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SUMMARY
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive
bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in
particular presents a high risk of progression and requires improved understanding. We present a detailed
multi-omics study containing gene expression, copy number, andmutational profiles that show relationships
to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and
genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1.
We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification
and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This
provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from
chemo- or immunotherapy.
INTRODUCTION

More than 70% of bladder tumors are non-muscle-invasive

bladder cancers (NMIBCs), with over 380,000 diagnosed per an-

num worldwide.1 Affected individuals suffer frequent recurrence,

necessitating long-term cystoscopic monitoring, with associated

morbidity and high cost. Overall, bladder cancer is more expen-

sive to treat than other cancers because of the cost of managing

NMIBC.2 The majority are stage Ta tumors that do not penetrate

the epithelial basement membrane, but approximately 20% are

stage T1 that invade the submucosa and have a high risk of pro-

gression to muscle invasion.3 Knowledge of the molecular land-

scape of these tumors is incomplete. For T1, prognostic bio-

markers are needed, and for all NMIBCs, improved biological

understanding should allow development of novel localized ther-

apies to reduce or eliminate risk of recurrence and progression.
Cell Repor
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NMIBCs are molecularly and clinically heterogeneous.

Expression analysis has identified subclasses with relationships

to outcome4,5 and expression signatures with prognostic

value.6-8 Analysis of all tumor grades and stages has also identi-

fied transcriptional subgroups, one of which, ‘‘urothelial-like,’’

predominates in NMIBC.9 Similarly, DNA copy number and mu-

tation analyses reveal genomic diversity,10-13 with some

genomic signatures showing relationships to outcome.14 How-

ever, detailed understanding of the relationships of genomic

and expression features and of tumor phenotype is lacking,

and the clinical implications of NMIBC subtypes require further

clarification.

Longitudinal studies of primary NMIBC and recurrences in the

same individual show sequential acquisition of molecular alter-

ations and subclonal evolution.15,16 Instillation of mitomycin C

in Ta disease and Bacillus Calmette-Guérin (BCG)or courses of
ts Medicine 2, 100472, December 21, 2021 ª 2021 The Authors. 1
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intravesical chemotherapy in T1 disease can cause further

genomic alterations, induce transcriptional changes, and

impose selective pressure. Thus, for discovery of diagnostic

and prognostic molecular information, analysis of primary tu-

mors is important. To improve understanding of the biology of

NMIBC and evaluate the potential of molecular subtyping to

add information at the time of diagnosis, we focused on primary

tumors. We provide the largest whole-exome sequence dataset

for T1 tumors and, using copy number, mutation, and transcrip-

tome profiling, explore the values of combining stage Ta and T1

samples and of separating into tumor stage groups for analysis.

We show that the latter provides deeper insights into biology and

clinical behavior, and suggestions for therapy.

RESULTS

Study design, samples, and analysis platforms
Fresh-frozen tissues from 113 stage Ta and 104 high-grade

stage T1 bladder tumors and paired blood samples were

analyzed. Apart from 10 T1 samples, all were primary tumors.

Follow-up data were available for 107 individuals with Ta disease

and 88with T1 disease (median, 55months). Recurrence was re-

corded in 45% of Ta and 47% of T1 cases. A single Ta case and

16 T1 cases progressed to muscle-invasive bladder cancer

(MIBC) or metastatic bladder cancer. Clinicopathologic informa-

tion and analysis platforms are given in Table S1A. All were

analyzed for copy number alterations and genome-wide mRNA

expression. Whole-exome data were obtained for 58 T1 sam-

ples, and all other samples were analyzed using targeted

sequencing (Table S2).13

Studies by the UROMOL consortium show that analysis of

NMIBC separately from MIBC provides improved biological un-

derstanding and prognostic information.4,5 Because Ta and T1

tumors show distinct clinical behavior, we hypothesized that

further information could be gained by separate analysis. Thus,

we compared analysis of the entire dataset with separate anal-

ysis of Ta and T1 samples.

Combined analysis of NMIBC
Unsupervised clustering of copy number (CN) data revealed 4

clusters (CN1–CN4) of increasing genomic complexity, with Ta

samples contained largely in CN1 and CN2 and T1 samples in

CN3 and CN4 (Figures 1A and 1B). The fraction of genome

altered (FGA) increased dramatically from CN1 to CN4 (Fig-

ure S1A). High FGA was associated with worse progression-

free survival (PFS) (Figure S1B) but not recurrence-free survival

(RFS). There was differential distribution of the most common

mutations with most TP53 mutations in CN4 and a predomi-

nance of FGFR3 mutations in CN1 and CN2 (Figure 1C).

We used two-stagenon-negative matrix factorization (NMF)

analysis (k = 2–5) to discover transcriptional subtypes. The two

initial groups segregated samples largely according to stage. In-

dependent analysis of these groups generated 4 subtypes (E1–

E4) (Figures S1C and 1D). Alignment of transcriptional and CN

subtypes showed most alignment between complex CN sam-

ples (CN4) and E3. E1 contained largely CN1 and CN2 samples

(Figure 1E). TP53 mutations were predominantly in E3, FGFR3

and KDM6A in E1 and E2, and STAG2 in E1 (Figure 1F).
2 Cell Reports Medicine 2, 100472, December 21, 2021
Gene Ontology analysis showed upregulation of categories

related to protein synthesis in the first of the two initial groups

and cell cycle and immune response in the second, features

that dominated when Ta were compared with T1 tumors. In pair-

wise analysis of E1–E4, E4 had lowest expression of a compiled

urothelial differentiation signature.9,18 An FGFR3mutation-asso-

ciated signature9 was higher in E1 and E2 and a score for im-

mune cells19 in E4. Cell cycle and DNA repair signatures were

also differentially distributed (Figures 1F and S2A–S2D).

RFS was unrelated to CN subtype, but expression subtypes

had differential RFS that approached significance, with E3

differing significantly from E2 (Figure S2E). CN and expression

subtypes showed differences in PFS (Figures 1G and H) related

to expression of progression and carcinoma in situ (CIS) signa-

ture scores,7,17,20 with the infiltrated subtype (E4) having a better

outcome than E3 (Figures 1F, 1I, and 1J).

These subtypes were clearly associated with tumor stage (Fig-

ures 1B and 1D) but did not provide additional prognostic infor-

mation. Because this is most urgently needed for T1 tumors, we

asked whether subtype assignment had prognostic utility when

applied to T1 tumors alone. Importantly, we found no differences

in PFS between the subtypes (Figure S2F). This suggests that,

although diversity within the dataset allowed robust classifica-

tion, this provided little information beyond the known worse

outcome of T1 disease.

The UROMOL study also identified 4 expression classes of

NMIBC.5 UROMOL2021 class assignments were derived, and

these aligned with good concordance (Figure 1F). Most progres-

sion events occurred in UROMOL2021 class 2a/E3, followed by

class 2b/E4. E1 and E2 aligned closely with UROMOL2021 clas-

ses 1 and 3, which also show higher expression of early cell cycle

genes and FGFR3-related signature. UROMOL2021 classes 2a

and 2b have higher expression of late cell cycle and DNA repair

genes, as in E3 and E4 (Figures 1F and S2B–S2D). We conclude

that both cohorts have similar features and that the distinct sub-

classification methods generated similar results. We also classi-

fied the samples according to the LundTax system.21 E1 and E2

samples were almost all classified as UroA. All but one sample

classified as genomically unstable (GU) were E3/UROMOL2021

class 2a, and UroB samples were all E4/UROMOL2021 class 2b

(Figure 1F). As with the subtypes derived here, neither of these

systems showed a significant relationship to PFS in stage T1

samples only (log rank analysis; p = 0.46 and 0.67, respectively).
Independent analysis of stage Ta samples
CN and mutational features

Previously, we defined two groups of Ta tumors, designated

genomic subtypes 1 and 2 (GS1 and GS2), demarcated largely

by loss of chromosome arm 9q in GS2. Expression data of a sub-

set identified mTORC1 signaling as the most significant differ-

ence.13 These subtypes are shown in Figure 2A. In this expanded

transcriptional dataset, we confirmed upregulation of late cell cy-

cle, DNA repair, cholesterol synthesis, and unfolded protein

response genes in GS2, compatible with loss of the 9q mTORC1

regulator TSC1 (Figure S3A). Despite this difference, these sub-

types were not related to grade or RFS, although tumor grade

was related to RFS (Figure S3B).
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Figure 1. Combined molecular analysis of stage Ta and T1 NMIBC tumors

(A) CN clusters. Columns, samples; rows, genomic position; yellow, gain; blue, loss. Left: chromosome number. Top: cluster designation and stage.

(B) Relationship of tumor stage to CN subtype.

(C) Distribution of common mutations according to CN subtype.

(D) Relationship of tumor stage to expression subtype.

(E) Relationships of CN and expression subtypes.

(B–E) Chi square test (with Bonferroni correction in B, D, and E).

(legend continued on next page)
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Mean non-synonymous mutation frequency from targeted

sequencing (Table S2) was 7.9 mutations per megabase (me-

dian, 7.55) and C > T and C > G mutations dominated (43%

and 25%). The single base substitution (SBS) signatures SBS2

and SBS13 (https://cancer.sanger.ac.uk/signatures/sbs/),

which are attributed to activity of the APOBEC family of cytidine

deaminases, accounted for 35% of single-nucleotide variants

(SNVs), with 29% of tumors showing 50% or more and 61%

showing 25% or more such mutations. These mutations were

more common in GS2, consistent with increased expression of

APOBEC3A, APOBEC3B, and APOBEC3H (Figures S3C and

S3D).

As in previous studies by us and others, FGFR3 mutations

were most common (62%), followed by KDM6A, PIK3CA, and

STAG2. Genes mutated in 10% or more of tumors included

KMT2A, KMT2C, KMT2D, CREBBP, EP300, RYR2, CDKN1A,

ATM, ZFP36L1, and TSC1 (Figure 2B; Table S1B). FGFR3 and

HRAS mutations were mutually exclusive, with one or other in

70%. Compatible with 9q location, TSC1 mutations were more

common in GS2 (p = 0.0016).KMT2Dmutations weremore com-

mon in GS1 and KMT2Amutations in GS2 (p = 0.038 and 0.027,

respectively).

The histone methyltransferases KMT2C, KMT2D, and KDM6A

participate in large multisubunit KMT2C/D COMPASS-like com-

plexes that are recruited to enhancers via interaction with tran-

scription and pioneer factors. KMT2C and KMT2D carry out

monomethylation of H3K4, and this, together with H3K27 acety-

lation by the acetyltransferases CREBBP and EP300, leads to

enhancer activation.22 One or more COMPASS-like complex

components were mutated in 65% of samples, and 34% had

CREBBP or EP300 mutation so that 73% had a mutation pre-

dicted to affect enhancer activation (Figure 2C). Of the 7 most

common mutations identified, FGFR3 and KMT2D mutations

were associated with higher tumor mutational burden (TMB)

(Figure 2D). Although FGFR3 mutation is linked to an APOBEC

mutational process,23 we found no relationship to APOBEC mu-

tations or expression. Only PIK3CAmutation was related to RFS

(Figure 2E), and no relationship of TMB and RFS was found.

Three Ta transcriptional subtypes

NMF analysis identified three expression subtypes (TaE1, TaE2,

and TaE3) (Figure S3E). TaE1 and TaE3 contained many GS1 tu-

mors and TaE2 themajority of GS2 (Figures 2A, 2F, and S3F) and

high-grade tumors (p = 0.0034). Differences in mutation fre-

quency of STAG2 and KMT2D (p = 0.0028 and 0.0119, respec-

tively) (Figure 2F) and RFS were found (Figure 2G).

We examined differential expression between subtypes (Fig-

ure S3G; Table S3). TaE1 was enriched in Gene Ontology cate-

gories associated with RNA transcription and protein synthesis
(F) Top: distribution of CN subtypes, stage, common mutations, and disease pro

mutation present. Center: gene expression signatures (standardized Z scores) w

UROMOL2021 and LundTax classifications.

(G) Progression-free survival (PFS) stratified according to CN subtype.

(H) PFS according to expression subtype.

(G and H) Log rank analysis.

(I) 12-gene progression risk score7 and weighted CIS score17 in CN subtypes.

(J) 12-gene progression risk score and weighted CIS score in expression subtyp

(I and J) Kruskal-Wallis test with Dunn’s multiple comparison correction.

Mean, 25th and 75th percentiles, and minimum and maximum values are shown
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(Figure S4A) and many small nucleolar RNAs (snoRNAs) that

play a major role in rRNA modification (Figure S4B; Table S4).

TaE2 was enriched in features of GS2, including late cell cycle

genes, cholesterol homeostasis, fatty acid metabolism,

response to hypoxia, and glycolysis. Features related to cell di-

vision included ‘‘sister chromatid segregation’’ (Gene Ontology

[GO]:819), including STAG2, which had fewest mutations in

TaE2 (Figures 2F and S3G). TaE2 also had highest expression

of the HIF1a-regulated long non-coding RNA UCA124 (Fig-

ure S4C), compatible with activated mTORC1. FGFR3 mutation

was directly related to the FGFR3-associated signature (Fig-

ure S4D). Expression of transcriptional regulators implicated in

urothelial development and differentiation was higher in TaE1

(Figure S4E).

Regulon analysis25-27 identified 373 with significant activity.

These were strongly associated with subtypes, confirming their

biologically distinct features (Figure S4F). Two major patterns

of activity were revealed, with TaE2 showing differences from

TaE1 and TaE3 (Figure 2F), including E2F1, E2F2, and FOXM1

regulons, compatible with enhanced cell cycle activity. SREBF2

activity reflected the preponderance in TaE2 of GS2 tumors with

upregulated sterol and lipid synthesis. TaE1 and TaE3 had activ-

ity of KLF5 and GRHL2, factors associated with urothelial differ-

entiation.28,29 Both also had higher activity of AR, TP53 and TP63

regulons, and activity of anterior HOXA genes and RXRA was

enriched. TaE3 differed from TaE1 in activity of the interferon

regulatory factors IRF4 and IRF8 and other factors involved in im-

mune regulation (MSC, EOMES, IKZF1, and SPI1). This analysis

also revealed some heterogeneity within the subtypes, suggest-

ing that further subclassification is possible (Figure S4F).

Ta tumors with increased immune infiltration have the

lowest recurrence rate

All comparisons with TaE3, which had improved RFS compared

with other subtypes, identified ‘‘immune response’’ (GO:6955)

(Figure S4G) and terms related to the inflammatory response (Ta-

ble S3). ESTIMATE immune scores30 and PD-L1 expression

were elevated (Figure 2H). Differential RFS was found in individ-

uals with the highest and lowest immune infiltration scores inde-

pendent of subtype (Figure 2I), but immune scores were not

related to mutations or FGA despite more GS1 samples in the in-

filtrated subtype (Figure S3F).

We interrogated the nature of the immune infiltrate.31 Inter-

feron signaling was highest in TaE3 (p < 0.0001), and significant

infiltration by plasma cells (p = 0.002), T cells (p < 0.0001), mac-

rophages (p < 0.0001), monocytes (p = 0.014), and neutrophils

(p = 0.001) was detected. Expression profiles for activated

CD8+ and effector memory CD8+ T cells, related to cancer

immunogenicity,32 and a T regulatory (Treg) cell signature19
gression according to expression subtype. Black, stage T1/progression; red,

ith differential expression across subtypes (p < 0.0001). Bottom: alignment to

es.

. ****p < 0.0001, ***p < 0.001, **p < 0.01. See also Figures S1 and S2.

https://cancer.sanger.ac.uk/signatures/sbs/
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Figure 2. Independent molecular analysis of stage Ta tumors

(A) CN clusters. Columns, samples; rows, genomic position; yellow, CN gain; blue, CN loss. Left: chromosome number. Top: genomic and expression subtype.

(B) Frequencies of mutations identified by targeted sequencing.

(C) Mutations in chromatin modifier genes that affect enhancer activation status. Blue, mutant; gray, wild type.

(D) TMB as SNVs per megabase according to FGFR3 and KMT2D mutation. Mann-Whitney test.

(E) Recurrence-free survival (RFS) according to PIK3CA mutation status. M, mutant; WT, wild type.

(F) Top: distribution of GS and selected mutations according to expression subtype. Blue, GS1; yellow, GS2; red, mutation present. Lower heatmaps show

regulon activity (dES values). Blocks are color coded (left) according to regulon clusters in Figure S4F.

(G) RFS according to expression subtype.

(H) ESTIMATE immune score (left) and expression levels of CD274 (PD-L1) (right) according to expression subtype. Kruskal-Wallis test with Dunn’s multiple

comparison correction.

(legend continued on next page)
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were elevated (Figure S4H). Despite expression of immunosup-

pressive biomarkers, cytolytic activity estimated from granzyme

(GZMA) and perforin (PRF1) expression was also higher in TaE3

(Figure S4I). This suggests that longer RFS in TaE3 is related to

an upregulated anti-tumor response.

Independent analysis of stage T1 tumors
CN and mutational features

Although stage T1 tumors share features withMIBC, their molec-

ular landscape has not been well studied. We defined four CN

subgroups (T1CN1–T1CN4). T1CN1 had few CN alterations,

including chromosome 9 deletions, and T1CN3 was dominated

by losses rather than gains (Figure 3A). FGA increased from

T1CN1 to T1CN4 (Figure S5A). Alterations conformed to our pre-

vious findings,10 with frequent losses of 2q (40%), 9p (52%), 9q

(52%), 11p (48%), and 17p (40%) and gains of 1q (51%), 5q

(27%), 8q (52%), 17q (28%), and 20q (48%). Regions of amplifi-

cation were identified on 14 chromosome arms. The most

common were on 3p25.1 in 7% of samples (NUP210 and IQ-

SEC1), 3p25.2 in 9% (including PPARG and RAF1), 6p22.3

in 8% (including E2F3, SOX4, and CDKAL1), 8q22.2-q22.3 in

6% (including YWHAZ, GRHL2, and KLF10), 11q13.3 in 13%

(including CCND1, FGF19, FGF4, and FGF3), and 12q15 in 8%

(including MDM2). Homozygous deletions (HD) were infrequent

apart from 9p21 (CDKN2A; 12%) (Table S5). The subtypes had

similar RFS (p = 0.6) but showed differential PFS and a relation-

ship of FGA to PFS (Figures S5B and S5C). In pairwise compar-

isons, the major expression differences were upregulation of

DNA replication, DNA repair, cell cycle, and cell division gene

sets in T1CN4.

Whole-exome sequencing (mean 873 coverage, 89% of ba-

ses > 303) identified 49,477 somatic SNVs (mean 868 and me-

dian 450 per sample). Interestingly, more SNVs were present in

the chromosomally stable subtype T1CN1 (Figure 3B), and

PFS analysis showed a better outcome for those with medium

or high TMB (Figure S5D). C > T transitions (60%) and C > G

transversions (17%) dominated. NMF analysis identified twoma-

jor mutational signatures, one with features of APOBEC-induced

mutation, which contributed to more than 50% of mutations in

68% of samples, and a second that contained predominantly

C > T and T > C, which likely represents a mixture of common

signatures reported previously in bladder cancer (Figure S5E).33

Assessment of SBS signatures34 revealed many dominated by

the APOBEC signatures SBS2 and SBS13 (79% of samples)

and others containing SBS1 and SBS5; the latter is related to

ERCC2 mutation (Figure S5F).35,36 APOBEC3A and APOBEC3B

expression was higher than in Ta tumors (Figure 3C).

dNdScv analysis37 identified 23 genes with predicted driver

function (Table S6). FAT1, ATM, RHOB, KRAS, and RBM10 fell

just below the cutoff for significance, likely because of the small

sample size. FGFR3, PIK3CA, and STAG2 mutations were less

frequent than in Ta (Figure 3D; Table S1B) but mutations in

many genes, including ARID1A, ELF3, ERCC2, and TP53 were
(D and H) Mean, 25th, and 75th percentiles, minimum and maximum values are

(I) RFS according to high (top 25th percentile) and low (lowest 25th percentile) im

(E, G, and I) Log-rank analysis.

****p < 0.0001, ***p < 0.001, **p < 0.01. See also Figures S3 and S4.
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more frequent. However, these frequencies did not align closely

with those reported in MIBC38 (Figure S5G). Importantly, this in-

termediate profile was not due to Ta-like or MIBC-like profiles of

individual tumors but due to intermediate profiles within tumors

(Figure S5H).

Two genes not implicated previously in NMIBC, KAT8 regula-

tory non-specific lethal (NSL) complex subunit 1 (KANSL1) and G

protein subunit alpha 13 (GNA13), were predicted drivers.

GNA13 is a subunit of a heterotrimeric G-protein that mediates

signaling through specific G-protein-coupled receptors

(GPCRs). Four of 5mutations detectedweremissensemutations

in codon R200. Inactivating mutations in KANSL1, encoding a

protein found in chromatin-modifying complexes,39,40 were

found in three samples. Mutations in genes involved in the COM-

PASS-like complex and/or EP300 or CREBBP were frequent

(65%). FGFR3 mutations were more common in T1CN1 and

T1CN2 and TP53 mutations in T1CN3 and T1CN4 (Figure 3E).

ERCC2 mutation was most common in T1CN1 (Figure 3F). Of

the 6 most commonly mutated genes, TP53mutation was asso-

ciated with worse PFS, as expected41 (Figure 3G), and ERCC2

mutation with favorable PFS (see below).

In MIBC, mutations in ERCC2 and other DNA damage

response (DDR) genes predict response to cisplatin-based

chemotherapy42-45 and immune checkpoint inhibitors.46

ERBB2 mutations are also linked to cisplatin response.47

Because individuals with high-risk T1 disease may be consid-

ered for such therapies,48 we evaluated the distribution of these

mutations. In exome sequence data, 53% of tumors had 1 DDR

gene mutation or more, with more in T1CN1 and T1CN4 (Fig-

ure 3H), associated with higher TMB (Figure 3I). In the entire se-

ries, 50% had ERCC2, RB1, ATM, BRCA2, or ERBB2mutations

(Figure 3J).

ERCC2 mutation was present in 24% of T1 tumors compared

with 4% in Ta. Apart from one frameshift, all were missense mu-

tations in the helical motif regions (Figure 4A). Seven of these are

functionally inactivating, including N238S and T484M, found in

seven and three samples, respectively,49 and 6 new mutations

are close to known detrimental mutations (Figure 4B). Compat-

ible with high TMB in T1CN1 (Figure 3B), ERCC2 mutant tumors

showed higher TMB (median, 14.84 mutations per megabase;

IQR, 10.2–25.04) than wild-type tumors (median, 7.42 mutations

per megabase; IQR, 4.64–11.13) (Figure 4C), and mutation was

associated with favorable PFS (Figure 4D). Of other DDR genes

analyzed separately, only ATM mutations, most not found with

ERCC2 mutation, were associated with higher TMB (p =

0.006). No difference in PFS was detected for those with 1 muta-

tion or more in ATM, RB1, or BRCA2.

ERBB2 and ERBB3mutations are reported in 12%and 10%of

MIBC, respectively.38 Here, mutations were present in 14% and

16%of stage T1 (Figures 4E and 4F; Table S7). Most ERBB2mu-

tations were potentially activating mutations focused in the

extracellular region. 33% had focal gain of the ERBB2 region

or all of 17q, and a single tumor had high-level amplification.
shown.

mune score.
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Figure 3. Independent molecular analysis of stage T1 tumors

(A) CN clusters. Columns, samples; rows, genomic position; yellow, CN gain; blue, CN loss. Left: chromosome number. Top: CN subtype and TP53 and FGFR3

mutation status. Black, mutation present.

(B) TMB as SNVs per megabase according to CN subtype. Kruskal-Wallis test. Bars indicate mean and SD.

(C) Expression of APOBEC3A and APOBEC3B in Ta and T1 tumors.

(D) Mutation frequencies in Ta and T1 tumors for genes mutated in 5% or more of samples in either group.

(E) Distribution of FGFR3 and TP53 mutations in CN subtypes.

(F) Distribution of ERCC2 mutations in CN subtypes. Fisher’s exact text.

(G) PFS according to TP53 mutation status. Log rank analysis.

(H) Mutations in DDR genes analyzed by whole-exome sequencing (any of ERCC2, ATM, RB1, ATR, BRCA2, POLE, FANCC, and CHEK2) according to CN

subtype.

(E and H) Chi-square test with Bonferroni correction.

(I) TMB as SNVs permegabase according tomutations in DDR genes (any of ERCC2,ATM,RB1,ATR,BRCA2,POLE, FANCC, andCHEK2) in tumors analyzed by

whole-exome sequencing.

(C and I) Mann-Whitney test. Mean, 25th and 75th percentiles, minimum and maximum values are shown.

(J) Relationships of DDR gene mutations. Blue, mutant; gray, wild type.

See also Figure S5.
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Figure 4. ERCC2, ERBB2, and ERBB3 mutations in stage T1 tumors

(A) ERCC2 protein showing positions and frequency of point mutations identified.

(B) Structure of the ERCC2 protein (PDB: 5IVW) showing positions of mutated residues. Red, residues with mutations reported previously to affect function;

green, novel mutations.

(C) TMB as SNVs per megabase in ERCC2 mutant and WT samples. Bars indicate mean and SD.

(D) PFS according to ERCC2 mutation status.

(E) ERBB2 protein, showing positions and frequency of point mutations.

(F) ERBB3 protein, showing positions and frequency of point mutations.

(G) TMB as SNVs per megabase in ERBB2 (left) and ERBB3 (right) mutant and WT T1 samples. Bars indicate mean and SD.

(C and G) Mann-Whitney test.

(H) PFS according to ERBB2 and/or ERBB3 mutation status.

(D and H) Log rank analysis.

See also Figure S5 and Table S7.
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Mutations were unrelated to CN or expression subtype, but

gains were most common (60%) in T1CN4 (p < 0.0001). As in

other tumor types,50 8 tumors had mutations in both receptors
8 Cell Reports Medicine 2, 100472, December 21, 2021
(p < 0.05). Three of only four potentially inactivating mutations

in either gene were in tumors with concomitant point mutations,

suggesting selection for mutant-only heterodimers. There was
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Figure 5. Features of stage T1 expression subtypes

(A) Heatmaps of Z scores for selected GO categories and expression signatures according to expression subtype. Cytosolic ribosome, GO:22626; Translational

initiation, GO:6413; DNA replication, GO:6260; Immune response, GO:6955.

(B) RFS according to expression subtype.

(C) PFS according to expression subtype.

(D) 12-gene progression risk score in expression subtypes.

(E) Relationships of CN and expression subtypes.

(F) Selected CN alterations and gene expression according to expression subtype. Black, amplification or mutation; white, normal or WT; yellow, no data.

(G) ERCC2, ATM, and/or RB1 mutations according to expression subtype.

(E and G) Chi-square test with Bonferroni correction.

(H) FGFR3 signature with mutation frequency and differentiation signature in expression subtypes.

(D and H) Kruskal-Wallis test with Dunn’s multiple comparison correction.

(I) Regulon activity profiles according to expression subtypes. Blocks are color coded according to regulon clusters in Figure S6E.

(legend continued on next page)
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co-occurrence with ERCC2 mutation (Table S7), and, accord-

ingly, ERBB2 and ERBB3 mutations were linked to high TMB

(Figure 4G) and longer PFS (Figure 4H). Thus, DNA-based fea-

tures can subdivide T1 tumors into subtypes with different clin-

ical outcomes and suggest systemic chemotherapy or targeted

therapies.

Four T1 transcriptional subtypes

Two-stage NMF analysis revealed four subtypes (T1E1–T1E4)

(Figures 5A and S6A). Differences in RFS between T1E1 and

T1E4 approached significance (Figure 5B). T1E1 showed best

and T1E4 worst PFS. The progression rates at 5 years for sub-

types T1E1–T1E4 were in the order 5%, 15%, 17%, and 25%,

respectively. This was reflected in progression signature scores

(Figures 5C and 5D). Because RFS and PFS curves showed

crossing over at early time points after diagnosis (Figures 5B

and 5C), we carried out Cox regression analysis to estimate

the long-term survival rate under proportional and non-propor-

tional hazard assumptions. This suggested a change in hazard

ratios over time (Figure S6B). Relationships to CN subtypes

and distribution of common genomic features in these subtypes

are shown in Figures 5E and 5F. 6p22.3 (E2F3) amplification and

RB1 mutation were only found in T1E3 and T1E4, and RB1 and

CDKN2A expression were inversely correlated (r = �0.62).

TP53 mutation was higher in T1E2, T1E3, and T1E4, which had

more CN alterations (FGA in the order T1E4 > T1E2 > T1E3 >

T1E1) (Figure S6C). DDR gene mutations were common in

T1E3 and T1E4 (Figure 5G).

Pairwise comparison of the two initial NMF groups revealed

higher expression of genes involved in translational initiation,

protein targeting, and ribosome biogenesis in the first (T1E1

and T1E2) and of genes related to immune and inflammatory re-

sponses in the second (T1E3 and T1E4) (Figure 5A; Table S8).

Pairwise comparisons of T1E1–T1E4 showed higher cell cycle,

DNA repair, DNA replication, and metabolism-related gene

expression in T1E2 and T1E4. Cholesterol and lipid biosynthesis

genes and genes involved in the unfolded protein response were

highest in T1E4, and categories related to glucose metabolism

and canonical glycolysis highest in T1E2. T1E3 was enriched in

immune and inflammatory response genes, expressed in the or-

der T1E3 > T1E4 > T1E1 > T1E2 (Figure 5A).

The urothelial differentiation signature was high in T1E1, T1E2,

and T1E4 (Figures 5A and 5H). Very low levels of this and of dif-

ferentiation-associated transcriptional regulators were present

in some T1E3 samples (Figure S6D). The FGFR3 signature

aligned with mutation frequency (Figure 5H), correlated with

early cell cycle gene expression (r = 0.47, p < 0.0001), and was

inversely related to late cell cycle gene expression (r = �0.49,

p < 0.0001) and CIS signature (r = �0.78, p < 0.0001).

We identified 286 regulons with differential activity (Figures 5I

and S6E). E2F1 and FOXM1 activity reflects upregulated cell cy-

cle activity in T1E4 and T1E2. As in Ta, KLF5 and TP63 activity

was higher in the more differentiated subtypes. PPARG activity

was reduced in T1E3, and T1E4 showed strikingly reduced levels
(J) Left: Cox multivariate regression analysis showing the proportional hazards of

PFS. Right: Kaplan-Meier plot for PFS, stratified by positive versus negative regu

(B, C, and J right) Log rank analysis.

Mean, 25th, and 75th percentiles, minimum and maximum values are shown. ***
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of MYC, nuclear factor kB (NF-kB), and SMAD3 activity. Some

highly active regulons in T1E3 (Figure S6E) relate to immune

cell function (EOMES, MSC, AIRE, STAT4), but many do not

and have no known function or are implicated in neural or testis

development or function. We assessed the relationships of reg-

ulon differential enrichment scores in relation to RFS andPFS us-

ing a multivariate analysis that considered gender and age.

HIF1A3 and ZBTB8B activity was associated with reduced

RFS (log rank p = 0.027 and 0.04, respectively). Increased PFS

was associated with THAP4 and ELF1 activity and reduced

PFS with MYBL1 activity (Figure 5J). THAP4 and MYBL1 activ-

ities were strongly negatively correlated (r = �0.75, p <

0.0001). Examination of genes correlated with MYBL1 levels re-

vealed negative correlation with TP63 (r = �0.544, p < 0.0001)

and the PPARG coactivator PPARGC1B (r =�0.545, p < 0.0001).

A stage T1 subtype with enhanced immune infiltration

ESTIMATE stromal and immune scores were highest in T1E3

(Figure 6A). These were not related to FGA, TMB, or single muta-

tions but had negative relationships with DNA repair gene

expression51 (ESTIMATE r = �0.35, p = 0.0002; 60-gene signa-

ture19 r = �0.53, p < 0.0001). Deconvolution of expression data

provided further insights. Hallmark gene sets for interferon g

(IFNg) and IFNa responses were upregulated in T1E3 (p <

0.0001 for both). Signatures related to cytotoxic T cells,

TBX21, marking Th1 helper cells, IFNG, and cytolytic response

markers were present. Markers of Treg cells, interleukin-10 (IL-

10) and other immunoregulatory markers (PD-L1 and CTLA4)

were upregulated (Figure 6B), suggesting an active but sup-

pressed immune response. A 6-gene T effector signature linked

to favorable checkpoint inhibitor response in bladder cancer was

upregulated,52 and we noted striking upregulation of a T cell in-

flamed signature related to response in melanoma53 (Fig-

ure S7A). Immune infiltration and PD-L1 expression were higher

in samples from females (Figure 6C). However, immune infiltra-

tion score or T effector cell signature themselves did not predict

outcome.

PPARG mutation and expression are related to immune

infiltration in NMIBC

The nuclear hormone receptor PPARg plays a key role in control

of urothelial differentiation.55 Conversely, in luminal bladder tu-

mors, amplification, increased expression, and gain of function

mutations in it and its binding partner RXRA are implicated in

driving disease.56,57 Upregulated PPARG expression and/or

RXRA mutation is associated with evasion of immunosurveil-

lance and reduced response to immunotherapy in MIBC.57

Because the situation in NMIBC is not known, we assessed

PPARG and RXRA mutations, PPARG gene amplification

(3p25.2), PPARG expression, and a PPARG-related transcrip-

tional signature.54

We found PPARG mutations in five and RXRA mutations in

three T1 exome-sequenced tumors (14%), including a function-

ally active mutation (T475M)56 and mutations near or within the

ligand-binding domain of PPARG (Q231R, M284I, K291N,
each regulon, gender, and age, indicating the contribution of each variable to

lon activity status for THAP4 and MYBL1. BH-adjusted p values.

*p < 0.0001, *p < 0.05. See also Figure S6.
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Figure 6. Immune infiltration is related to

PPARG signaling in NMIBC

(A) ESTIMATE immune signature score in T1

expression subtypes.

(B) Heatmap of Z scores for 60-gene immune cell

signature19 in T1 expression subtypes.

(C) 60-gene immune score (left) and PD-L1

expression (right) according to gender in T1 tu-

mors. Mann-Whitney test.

(D) PPARG expression according to T1 expression

subtype.

(E) PPARG signature score54 according to T1

expression subtype.

(A, D, and E) Kruskal-Wallis test with Dunn’s mul-

tiple comparison correction. ****p < 0.0001, ***p <

0.001, **p < 0.01.

(A, C, D, and E) Mean, 25th and 75th percentiles,

minimum and maximum values are shown.

(F) Correlation of PPARG signature and differenti-

ation score in T1 tumors.

(G) Correlation of PPARG signature and ESTI-

MATE immune score in T1 tumors.

(H) Correlation of PPARG signature and ESTI-

MATE immune score in Ta tumors.

(I) Correlation of PPARG signature and DNA repair

gene expression in all NMIBCs.

(F–I) Pearson r. See also Figure S7 and Table S9.
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M491I). Two RXRA mutations (S427F) also reported in MIBC38

are known to be activating. PPARG gain or amplification was

present in 26%, implicating it by mutation or gain in 34% of T1

overall (Table S9). Only one PPARG mutation was identified in

17 Ta exome sequences analyzed and three mutations in

RXRA in the entire Ta series (2.6%). No Ta sample had

amplification.

PPARG regulon activity, PPARG expression, and the related

expression signature were lowest in T1E3 (Figures 5A, 5I, 6D,

and 6E). There was strong correlation of differentiation signature

and PPARG signature (Figure 6F) and negative correlation of

PPARG signature and immune scores (Pearson r = �0.615). We
Cell Reports M
questionedwhether correlation ofPPARG

and differentiation score was due to vari-

ations in tumor cell purity. Evaluation of

two epithelial cell signatures identified

14 samples with possible lower tumor

cell content (Figure S7B). With these

removed, a negative relationship of

ESTIMATE and PPARG scores remained

(Figure 6G). Expression of chemokine

chemoattractants for effector T cells that

are modulated by PPARG expression in

bladder tumor cells57 was high in T1E3

(Figure S7C). Upregulated PPARG

signature was associated with 6 of 8

PPARG/RXRA mutations. The two

PPARG-mutant samples with no CN

gain or upregulation of PPARG or its

signature were in T1E3, suggesting that

thesemutations have no effect (Table S9).
For validation, we evaluated immune and PPARG expression

signatures in two independent T1 expression datasets.4,9 In

both cases, supervised clustering identified approximately one

third of samples with immune signature negatively correlated

with PPARG signature (Figures S7D and S7E).

In Ta samples, the lowest PPARG signature was in TaE3, which

had the highest immune infiltrate (Figure S7F). Here, correlation

with differentiation signature (Figure S7G) and negative correlation

with immune and PPARG scores (Figure 6H) were also found.

Finally, we examined other features suggested to relate to im-

mune infiltration and the PPARG signature. In all NMIBCs, there

was weak correlation with FGA (r = 0.17, p = 0.01) but a strong
edicine 2, 100472, December 21, 2021 11
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Figure 7. TP53 mutation and outcome in

BCG-treated T1 individuals and alignment

of expression subtypes to UROMOL2021

and LundTax classifications

(A) RFS in BCG-treated individuals according to

TP53 mutation status.

(B) PFS in BCG-treated individuals according to

TP53 mutation status.

(A and B) Log-rank analysis.

(C) Alignment of Ta expression subtypes with

UROMOL2021 and LundTax classifications.

(D) Alignment of T1 expression subtypes with

UROMOL2021 and LundTax classifications.

(E) Heatmap of Z scores for expression of genes

associated with LundTax GU subtype in T1

expression subtypes.

(F) Alignment of T1CN subtypeswith UROMOL2021

and LundTax classifications.
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relationship with DNA repair gene expression51 (r = 0.41, p <

0.0001) (Figure 6I). This was reflected in association of ‘‘DNA

repair’’ (GO:6281) with genes positively associated with PPARG

expression (p = 43 10�6). Overall, this indicates that, as inMIBC,

the strength of PPARG signaling is directly related to immune

infiltration and suggests a relationship of PPARG signaling to

DNA repair processes.

BCG response
Sixty-three T1 individuals received a full BCG induction course

and maintenance. Thirty-eight (60%) suffered no recurrence,

and 10 progressed. Most progression cases were in T1E3 and

T1E4 (8 of 10), but expression and CN subtype were not related

to recurrence. CIS and progression signatures were related to

progression (p = 0.015 and 0.03, respectively). No relationships

with PPARG signature, ESTIMATE scores, or mutations in DDR

genes were found, but only one of the 10 individuals who pro-

gressed (at 71 months) had ERCC2 mutation compared with

25% each in the recurrence and no recurrence groups. Median

TMB was 10.2 per megabase, 10.2 per megabase, and 5.6 per

megabase in those with no recurrence, recurrence, or progres-

sion, respectively, but did not reach significance. Transcriptome
12 Cell Reports Medicine 2, 100472, December 21, 2021
comparison identified no differential

expression between those with and

without recurrence. However, there was

a relationship of TP53 mutation to post-

BCG recurrence (p = 0.02) that was re-

flected in RFS (p = 0.0074) and PFS (p =

0.0031) (Figures 7A and 7B).

Alignment with UROMOL2021 and
LundTax classifications
Comparison of stage-specific subtypes

with UROMOL2021 and LundTax classifi-

cations (Figures 7C, 7D, and 7F) showed

virtually all Ta samples classified as

Lund ‘‘UroA’’ andmany asUROMOL2021

class 1. Many T1E1 cases were URO-

MOL2021 classes 1, 2b, and 3. All T1E4
and many T1E2 tumors were UROMOL2021 class 2a, compat-

ible with high late-cell-cycle gene expression in these groups

(Figure 5A). UROMOL2021 class 2b aligned with T1E3, reflecting

higher infiltration. There was strong alignment of T1E1, T1E2,

and T1E3 with the Lund Uro subtypes, and only T1E4 samples

were classified as GU (p < 0.0001). GU tumors have low

FGFR3, CCND1, TP63, and KRT5 expression and common

loss of RB1 with commensurate CDKN2A upregulation,21 fea-

tures of T1E4 (Figure 7E). Lund UroB-classified samples were

all T1E3. UroB samples have a lower differentiation signature

and features of squamous differentiation, including expression

of KRT5 and KRT14,58 consistent with the lowest differentiation

signature (Figure 5H), and frequent KRT5 upregulation, and both

samples were classified as Ba/Sq in T1E3 (Figure 7D). Alignment

of CN subtypes was less clear, but UROMOL2021 class 2a

aligned most closely with T1CN3 and T1CN4 (Figure 7F).

DISCUSSION

We show that, when analyzed together, NMIBCs segregate into

CN and expression subtypes that align closely with tumor stage

and outcome. The transcriptional subtypes were similar to those
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of the UROMOL consortium.5 In both studies, T1 tumors were

predominantly in two subgroups where most progression events

occurred, and in each case, the subgroup with the highest im-

mune infiltration had fewer events. Here, these high-risk sub-

types also contained LundTax subtypes GU, Ba/Sq, UroB, and

UroC, all of which show a worse outcome than UroA when as-

sessed in the TCGA MIBC dataset.21

Although diversity allowed robust classification that was prog-

nostic for the entire NMIBC population, this was not useful in

stage T1 subgroup analysis. Importantly, we show that stage-

specific subgroups contain sufficient diversity to allow subclas-

sification and that this provides more granular information

regarding tumor biology and suggestions for therapy. It also

provided prognostic information, although validation in a larger

cohort is needed to determine optimal classification.

Our whole-exome analysis of paired T1 samples is the largest

to date and provides an improved view of these lesions. Previous

studies report that T1 tumors have amutation spectrum interme-

diate between Ta tumors and MIBC. We show that this does not

indicate the presence of T1 samples with an MIBC-like profile

but, rather, that some T1 tumors contain Ta-like and MIBC-like

mutations. It is expected that these have distinct phenotypes

and that single-individual profiles will be needed for optimal

management.

APOBEC enzyme expression and the related mutational pro-

file increased from lowest levels in GS1 Ta tumors to the most

genomically altered T1 tumors. In T1, SBS5, which is associated

with smoking in bladder cancer,33 and ERCC2 mutation35 was

also identified. A relationship of FGA to T1 PFS was strongly

related to TP53 and RB1 mutation, identifying high-risk individ-

uals. In contrast, ERCC2mutant T1CN1 tumors were dominated

by point mutations rather than CN events and had favorable out-

comes. In addition to known associations with DDR gene muta-

tions,12,59,60 ERBB2 and ERBB3mutations were associated with

high TMB and longer PFS and might suggest bladder preserva-

tion in T1 disease.

Two predicted drivers not implicated previously in NMIBC,

GNA13 and KANSL1, should be included in future mutation an-

alyses. Mutations ofKANSL1, which is implicated as a chromatin

modifier,39,40 have been reported in 6% of MIBCs.38 GNA13 is

part of a heterotrimeric G-protein complex through which

ligand-activated GPCRs signal and has several described activ-

ities.61-64 We identified missense mutations in codon R200,

close to the nucleotide binding pocket, two of which (R200G

and R200K) are known to cause hyperactivation.65 Twelve of

13 R200 mutations reported to date are in urothelial tumors

(COSMIC; accessed January 18, 2021), and codon 200 muta-

tions were found in the urothelium of three of 15 normal individ-

uals.66 Thus, GNA13may be a key driver and a therapeutic target

in a subset of T1 tumors.

The Ta and T1 expression subtypes showed overlap with

genomic subtypes. Although the genomic drivers of T1 expres-

sion subtypes are unclear, expression features in Ta are strongly

influenced by TSC1 (9q) loss and upregulation of mTORC1 activ-

ity. In both stages we identified infiltrated subtypes. In Ta but not

T1, immune score per se segregated individuals with differential

outcomes. In T1, T1E3 and T1E4 were more infiltrated than T1E1

and T1E2, but T1E3, the more highly infiltrated of these sub-
types, had improved PFS compared with T1E4. Previously sug-

gested influences on immune infiltration showed no relation-

ships, but our data suggest the importance of DDR gene

mutation and downregulation of DNA repair genes. We also

implicate PPARG signaling in driving immune evasion and,

compatible with reports that PPARG influences DNA repair,67,68

show a relationship of PPARG signaling to DNA repair gene

expression. Mutations in PPARG and RXRA are as frequent in

T1 as in MIBC,56,57 and gain or amplification of PPARG is com-

mon. Modulation of this signaling axis may have therapeutic

value alone or in combination with immune checkpoint inhibition.

Regulon analysis confirmed the distinct biology of the expres-

sion subtypes and uncovered regulators predicted to determine

phenotype. This identified many regulators with still unknown

functions, providing a rich resource for future analyses. Impor-

tantly, association of MYB proto-oncogene-like 1 (MYBL1) regu-

lon activity with adverse stage T1 outcome and its negative

relationship with b-barrel heme protein THAP4 activity, which

may play a role in the antioxidant system,69may identify progres-

sion mechanisms.

Therapeutic opportunities for low-risk Ta tumors are limited to

intravesical approaches, and targeting FGFR3 and themetabolic

vulnerability of GS2 tumors identified here and previously13 are

rational opportunities. For individuals with stage T1 disease, im-

mune checkpoint inhibition may be most relevant in infiltrated T1

cases that have signatures associated with a favorable

response.52,53,70 Because our data suggest that T1 tumors in fe-

males are more infiltrated, retrospective analysis in relation to

gender and response in current trials in high-risk NMIBC will

be of great interest.

ERCC2 and ERBB2 mutations that are related to chemo-

therapy response were associated with high TMB and a good

outcome. It is unclear whether co-occurrence with ERCC2muta-

tion reflects an ERCC2-related mutational mechanism or

whether there is a functional relationship. ERBB2 and ERBB3

could themselves be suitable targets. Notably, bladder cell lines

with two of the mutations found here (ERBB2, S310F; ERBB3,

V104L) are sensitive to afatinib,71 and encouraging results have

been reported for afatinib in MIBC.72 However, systemic therapy

may not be suitable for such cases if association with good

outcome is confirmed.

BCG remains the mainstay of treatment for high-risk NMIBC.

Because 30%–40% of individuals suffer recurrence, and

approximately 10% progress,73,74 predicting response is impor-

tant. Relationships of response to high TMB,60,75 ERCC2 muta-

tion,60 higher PD-L1 expression,76 and UroVysion fluorescence

in situ hybridization (FISH) scores77 have been reported. Here,

most post-BCG progression occurred in T1E3 and T1E4. We

found a higher but not statistically significant TMB and ERCC2

mutation rate in individuals with a good outcome, no relationship

to PD-L1 expression, and no differences in global expression be-

tween responders and non-responders. However, TP53 muta-

tion had a striking relationship with outcome, in accordance

with some but not all previous studies.12,59,60 The reason for

these differences is unclear but indicates the need for more

extensive examination of pre-BCG treatment tumor molecular

status in relation to outcome and a possible need to consider

germline features.
Cell Reports Medicine 2, 100472, December 21, 2021 13
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Our data indicate the feasibility of stage-specific classification.

We have not generated separate classifiers for Ta and T1 tumors

because moderate sample numbers may be suboptimal for gen-

eration of single sample classifiers. Because there is the possibil-

ity that submucosal invasionmight bemissed at the time of diag-

nosis, we envisage that stage Ta and T1 classifiers could be

applied to all NMIBCs, and, ideally, because genomic and

expression features convey prognostic information, these

should be integrated to generate optimum classification.

Limitations of the study
The study is limited by relatively small numbers of samples in

each separate stage group. This has not allowed development

of single-sample classifiers for these groups or validation of sub-

type signatures in other datasets. Expanded cohorts of Ta and

T1 tumors will be required to confirm the findings and to develop

such classifiers. The finding of small numbers of novel mutations

in T1 samples (GNA13 and KANSL1) also requires confirmation

in a larger cohort. As for T1 tumors, high-grade Ta tumors have

a higher risk of progression. Here the majority of Ta samples

analyzed were low grade, and only one individual progressed

to invasive disease. Thus, it was not possible to identify features

associated with high-grade Ta and/or risk of progression.
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(CUETO) (2008). Prognostic factors in patients with non-muscle-invasive

bladder cancer treated with bacillus Calmette-Guérin: multivariate anal-
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Biological samples

Fresh frozen tissue samples Leeds Multidisciplinary

Research Tissue Bank

N/A

Venous blood samples from

bladder cancer patients

Leeds Multidisciplinary

Research Tissue Bank

N/A

Critical Commercial Assays

Affymetrix GeneChip Human

Transcriptome Array 2.0 and

Genechip WT PLUS Reagent Kit

Affymetrix Cat# 902310

GeneChip Hybridization, Wash,

and Stain Kit

Affymetrix Cat# 900720

Gentra Puregene Tissue Kit QIAGEN Cat# 158667

HiSeq 3000 Illumina N/A

NEBNext DNA Library Prep

Master Mix Set for Illumina

New England BioLabs Cat# E6040L

NEBNext Singleplex Oligos

for Illumina

New England BioLabs Cat# E7350L

NEBNext High-Fidelity 2X

PCR Master Mix

New England BioLabs Cat# M0541L

QIAamp DNA Mini Kit QIAGEN Cat# 51306

RNeasy Plus Micro Kit QIAGEN Cat# 74034

SureSelectXT Human All

Exon v6 Kit

Agilent Technologies, Inc Cat# 5190-8864

Deposited Data

Raw and processed

Affymetrix microarray data

This study GSE:163209

Whole exome sequence data This study EGAS00001005765

Targeted sequence data This study EGAS00001005766, EGAS00001005767

Software and algorithms

Affymetrix Expression

Console software

Affymetrix https://www.thermofisher.com/us/en/

home/life-science/microarray-analysis.

html

GenePattern Broad Institute https://cloud.genepattern.org

GSEA Subramanian et al.78 https://www.gsea-msigdb.org/gsea/

Nexus Copy Number Biodiscovery, Inc http://www.biodiscovery.com/

nexus-copy-number

ngCGH Gartner et al.79 https://github.com/seandavi/ngCGH

R version 3.6.1 The R Foundation for

Statistical Computing

https://www.r-project.org/

R studio for Mac R-Studio https://www.rstudio.com/products/

rstudio/download/

R2 Jan Koster, Academic

Medical Center, Netherlands

R2: Genomics Analysis and visualization

Platform; https://hgserver1.amc.nl:443/

dNdScv Martincorena et al., 201737 https://github.com/im3sanger/dndscv

MutationalPatterns Blokzijl et al., 201880 https://bioconductor.org/packages/

release/bioc/html/MutationalPatterns.html
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ESTIMATE Yoshihara et al.30 https://bioinformatics.mdanderson.org/

public-software/estimate/

COSMIC mutational

signatures v3

N/A https://cancer.sanger.ac.uk/signatures/

FASTQC The Babraham

Bioinformatics group

https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Cutadapt Marcel Martin 2011 https://github.com/marcelm/cutadapt/

BWA Li et al.81 https://github.com/lh3/bwa

Picard Broad Institute https://broadinstitute.github.io/picard/

GATK3 Broad Institute https://accounts.google.com/

ServiceLogin?service=cloudconsole&

passive=1209600&osid=1&continue=

https://console.cloud.google.com/storage/

browser/_details/gatk-software/

package-archive/gatk/

GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.

tar.bz2&followup=https://console.cloud.

google.com/storage/browser/_details/

gatk-software/package-archive/gatk/

GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.

tar.bz2

ContEst Broad Institute http://software.broadinstitute.org/cancer/

cga/contest

Conpair Bergmann et al.82 https://github.com/nygenome/Conpair

samtools Li et al., 200983 http://samtools.sourceforge.net/

MuTect2 Benjamin et al.84 https://accounts.google.com/

ServiceLogin?service=cloudconsole&

passive=1209600&osid=1&continue=

https://console.cloud.google.com/storage/

browser/_details/gatk-software/

package-archive/gatk/

GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.

tar.bz2&followup=https://console.cloud.

google.com/storage/browser/_details/

gatk-software/package-archive/gatk/

GenomeAnalysisTK-3.8-1-0-gf15c1c3ef.

tar.bz2

MuSE Fan et al.85 https://bioinformatics.mdanderson.org/

public-software/muse/

VarScan 2 Koboldt et al.86 http://massgenomics.org/varscan

Strelka2 Kim et al.87 https://github.com/Illumina/strelka

EBCall Shiraishi et al.88 https://github.com/friend1ws/EBCall

MeerKat CBMI, Harvard

Medical School

http://compbio.med.harvard.edu/Meerkat/

coxph Therneau (2021). A Package

for Survival Analysis in R.

R package version 3.2-13.

https://cran.r-project.org/web/packages/

survival/index.html

coxphw Dunkler et al.89 N/A

RTN Castro et al.25 http://www.bioconductor.org/packages/

release/bioc/html/RTN.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Margaret

A. Knowles (m.a.knowles@leeds.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and code availability

d Microarray data are available at theGene ExpressionOmnibus under accession numberGSE163209. Raw sequencing data are

available at The European Genome-phenome Archive (EGA) under accession numbers EGAS00001005765,

EGAS00001005766 and EGAS00001005767.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tissue Samples and Subject Follow-up Data
Clinical samples and associated clinical data were sourced from the Leeds Multidisciplinary Research Tissue Bank (REC reference:

20/YH/0103). All patients providedwritten informed consent for the use of their samples formedical research. Cold cup biopsies were

collected, snap-frozen and stored in liquid nitrogen. The remainder of the sample was embedded in paraffin for diagnostic assess-

ment. Samples were graded and staged by a consultant urological pathologist (J-A.R) using the 1973 and 2004 WHO and TNM

criteria, respectively.90,91 To avoid the risk of under-staging of T1 samples, all samples were re-evaluated by a single urological his-

topathologist (J-A.R) and when inadequate tissue was present in the surgical specimen, we only included those that were definitively

re-evaluated as T1 at re-resection or at cystectomy. Available clinical information including gender and age were collected. Median

follow-up time was 55 months (range 3-186 months). This and details of analysis platforms for each sample are given in Table S1A.

METHOD DETAILS

DNA Extraction
Genomic DNAwas isolated from frozen tissue sections comprising at least 70% tumor cells using a QIAampDNAMini Kit or a Gentra

PureGene Tissue Kit. DNA was extracted from venous blood samples using a Nucleon BACC DNA Extraction Kit or by salt

precipitation.

Copy Number Analysis
Low pass whole genome sequencing or array-CGH were used to assess copy number alterations in all tumors. Next-generation

sequencing libraries were constructed using NEBNext� reagents according to the manufacturer’s instructions. Raw sequencing

data was processed as described for whole exome sequencing (below). After BAM file generation, ngCGH was used to compare

number of read counts between tumor and matched blood samples using a window size of 1000 reads.79 GC correction and

copy number calling using the FASST2 Segmentation Algorithm, a Hidden Markov Model (HMM) based approach, were carried

out within the Nexus Copy Number software package. The significance threshold for segmentation was set at 1.0E-5 also requiring

a minimum of 3 probes per segment and a maximum probe spacing of 1000 between adjacent probes before breaking a segment.

The log ratio thresholds for single copy gain and single copy loss were set at either ± 0.15 or ± 0.2, respectively, with the cut-off em-

ployed being determined by examination of individual sample profiles. The log ratio thresholds for two or more copy gain and homo-

zygous loss were set at 1 and �1 respectively. Array-CGH and copy number calling was carried out as described previously.10 To

facilitate the combined analysis of copy number data fromNGS and array-based platforms, after CN calling all analysis was restricted

to those genomic regions associated with BAC clones present on the 1Mb resolution CGH array. To conduct cluster analysis, each

individual region associated with a BAC array clone was assigned a copy number class (0 = no copy number alteration; 1 = gain; 2 =

high-level amplification; �1 = loss; �2 = high-level loss). One-way unsupervised hierarchical cluster analysis was conducted using

Euclidean distance and theWardmethod of linkage. For samples analyzed by CGH, fraction of genome altered (FGA) was defined as

the percentage of clones reporting significantly altered copy number (gain or loss). For sample analyzed by NGS, FGAwas calculated

by dividing the sum of the lengths of all regions exhibiting altered copy number by the total length of the genome (hg38). FGA groups

were defined as A (< 1%), B (1- < 10%), C (10- < 30%) and D (>30%). Copy number data for the 113 Ta samples and 18 of the 104 T1

samples were reported previously.10,13
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RNA Extraction, Gene Expression Profiling and NMF analysis
Total RNA was isolated from frozen tissue sections using a RNeasy Plus Micro Kit and amplified using the Affymetrix GeneChip�WT

PLUSReagent Kit according tomanufacturer’s instructions. The resulting cDNAwas quantified usingOD (NanoDrop). The cDNAwas

normalized and hybridized onto Affymetrix Human Transcriptome 2.0 microarrays for 16 hours at 45�C. Microarrays were washed

and stained using the Affymetrix GeneChip� Hybridization, Wash, and Stain Kit according to manufacturer’s instructions using

the Affymetrix GeneChip� Fluidics Station 450. Microarrays were scanned using an Affymetrix GeneChip� 7G microarray scanner.

Quality control checks were conducted using Affymetrix� Expression Console Software (RRID:SCR_018718). Affymetrix HTA 2.0

CEL files were normalized as rma_sketch using apt-probeset-summarize from the Affymetrix Power Tools and HTA-2_0.r1.gene.cdf.

After normalization, the dataset was loaded into the R2: genomics analysis and visualization platform (http://r2.amc.nl). R2 was used

for routine data visualization, data mining and analysis. For NMF analysis, a text file containing the gene-level normalized natural log

values for all samples was exported from R2. This datafile was converted to .gct format and preprocessed using the PreprocessDa-

taset module in GenePattern (RRID:SCR_003201) with default settings. The preprocessed datafile was then used as input for the

GenePattern NMFConsensus module (v5) with default settings. NMF analysis in Ta samples generated 3 clusters in a single step.

For T1 samples two initial NMF clusters were re-analyzed independently, generating four final subtypes.

Whole Exome Sequencing
Libraries were generated using 3 mg of DNA and enriched for exonic regions using the SureSelect Human All Exon V6 Kit (58 tumor:-

blood pairs) according to the manufacturer’s protocols. Sequencing was performed on an Illumina HiSeq 3000 in paired-end mode

with 150 bp read length and eight samples (four tumor:blood pairs) per lane. Base calling and quality control was performed using

Illumina’s Real Time Analysis software version 1.6 with standard settings. Sequence files were QC checked using FastQC (v0.10.0)

(RRID:SCR_014583) before and after preprocessing. Adaptor contamination and low-quality read ends (< 20) were trimmed using

Cutadapt 1.14 (RRID:SCR_011841). Any read in which either pair had a length less than 19 was removed from subsequent analysis.

Alignment was performed using the BWA.1 bwa-mem algorithm81 (RRID:SCR_010910) to the GRCh38 reference genome. To

avoid tumor-normal bias, we merged the tumor and its paired normal alignment bam files and performed pre-genotyping processes

together. Because we would apply multiple somatic mutation calling tools in addition to MuTect2, we performed local realignment

around indels first despite this being an omittable step for MuTect2 pipeline. This step was conducted using the GATK v3.8 Realign-

erTargetCreator and IndelRealigner (RRID:SCR_001876) in Smith-Waterman mode with reference to 1000 Genomes phase 3 indel

sites, and Mills and 1000G gold standard sites.92 Next, we followed the best practice of somatic mutation calling recommended by

GATK3 for pre-processing, which includes duplicate reads marking (Picard) and base quality recalibration (GATK3). The tumor-

normal pair was then separated and ready for somatic mutation calling. Quality metrics including target coverage [Picard

(RRID:SCR_006525) and Samtools83 (RRID:SCR_002105)] and contamination [Contest (RRID:SCR_000595) and Conpair2]82 were

evaluated prior to genotyping. In particular for MuTect2 mutation calling, we created the panel-of-normal (PON) based on all the

in-house exome sequencing data processed under the same protocol and lab facility (N = 68).

We aimed to develop a tailored somatic mutation calling protocol for our sequencing data. From several tools previously re-

viewed,82 we evaluated and selected 5 somatic mutation calling tools: MuTect2 (RRID:SCR_000559), MuSE, EBCall

(RRID:SCR_006791), VarScan2 (RRID:SCR_006849), and Strelka2 (RRID:SCR_005109),84–88based on their performance on in-

house exome sequencing data benchmarked by different amounts of input DNA (200 ng to 3 mg). We selected mutations called

by at least two callers for the downstream analysis. Following this the number of mutations per sample was approximately equal

to the median number of mutations generated by the 5 callers. For all callers, post-calling filtration was applied and only variants

that passed the build-in filtration by each software were kept. Variant annotation was performed based on Ensembl VEP GRCh38

release 90. Data for 17 Ta samples reported previously13 was re-analyzed using Mutect2. SNV counts were based on Mutect2 calls

only.

Targeted Sequencing
Targeted sequencing data from an in-house design for 40 genes was taken from a previous study13 for 18 Ta samples (Table S1A). All

other targeted sequencing used a new design for 140 genes. Agilent’s SureDesign tool was used to design a 1.133 Mb SureSelect

custom capture for all coding exons of the 140 selected candidate genes (Table S2). The design included a 10 base pair extension to

the 3¢ and 5¢ ends of each region. Libraries were generated using 1.2 mg of DNA and enriched for targeted exonic regions according

to the manufacturer’s protocols for 112 tumor:blood pairs. Forty eight samples (24 tumor:blood pairs) were run in a single lane on an

Illumina HiSeq 3000 in paired-end mode with 150 bp read length. Raw data handling up to FASTQ file generation was as described

above.

Tumor mutational burden
Tumor mutational burden (TMB) was calculated as the number of somatic non-synonymous mutations per Mb of targeted DNA.

Mutation Significance Analysis
Putative driver genes were identified from whole exome sequence data from T1 samples using dNdScv37 (RRID:SCR_017093). The

dNdScv R package is a suite of maximum-likelihood dN/dSmethods designed to quantify selection in cancer and somatic evolution.
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The package contains functions to quantify dN/dS ratios formissense, nonsense and essential splice sitemutations. The background

mutation rate of each gene was estimated by combining local information (synonymousmutations in the gene) and global information

(variation of the mutation rate across genes, exploiting epigenomic covariates), and controlling for the sequence composition of the

gene and mutational signatures. dNdScv uses trinucleotide context-dependent substitution matrices to avoid common mutation

biases affecting dN/dS. A pre-computed database for GRCh38 was downloaded for this analysis (https://github.com/im3sanger/

dndscv_data/tree/master/data).

Analysis of Mutational Signatures
We used non-negative matrix factorization in the package MutationalPatterns80 to derive signatures and to compare to COSMIC

Mutational Signatures (https://cancer.sanger.ac.uk/signatures/) (RRID:SCR_002260) in both whole exome and target capture

sequence data.

Gene expression signatures
We used gene lists associated with cell cycle, urothelial differentiation and its regulation (KLF5, PPARG, RXRA, ELF3, FOXA1,

GATA3, TP63, GRHL2, GRHL3), FGFR3-related gene expression and DNA repair genes9,18,54,51, and expression signatures

described for PPARG signaling,54 bladder CIS,17 progression of NMIBC,7,20 immune infiltration19,31,32 and response to immune

checkpoint inhibition.52,53 Signature zscores for these genesets were derived for each sample, weighted where up- and

downregulated genes were included. For estimation of immune infiltration we also used ESTIMATE.30 Two epithelial signatures

were a compiled list of cytokeratin genes (KRT8, KRT18, KRT19, KRT17, KRT5, KRT6, KRT13, KRT7, KRT20), EPCAM and

CDH1, and a list of low-variance epithelial-expressed genes correlated with E-cadherin and EPCAM in urothelial tumor datasets

(SPINT2, TACSTD2, EPCAM, KRT19, RAB25, GPR56, SDC1, SPINT1, CDH1, DDR1, CDS1, RAB5B, LAD1, PRPRF).

Classification of samples using UROMOL2021 and LundTax classifiers
Samples were classified according to the UROMOL2021 classes.5 A Pearson correlation was computed between each sample’s

gene expression profile and each of the four centroids (the mean gene expression profile for each class) corresponding to the

four NMIBC classes. Samples were then assigned to the class with the highest sample-centroid correlation. The UROMOL2021

NMIBC classifier is available as a web application at http://www.nmibc-class.dk.

The R package multiclassPairs93 was used to generate a single sample version of the Lund classification system (LundTax).21 Tu-

mors were classified according to LundTax into Urothelial-like (Uro), Genomically Unstable (GU), Basal/Squamous-like (Ba/Sq),

Mesenchymal-like (Mes-like), and small cell/neuroendocrine like (Sc/Ne-like) using gene expression data. Uro samples were classi-

fied to Uro subclasses, UroA, UroB, and UroC.

Regulon analysis
To identify regulators of molecular subtypes identified, we analyzed regulatory networks (regulons) for a comprehensive set of 1547

transcription factors94 using RTN.25-27 Gene level normalization (using SST-RMA) and signal summarization was conducted using

Affymetrix� Expression Console Software. We inferred the regulons using the R package RTN (version 2.13.2), which is described

elsewhere.25,95 Briefly, gene expressionmatrices for a set of samples were used to estimate the associations between a transcription

factor and all of its potential targets. We used Mutual Information (MI) to identify potential regulator-target associations, and Spear-

man’s correlation to assign the direction of an inferred association. Associations with MI below aminimum threshold were eliminated

by permutation analysis (BH-adjusted p value < 1x10�5), and unstable interactions were removed by bootstrapping, to create a reg-

ulatory network. Regulons were additionally processed by the ARACNe algorithm to enrich the regulons with direct TF-target inter-

actions.96 We estimated regulon activity by a two-tailed gene set enrichment analysis (GSEA-2T), which is described elsewhere.25,27

The GSEA-2T was performed in R97 using the RTN package.25 We fitted a Cox proportional hazards regression to further assess reg-

ulon activity and survival, using the RTNsurvival package.27 For the Kaplan-Meier curve, we stratified the cohort into 2 groups – pos-

itive and negative dES – and evaluated differences between the groups for 200-month PFS and RFS, using a Log-rank test. This

package reports BH-adjusted P values98.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of transcriptome data was done in R2. The statistical test LIMMA with FDR 0.01 was applied to identify genes

differentially expressed between copy number and expression subtypes. FDR adjusted p values (q values) are given in Tables S3

and S8. Other statistical tests Fisher’s exact, chi square, Mann-Whitney, Kruskal-Wallis tests and correlation analyses, survival curve

generation using the Kaplan-Meier method and curve comparison using the Log-rank (Mantel-Cox) test were carried out using

GraphPad Prism 8.2 for Mac. Comparison between groups used the Mann-Whitney or Kruskal-Wallis tests for continuous variables

and Fisher’s exact test andChi square test for categorical variables. A post hocDunn’s test was used formultiple comparison correc-

tion following Kruskal-Wallis analyses. Bonferroni adjustment of chi square p values was used. A significance level of 0.05 was used

in all tests.
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We used the ‘cox.zph’ R function (Therneau, 2021; R package version 3.2-13, 2021; https://cran.r-project.org/web/packages/

survival/index.html) to assess the proportional hazards assumption of a Cox Regression analysis, assessing the association between

the ‘group’ covariate and the outcomes RFS and PFS, and displayed the Schoenfeld residuals. The Schoenfeld plot gives an estimate

of the time-dependent coefficient beta. If the proportional hazards assumption holds then the beta function is a horizontal line.99 Sys-

tematic departures from the horizontal line indicate non-proportional hazards. This was not observed in the RFS and PFS Schoenfeld

plots and the ‘cox.zph’ test was not statistically significant. However, we saw that survival curves crossed over for both RFS and PFS

data at early time points, which suggested the presence of non-proportional hazards. As the testing power for the corresponding

regression parameter can be reduced in the presence of non-proportional hazards,89 we carried out Cox regression analysis to es-

timate long-term survival rate under both proportional and non-proportional hazards assumptions. The Cox regression model under

proportional hazards assumption was carried out using the ‘coxph’ function from the survivalR package (Therneau, 2021; R package

version 3.2-13, 2021. https://cran.r-project.org/web/packages/survival/index.html) and under non-proportional assumption was

carried out using the ‘coxphw’ function from the coxphw R Package.89,100

Gene Ontology, KEGG Pathway and Gene Set Enrichment Analysis
Significantly upregulated genes (LIMMA test, false discovery rate p value = 0.01) in each subtype comparison was used as input for

Gene Ontology (GO) biological process analysis in R2. A cut off of nominal p value < 0.05 was implemented. Gene Set Enrichment

Analysis v3.078 (RRID:SCR_003199) was carried out using all genes; genomic and expression subtypes were assigned as pheno-

types and permuted 1000 times, the test dataset was collapsed to gene symbols and run against gene sets in the Hallmarks database

(v7.1).
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