-

induced vasodilatation were significantly attenuated for the first

two weeks after dosing was stopped, suggesting that this compound

protects the sensory neurons. Given our previous studies

suggesting that the neuroprotective effects of APE1 on sensory

neurons are secondary to enhanced repair, not to its redox action

[24,43], the effect of E3330 seems at first difficult to explain.

Although E3330 has been shown to attack the primary redox cys

in APE1, cys65, affecting its ability to be reduced and preventing

APE1 redox activity, it also disrupts the interaction of cys65 and

the other two cys that interact with cys65, namely cys93 and cys99,

mainly through an unfolding of the APE1 protein over time and

reducing the ability of disulfide bonds to be formed. [58–61]. This

Figure 6. Production of reactive oxygen species (ROS) by cisplatin and oxaliplatin, but not carboplatin is increased by reducing the
expression of APE1 in sensory neuronal cultures. Neuronal cultures were exposed to siRNAs on days 3-5 in culture then exposed to various
concentrations of platins for 24 hours starting on day 11 in culture. ROS generation was measured by Carboxy-H2DCFDA and FACS analysis. The left
panels show representative FACS for cells treated with various concentrations of cisplatin (A), oxaliplatin (B) or carboplatin (C) and scramble siRNA
(SCsiRNA) or APE1siRNA as indicated. The panels on the right show the quantification of data from 4-6 independent harvests. Each column represents
the mean 6 SEM of the percent of ROS positive cells from cultures treated with SCsiRNA (lightly shaded) or with APE1siRNA (heavy shaded) and
treated with various concentrations of cisplatin (A); oxaliplatin (B) or carboplatin (C) as indicated. An asterisk indicates significant difference in the
number of ROS positive cells in the absence or presence of drug treatment, whereas a cross indicates significant difference in cultures treated with
SCsiRNA versus APE1siRNA using Student’s t-test.
doi:10.1371/journal.pone.0106485.g006
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unfolding primarily alters the amino end of APE1, where the

redox function and APE1 protein-protein interaction regions are

located and releases APE1 from its redox activities and potentially

facilitates APE1 repair activity. In vivo this could translate to a

protective mechanism facilitating BER to repair damage induced

by cisplatin. Indeed, when isolated sensory neurons are exposed to

E3330, there is a concentration-dependent increase in APE1

endonuclease activity (Figure S4). Furthermore, a similar result

was observed in vitro where E3330 was shown to protect sensory

neurons from damage induced by ionizing radiation [43]. While

more detailed studies on the mechanism by which E3330 is

neuroprotective are necessary, this data is encouraging as it

demonstrates that targeting APE1 by enhancing its DNA repair

capability is a viable approach to reversing cisplatin induced

CIPN.

To date, the mechanisms by which anticancer drugs produce

peripheral neuropathy remain unknown, although several mech-

anisms have been proposed. These include changes in the target

regions of sensory nerve endings in the periphery, alterations in

mitochondrial function in neurons, and/or changes in the

immune/neuronal interaction. In animal models, several obser-

vations have been made correlating chemotherapy-induced

neuropathic pain with changes in mitochondrial function in

neurons [62,63], with changes in the immune system which can

alter neuronal function [64,65], and with alterations in the

morphology of neurons [63,65]. No causal relationship has been

established between these changes and the initiation and

maintenance of CIPN. Our studies suggest another mechanism

for CIPN: DNA damage which could alter the function of sensory

neurons in ways that manifest as the various symptoms observed in

Figure 7. Oxaliplatin, but not cisplatin or carboplatin increase production of mitochondrial ROS in sensory neuronal cultures.
Neuronal cultures were exposed to various concentration of cisplatin (A), oxaliplatin (B), or carboplatin (C) for 24 hours starting on day 11 in culture
and mitochondrial ROS measured using MitoSOX red and FACS analysis. The left panels show representative FACS analysis for cells treated with
various concentrations of cisplatin (A), oxaliplatin (B), or carboplatin (C) as indicated. The panels on the right show the quantification of data from
three independent harvests. Each column represents the mean 6 SEM of the percent of superoxide positive cells from cultures treated with various
concentrations of cisplatin (A); oxaliplatin (B) or carboplatin (C) as indicated. An asterisk indicates significant difference in the number of superoxide
positive cells compared to controls using Student’s t-test.
doi:10.1371/journal.pone.0106485.g007
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CIPN [66]. Clearly, exposing sensory neurons to anticancer drugs

produces DNA damage (see Figure 3 and [20,22,41]), and

previous models have suggested that damage resulting from single

strand breaks, such as what would occur if ROS adducts were not

properly or completely repaired, would lead, in non-proliferating

cells, to block transcription and lead to deficient neuronal proteins

and dysfunction or cell death [67].

If one assumes that CIPN occurs secondary to DNA damage,

then DNA repair in neurons could be a critical way of preventing

the CIPN that occurs in patients. Our results with E3330 support

this notion, as do our previous studies using overexpression of

APE1 to protect neurons from cisplatin-induced toxicity. Other

reports also have implicated the BER pathway in modulating and

repairing cisplatin DNA damage by synthesizing past interstrand

adducts, while further studies have demonstrated that the

interstrand cross-links can be substrates of the BER pathway

[68]. Moreover, we have previously demonstrated a relationship

between APE1, p53, and GADD45a in response to cisplatin

damage correlating with ROS in sensory neuronal cultures. The

p53-GADD45a pathway is also intimately linked to the repair of

DNA damage related to cross-linking agents such as platinum that

are normally repaired by the NER pathway [24,66]. Therefore, it

appears there is a clear and intimate role of BER and particularly

APE1 in protecting sensory neurons from the toxic effects of

cisplatin and oxaliplatin relating to CIPN, and most likely

coordination between the BER and NER pathways. This latter

link is also currently under investigation in our laboratory.

In conclusion, we demonstrate that the loss of APE1 function

increases the sensitivity of sensory neuronal cultures to cisplatin

and oxaliplatin for both cell survival and function, but not

carboplatin, and correlates with the level of DNA damage induced

by these agents as well as ROS levels produced. We also

demonstrate differences in the platinum agents on peripheral

neuropathy as defined by peripheral blood flow in vivo using a rat

model, and we demonstrate the in vivo use of a small molecule

targeting APE1 which shows protective activity against cisplatin-

induced neuropathy.

Figure 8. Systemic administration of cisplatin, oxaliplatin, or carboplatin decreases capsaicin-induced vasodilatation in the rat
hindpaw. Each column represents the mean 6 SEM of the capsaicin-evoked changes in blood flow over 15 minutes (capsaicin-stimulated blood
flow minus basal blood flow) normalized to the vehicle treated controls. Animals are injected with vehicle (lightly shade columns) or platinum drugs
(dark shaded columns) once a week for three weeks. Blood flow is measured each week 4 days after dosing with 3 mg/kg cisplatin (A), 3 mg/ml
oxaliplatin (B) or 30 mg/kg carboplatin(C) and for 1–3 weeks after dosing is discontinued. An asterisk indicates statistical significance between the
platinum-treated group and the corresponding vehicle-injected group using the statistical analysis software SPSS 11.0; post hoc analysis is LSD
(Fisher’s least significant difference) and Student-Newman-Keuls.
doi:10.1371/journal.pone.0106485.g008
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Materials and Methods

Ethics Statement
Animals used in these studies and the experimental protocols

were approved by the Indiana University School of Medicine

Institutional Animal Care and Use Committee (IACUC), #
10119.

Materials
Unless otherwise specified, tissue culture supplies were obtained

from Invitrogen (Carlsbad, CA). Poly-D-lysine, laminin, and

routine chemicals were purchased from Sigma-Aldrich (St. Louis,

MO). Nerve growth factor was purchased from Harlan Bioprod-

ucts for Science (Indianapolis, IN) and Normocin from Invivogen

(San Diego, CA). Neuroporter were purchased from Genlantis

(San Diego, CA). Mouse monoclonal antihuman APE1 antibodies

were raised in our laboratory and available from Novus Biologicals

(Littleton, CO), whereas the mouse monoclonal anti-phospho-

H2AX antibodies were from EMD Millipore (Billerica, MA) and

b-Actin monoclonal antibody from Thermo Fisher Scientific

(Fremont, CA). Chemiluminescence secondary antibodies were

from Roche Diagnostics Corp. (Indianapolis, IN). Alexa Fluor 488

Annexin-V Vybrant Apoptosis Assay Kits were from Molecular

Probes (Eugene, OR, USA) and chemiluminescence (Roche

Diagnostics Corp., Indianapolis, IN).

E3330 was synthesized per previous publications [41,69],

dissolved in N,N-dimethylformamide (Sigma-Aldrich) and stored

as a 40mM at 280uC. For oral administration, E3330 was diluted

to the appropriate amount in vehicle composed of Cremophor

E::EtoH (1:1), 4% total volume with saline [70]. Cisplatin was

purchased from Sigma-Aldrich Inc. (St. Louis, MO), dissolved in

1-methyl-2-pyrrolidone (Sigma-Aldrich) and stored as a 50mM at

220uC for a month. Oxaliplatin was purchased from LKT

Laboratories, Inc., dissolved in PBS, and stored as a 5mM stock at

280uC. Carboplatin was purchased from Sigma-Aldrich Inc.,

dissolved in culture medium, and stored as a 20mM stock at 2

80uC. Before drug treatment, the stocks were diluted in F-12

growth medium and added to cultures and incubated for 8–

72 hours as indicated. The Animal Care and Use Committee at

Indiana University School of Medicine, Indianapolis, IN approved

all procedures used in these studies.

Cell culture
Dorsal root ganglia (DRG) were dissected from all spinal levels

of adult male (150–175 g) Sprague-Dawley rats (Harlan, India-

napolis, IN) and the cells were dissociated as previously described

[71]. Briefly, the rats were euthanized by CO2 asphyxiation.

DRGs were transferred into collagenase solution (1 mg/ml) and

incubated for 1hr at 37uC. The digested DRGs were then rinsed

with growth medium, centrifuged and dissociated by mechanical

agitation. Approximately 30,000 cells or 60,000 cells were plated

into each well of 12-well or 6-well culture plates, respectively. All

culture dishes were precoated with poly-D-lysine and laminin.

Cells were maintained in F-12 media supplemented with 10%

horse serum, 2 mM glutamine, 100 mg/ml NormocinTM, 50 mg/

ml penicillin, 50 mg/ml streptomycin, 50 mM 5-fluoro-29-deox-

yuridine (Invitrogen), 150 mM uridine, and 30 ng/ml of NGF in

3% CO2 at 37uC. Growth medium was changed every other day.

Reducing Ape1 expression using small interfering RNA
Small interfering RNAs to APE1 (APE1siRNA) and scrambled

siRNA (SCsiRNA) controls were used to decrease APE1 protein

expression in sensory neuronal cell cultures and as controls,

respectively, as described previously [24,71] On day 3 in culture,

the growth media was replace with 0.5 ml of Opti-MEM 1 media

containing 100 nM of APE1siRNA (59-GUCUGGUAAGACUG-

GAGUACC-39) or SCsiRNA (59-CCAUGAGGUCAGCAUG-

GUCUG-39;[71]) and 10 ml of the transfecting reagent, Neuro-

porter. On the next day, 0.5 ml of the growth media without

antibiotics was added to each well, and after an additional

24 hours the media containing siRNA was replaced with normal

growth media.

Figure 9. E3330 attenuates the cisplatin-induced decrease in capsaicin-induced vasodilatation in the rat hindpaw. Each column
represents the mean 6 SEM of the capsaicin-evoked changes in blood flow over 15 minutes (capsaicin-stimulated blood flow minus basal blood
flow) normalized to the vehicle treated controls. Animals are injected with vehicle (lightly shade columns) or 3 mg/kg cisplatin (dark shaded columns)
once a week for three weeks. The animals also were administered vehicle or E3330 (25 mg/kg) orally for five days each week for three weeks. Blood
flow was measured at week three of dosing and each week for three weeks after cisplatin and E3330 treatments were discontinued. An asterisk
indicates statistical significance between the animals treated with cisplatin and those treated with vehicle, whereas a cross indicates a significant
difference in animals treated with cisplatin and E3330 versus those treated with just cisplatin.
doi:10.1371/journal.pone.0106485.g009

Role of APE1 in Platinum Induced Sensory Neuropathy

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e106485



APE1 activity assay
The APE1 activity assay was performed as previously described

[72] and used for data presented in Figure S1 [73,74]. Briefly,

6.25ng of the protein extracts from neuronal cultures were added

to the reaction mix containing assay buffer (50mM HEPES,

pH 7.5, 50mM KCl, 1mM MgCl2, and 2mM DTT) and 25nM

HEX-labeled and a 26-base pair oligonucleotide substrate

containing a THF moiety at position 13 in a total reaction

volume of 20 ml. The reaction mixture then was incubated at 37uC
for 30 min, and the reaction was stopped by the addition of 10 ml

of formamide. Then 20 ml of the APE1 assay products were

separated on a 20% denaturing (7M urea) polyacrylamide gel in

16Tris-borate EDTA at 300V for 35 min to reveal two bands: the

longer full-length labeled strand and the shorter cleaved fragment

with the HEX label. To normalize the amount of immunoreac-

tivity, 5 mg of each sensory neuronal cell protein extract sample

was used to determine actin levels and density of the oligonucle-

otide bands normalized to the density of the actin bands.

The effects of E3330 on APE1 DNA repair activity were measured

as previously described using the high-throughput screen (HTS) for

APE1 inhibitors published by us and others and shown in Figure S4

[72,75-77]. Briefly, the APE1 repair activity assay was performed in a

plate assay using two annealed oligonucleotides (59-6-FAM-

GCCCCC*GGGGACGTACGATATCCCGCTCC-39 and 39-Q-

CGGGGGCCCCCTGCATGCTATAGGGCGAGG-59) custom

synthesized by Eurogentec Ltd. (Belgium). The oligonucleotides

contained a quencher on one strand and a fluorescent 6-FAM label

with an AP site mimic, tetrahydrofuran (*), on the complimentary

strand. The AP site mimic is a direct target of APE1’s repair function.

Cleavage of the oligo at this site results in release of the 6-FAM

portion of the oligo from the complimentary strand with the

quencher. The amount of fluorescence due to this cleavage is directly

proportional to APE1’s repair activity. Sensory neuronal cell cultures

were treated with each dose of the compound in four separate

experiments. The cell extracts from each experiment were run in

triplicate for each 96-well plate assay in a 200uL volume for a total of

12 replicates of each treatment. A master mix was made that would

provide a final amount of 50nM annealed oligo, 50mM TRIS, 1mM

MgCl2 and 50mM NaCl, pH 7.5 in 150uL in each well. Two ug of

each cell extract was added in a volume of 50uL to the appropriate

wells, then immediately assayed. The fluorescence was read at five,

one-minute intervals using a Tecan Ultra plate reader (Chemical

Genomics Core, Indiana University School of Medicine). The rate of

the reaction was used to determine the change in APE1 repair activity

as compared to the vehicle control.

Cell viability and apoptosis assays
Trypan blue exclusion analysis was performed as previously

described [43]. Briefly, cells were detached from the plate using a

0.05% trypsin-EDTA solution and media was added. Equal

volumes of the cell suspension and 0.4% (w/v) trypan blue in PBS

were mixed, and the cells were scored under a phase contrast

microscope using a hemacytometer. Percent survival was calcu-

lated as the percent of live cells divided by the total cell number

(including dead and live cells).

Flow cytometric detection of apoptosis was performed using the

Alexa Fluor 488 Annexin-V Vybrant Apoptosis Assay Kit in

combination with propidium iodide (PI) according to manufac-

turer’s instructions. Cells were harvested using Trypsin-EDTA.

After washing the cells twice with PBS, they were resuspended in

100 ml binding buffer and stained with Annexin V-FITC/

propidium iodide (PI). The cell suspension was incubated for

15 min in the dark at 4uC. The percentage of cells undergoing

apoptosis was determined using flow cytometry. Apoptotic cells

were defined as those positive for Annexin V.

ROS detection assays
Sensory neuronal cultures were treated with cisplatin, oxalipla-

tin, and carboplatin at various concentrations, washed with PBS,

then incubated with incubated with 10-mmol/L carboxy-

H2DCFDA (Invitrogen) in fresh PBS for 60 min to assay total

ROS. Excessive probe was washed off with PBS. The cells were

harvested with trypsin, washed with PBS twice, and then

suspended in 500 ml PBS. The fluorescence of the labeled cells

was measured by using a Coulter EPICS XL flow cytometer

(Coulter) with a fluorescence excitation of 485 nm and emission at

538 nm.

To assay mitochondrial superoxide, a 1 mmol/l MitoSOX

reagent working solution in HBSS/Ca/Mg buffer was made fresh.

One ml of this reagent was applied added to each well of cells and

the cultures incubated for 10 min at 37uC. Cultures were washed

with HBSS/Ca/Mg buffer, then the cells were trypsinized and

harvested. Cells were washed twice with HBSS/Ca/Mg buffer

then suspended in 500 ml HBSS/Ca/Mg buffer. The fluorescence

of the labeled cells was measured by using a Coulter EPICS XL

flow cytometer (Coulter) with a fluorescence excitation of 510 nm

and emission at 580 nm. An average of 10,000 cells from each

sample was counted, and each experiment was done at least in

triplicate.

8-oxoguanine DNA damage assay
Measurement of 8-oxyguanosine immunoreactivity was per-

formed using a modification of the method of Kinoshita and co-

workers [48]. After 10 days in culture, neurons treated with

siRNAs or vehicle on days 3-5 were exposed to platinum

compounds for 24 hours then washed with PBS and fixed for

5 min at 4uC with an ethanol: methanol (1:1; v/v) solution.

Following three washes with PBS, cells on plates were exposed to

RNase A (DNase and Protease-free) solution (200ug/ml; Thermo

Scientific, EN0531) for 60 minutes to deplete RNAs. After a brief

wash with PBS, fixed cells were incubated overnight at 4uC in

primary antibody solution containing mouse anti-8-oxoguanine

monoclonal IgM (1:1000; Abcam), 5% normal donkey serum,

0.1% triton X 100 and 0.02% sodium azide in PBS, followed by a

brief PBS wash and incubation with secondary antibody solution

containing Alexa Fluor-conjugated goat anti-mouse IgM (1:1000;

Invitrogen) for 2 hrs. Cells then were washed with PBS for

30 minutes and viewed under a Nikon Eclipse Ti-S fluorescence

microscope. Images were acquired using a Qimaging QICAM

color camera and Qcapture Pro 6.0 Image Processor software

(Qimaging, British Columbia, Canada). Bright field and fluores-

cent images from the same spot were taken, and three randomly

selected spots were counted for each experimental condition by

personnel blinded to the treatment. Digital images were visualized

using Adobe Photoshop CS5 (Adobe System Inc., San Jose, CA).

Immunoblotting
Cells were harvested, lysed in RIPA buffer (Santa Cruz

Biotechnology; Santa Cruz, CA, USA). Protein was quantified

using Lowey assay, and electrophoresed in a 12% SDS-polyacryl-

amide gel. After electrophoresis, the gel was transferred to a PVDF

membrane, and blocked with Tris-buffered saline containing 0.1%

Tween-20 (TBST) and 5% nonfat dry milk for 1 h at room

temperature while gently agitating. Mouse monoclonal antihuman

Ape1 antibodies (1:1000), mouse monoclonal anti-phospho H2AX

antibodies (1:1000), or b-Actin monoclonal antibody (1:1000) were

added to the blocking solution and incubated for 2 h at room
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temperature while gently agitating. Antibody binding was detected

following appropriate secondary antibody methods using chemi-

luminescence. The density of the bands was measured using

QualityOne software from Bio-Rad (Hercules, CA) and data

expressed as density normalized to actin.

Measurement of CGRP Release
After neuronal cultures were treated with the appropriate drugs,

the cultures were washed once with HEPES buffer consisting of (in

mM) 25 HEPES, 135 NaCl, 3.5 KCl, 2.5 CaCl2, 1 MgCl2, 3.3 D-

glucose, and 0.1% bovine serum albumin, pH 7.4 and maintained

at 37uC. They were then incubated for successive 10 min intervals

with 0.4 ml of HEPES buffer alone (basal release), with buffer

containing 30 nM capsaicin, then with buffer alone (to assess

return to basal release). After each incubation, the buffer was

removed and the amount of immunoreactive CGRP in each

sample was measured using radioimmunoassay as previously

described (Chen et al., 1996). After the release experiment, the

cells in each well were in 0.4 ml of 0.1 M HCl 10 min and an

aliquot taken to measure total CGRP content in the cultures using

radioimmunoassay. Total content (fmol/well) was calculated by

adding the total amount released in all incubations to the amount

measured in the cells. The release data is calculated as fmol

released/well/10 min.

Measurement of alterations in blood flow
Blood flow in the rat hindpaw was measured as previously

described (Gracias et al., 2011). Rats were anesthetized with

100 mg/kg sodium thiopental and the hair on the dorsal hindpaw

shaved and placed on a heated (37uC) platform to maintain body

temperature. Blood flow was measured using a BLF21D laser

Doppler flowmeter from Transonic systems Inc. (Ithaca, NY), and

a type N 11 G needle-style probe gently placed in contact with the

hindpaw using a micromanipulator. This system measures activity

of red blood cell flux in , 2 mm3 area beneath the probe [78].

Voltage output corresponding to tissue perfusion units (TPUs)

were recorded on-line using Biopac data acquisition system

(Goleta, CA). Vasodilatation was induced by intradermal injection

of 2 ml of a 0.01% 1-methyl-2-pyrrolidinone solution (Aldrich

Chemical Co., Milwaukee, WI) containing 10 mM capsaicin

(Sigma Chemical Company, St. Louis, MO). Injections were

made 1 mm away for the probe site. Baseline blood flow was

measured for 12 min prior to capsaicin injection and evoked blood

flow measured for 27 min after the capsaicin injection. The data

for blood flow experiments were recorded per 3-minutes as tissue

perfusion units (TPU) for each animal. Evoked response was

calculated by subtracting the baseline response/15 minutes from

the stimulated response/15 minutes.

Statistical analysis
Data is expressed as the mean 6 SEM from at least three

repeats of each experiment. Differences in cell survival using

trypan blue exclusion, P-H2AX, and CGRP release were

determined using two-way analysis of variance (ANOVA) and

Tukey’s post hoc test. Differences in apoptosis or in the number of

cells with ROS staining were determined using Student t-tests.

Differences in blood flow were determined using one-way

ANOVA and Bonferroni’s post hoc test. In all cases, significance

was set at p , 0.05) comparing treated versus controls. For the

animal studies, statistical significance between the platinum-

treated group and the corresponding vehicle-injected group was

performed using the statistical analysis software SPSS 11.0; post

hoc analysis is LSD (Fisher’s least significant difference) and

Student-Newman-Keuls.

Supporting Information

Figure S1 Treating sensory neuronal cultures with
APE1siRNA significantly reduces APE1 expression and
endonuclease activity. A: The top panel shows a representative

Western blot of APE1 and actin from neuronal cultures exposed to

100 nM scrambled siRNA (SCsiRNA) or 100 nM APE1siRNA on

days 3–5 in culture and measured after 12 days in culture. The

panel at the bottom shows the mean 6 SEM of the density of the

APE1 bands normalized to the amount of actin from three

independent harvests of cells treated with SCsiRNA or APE1si

RNA as indicated. B: The top portion of the figure shows a

representative Western blot demonstrating endonuclease activity

of Ape1 as indicated by the relative density of the 26 mer and 14-

mer bands and actin (as a loading control) for extracts of cultures

exposed to SCsiRNA or APE1siRNA as indicated using one of two

routine AP endonuclease assays established in our laboratory [72–

74]. The panel at the bottom shows the mean 6 SEM of the

percent cleavage of the 26 mer band normalized to the amount of

actin from three independent harvests of cells treated with

SCsiRNA or APE1si RNA as indicated. An asterisk indicates a

statistically significant difference between SCsiRNA treated and

APE1siRNA treated cells using Student’s t-test.

(TIF)

Figure S2 Reducing APE1 expression does not augment
the ability of cisplatin to produce mitochondrial ROS in
sensory neuronal cultures. Neuronal cultures were exposed to

siRNAs on days 3–5 in culture then exposed to various

concentrations of cisplatin for 24 hours starting on day 11 in

culture. Mitochondrial ROS was measured using MitoSox red and

FACS analysis. The panels show representative FACS analysis for

cells treated with various concentrations of cisplatin as indicated.

The number in each box is the percentage of fluorescence positive

cells.

(TIF)

Figure S3 Effect of a general anti-oxidant n-acetyl
cysteine (NAC) on ROS production in sensory neuronal
cultures following cisplatin treatment. ROS generation was

measured by Carboxy-H2DCFDA and FACS analysis as in

Figure 6. Neuronal cultures were exposed to various concentra-

tions of NAC and 50 uM cisplatin for 24 hours starting on day 11

in culture. (A) Cell apoptosis was detected by Annexin-V and PI

staining and FACS analyses. Numbers in the upper right box

indicate the number of Annexin/PI positive cells. The panels in (B)

show the level of ROS production following cisplatin treatment for

24 hrs at 0, 50 or 100 mM and NAC at 0, 5 or 10 mM

concentrations. The numbers in the box are the carboxy-

H2DCFDA positive cells.

(TIF)

Figure S4 Capsaicin-induced cutaneous vasodilatation
is attenuated two weeks after dosing of systemic
cisplatin is discontinued. Each column is the mean 6 SEM

of the tissue perfusion units/3 minutes in six rats treated with

3 mg/kg cisplatin once a week for three weeks. The light-shaded

columns represent the basal blood flow and the dark-shaded

columns represent blood flow after injection of 10 mM capsaicin as

indicated. The top panel shows blood flow three days after the first

injection of cisplatin, the middle panel three days after the third

injection, and the bottom panel blood flow two weeks after

stopping drug administration.

(TIF)

Figure S5 Treating sensory neuronal cultures with
E3330 significantly increases APE1 endonuclease activ-
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ity. Each column is the mean 6 SEM of the percent increase in

APE1 endonuclease activity using the established AP endonuclease

assay (see methods). Activity was measured for extracts of cultures

exposed to vehicle control or various concentrations of E3330 for

24 hours as indicated. An asterisk indicates a statistically

significant difference between cultures treated with vehicle and

those treated with E3330 using Student’s t-test.

(TIF)
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