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ABSTRACT

Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms
and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis,
but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activa-
tion, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional
response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that
physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the
mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA
methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options
going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how
biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require
urgent attention if this therapeutic potential is to be realized.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087699

I. INTRODUCTION

Despite the significant progress made in medicine, we still struggle
today with treating many long term, progressive diseases that are typi-
cally accompanied by chronic inflammatory processes. As the clinical
focus historically has been on organ-specific diseases, medicine was com-
partmentalized along organ-specific divisions, which presents challenges
to recognizing generic pathogenic mechanisms. Even though organ-
specific cell niches have distinct biochemical and biophysical characteris-
tics, inflammatory processes are at the core of many chronic diseases and
common pathomechanisms are now emerging. The importance of
understanding the role of biomechanical signals in the inflammatory sta-
tus of cells, including macrophages and fibroblasts, is exemplified by the
impact of inflammation in human ageing and age-related disease.
Advancing age is accompanied by an increase in systemic inflammation,

termed inflammageing,1 which predisposes to several age-related diseases
with an inflammatory component, including cardiovascular disease,
non-healing post injury, Alzheimer’s disease, and cancer.2

The term “inflammation” refers to a cascade of events that often
starts with an infectious challenge or a sterile injury that activates
immune cells, notably macrophages, to produce a range of soluble
mediators (cytokines) that mediate the immune system response.
Eventually, this inflammatory response is actively terminated to ensure
homeostasis and the healing of tissue, i.e., “resolution of inflamma-
tion.”3 Lipopolysaccharides (LPS) are frequently used as immune cell
activators for in vitro cell culture experiments, as they mimic the inter-
action of immune cells, including macrophages, with the cell wall of
gram-negative bacteria. Macrophages, the major cellular drivers of the
inflammatory process, originate from two distinct lineages:4,5 tissue
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resident macrophages are seeded into organ tissues during early
embryonic development and self-maintain locally throughout adult
life with minimal contribution from circulating monocytes, whereas
blood monocyte-derived macrophages home to sites of injury or infec-
tion to respond to the challenge. These are short-lived cells and origi-
nate from adult hematopoietic stem cells. Macrophages play pivotal
roles in the maintenance of tissue homeostasis achieved through their
differentiation into two broad phenotypes, M1 pro-inflammatory
macrophages and M2 macrophages, which have a more anti-
inflammatory function. While there is a broad spectrum of intermedi-
ate states between M1 and M2,6,7 the graded balance of these main
phenotypes influences the chronicity and outcomes of the inflamma-
tory response.7 For example, if macrophages persist in a pro-
inflammatory M1 phenotype, they can contribute to chronic inflam-
mation and fibrosis;8,9 in contrast through their functions in the clear-
ance of apoptotic cells and cellular debris and secretion of anti-
inflammatory cytokines, the M2macrophages contribute to the resolu-
tion of inflammation to reestablish tissue homeostasis.10 In addition to
macrophages that display the M1 or M2 phenotype, also a variety of
organ-specific subsets exists.11

While niche-specific transcriptomic and epigenetic profiles as
well as secretome are well documented for multiple tissues and various
physiological contexts, cell phenotypes are also determined by a range
of biophysical factors and stimuli.12–20 Micro- and nanofabricated
materials and devices have allowed researchers to probe how cell
behavior and function depend on the physical properties of their
microenvironment, including flow, stiffness of the microenvironment,
extracellular matrix (ECM) tethering to the substrate, the ECM visco-
elastic properties, topography, and spatial confinement as well as ten-
sile or compressive forces12–46 [Fig. 1(a)]. The role of the tissue
microenvironment is well recognized in mechanobiology and is partic-
ularly well studied for mesenchymal cells, as physical cell-cell commu-
nication and between cells and their extracellular niche environments
are also crucial to direct cell fate.15,20–28,30,32,34,36,39–42,47–51 Cells sense
mechanical properties of their environment by pulling on it or pushing
against it. Much progress has been made in the molecular understand-
ing of how mechanical stimuli are sensed and transduced by mesen-
chymal cells into biochemical signals (mechanotransduction), which
then regulates gene transcription processes and subsequently cell
phenotype.30,32,34,36,39–42

FIG. 1. Multifactorial tissue specific physical properties and selected bioengineering tools to elicit their respective roles on regulating cell signaling and function. (a) The stiff-
ness is different for different organs. Organ cartoons reproduced with permission from Jain et al., Annu. Rev. Biomed. Eng. 21, 267–297 (2019). Copyright 2019 Annual
Reviews, Inc. (b) Microfabricated cell niches to probe cell behavior under controlled conditions to recreate selected physical properties of cell-niches. Cartoons adapted and
modified from Refs. 12, 33, 46, and 74. Reproduced with permission from N. Jain and V. Vogel, Nat. Mater. 17, 1134–1144 (2018). Copyright 2018 Springer Nature Limited.
Reproduced with permission from Elacqua et al., PLoS One 13, e0195664 (2018). Copyright 2018 Authors, licensed under a Creative Commons Attribution (CC BY) license.
Reproduced with permission from N. J. Walters and E. Gentleman, Acta Biomater. 11, 3–16 (2015). Copyright 2015 Authors, licensed under a Creative Commons Attribution
(CC BY) license.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 6, 031502 (2022); doi: 10.1063/5.0087699 6, 031502-2

VC Author(s) 2022

https://scitation.org/journal/apb


In contrast, current research in immune cell biology is still domi-
nated by a cell centric view, rather than taking a more holistic view
that considers how cells react to both biochemical and biophysical
microenvironmental factors. With respect to immune cells, T cell acti-
vation is affected by substrate stiffness37,43 and nanoporous sub-
strates,29 and macrophage phenotype is greatly impacted by a
multitude of different physical factors14,33 (as discussed in detail below
in Secs. II–V). Far less is known about the mechanobiology of other
immune cells, including B cells38,52 and dendritic cells.31,35 What has
been revealed is that various mechanotransduction-induced signaling
pathways trigger the translocation of transcription factors from the
cytoplasm to the nucleus,53–56 including myocardin related transcrip-
tion factor-A (MRTF-A), which is released from actin upon stress fiber
assembly and yes-associated protein (YAP)/TAZ whose dephosphory-
lation is induced in response to the opening of mechanosensitive ion
channels, including piezo channels.57–63 Beyond regulating the tran-
scription of genes, nuclear translocation of transcription factors also
triggers various epigenetic modifications as reviewed further below.

Despite this rapid emergence of mechanobiology and the study
of underpinning mechanisms, knowledge gaps exist as to how these
mechanisms relate to chronic inflammatory diseases and, in particular,
the relevance to inflammatory macrophages. How to intervene to rees-
tablish homeostasis after infection, injury or pathological tissue trans-
formation is still one of the biggest challenges of regenerative
medicine. As the field of immunology has only recently started to
appreciate the impact of physical factors on macrophage phenotype
regulation, a review of the literature is provided here to summarize
what is known of how biophysical factors can regulate inflammatory
gene expression and macrophage polarization in the context of inflam-
mation and disease, and what research questions require urgent atten-
tion. Current evidence highlights already how the changing landscape
of biomechanical signals during inflammation directs several inflamma-
tory biochemical intermediates in response to pro-inflammatory activa-
tion, which then converge onto transcriptional and epigenetic
modifications (histone modifications and DNA methylation) and
changes in the chromosome landscape as reviewed here. As such these
changes could be either modulated by altering the biophysical properties
of the microenvironment or be targeted by specific drugs modulating
mechanosensitive signals. Since these nuclear events and epigenetic
modifications have previously been shown in other cell types to be
dependent on the nucleoskeleton or nuclear meshwork, the data taken
together also suggest the existence of an unknown and yet to be
explored role of the nuclear meshwork in driving inflammatory activa-
tion of macrophages, which requires urgent attention. Even though
recent reviews have individually provided a glimpse onto these regula-
tory events,14,33,64 a comprehensive review is missing in the field.

II. BIOCHEMICAL AND BIOPHYSICAL
CHARACTERISTICS GIVE CELL NICHES THEIR
ORGAN-SPECIFIC IDENTITY

Organ-specific cell niches are complex and comprise many cell
types, all in close proximity to each other. Each organ is characterized
by organ-specific cell types that are supported and surrounded by stro-
mal cells common to most organs, including fibroblasts as well as
immune cells that have sentinel functions in sensing injury and infec-
tion. This latter group includes primarily tissue resident macrophages
and macrophages derived from activated, homed-in circulating

macrophages. Other common cellular tissue residents can include adi-
pocytes as active endocrine producers, as well as perivascular mesen-
chymal stem and endothelial cells. These cell societies communicate
with each other biochemically and physically. They respond to global
metabolite composition65 as well as to localized autocrine and para-
crine signaling to which all cell types contribute. Most importantly in
the context of this review, macrophages can sense physical cues in
their environment, including soft or more rigid substrates66–70 or
microstructured environments,12,13,71,72 or cyclic strain,73 and respond
in a mechanosensitive manner [Fig. 1(b)].

Cell niches are not only characterized by the resident cells but
also have characteristic ECM compositions, assembled into complex
meshworks of nanofibrils that are undergoing constant remodeling by
the synergistic actions of various cell types. Some of these cells synthe-
size the ECM or its components, while they themselves or others con-
tribute by secreting cross-linking and proteolytic enzymes.75,76

Although most of the complex organ-specific niches serve highly spe-
cialized functions, inflammatory processes or pathologies of different
organ types are likely based on common principles and shared mecha-
nisms. As the complex secretome of macrophages is shifting in
response to external stimuli, the intercellular niche communication is
tuned bidirectionally. The secretome of macrophages exposed to cal-
cium oxalate crystals, for example, is shifted toward proteins involved
mainly in “inflammatory response” and “fibroblast activation” and
activates the expression of alpha Smooth Muscle Actin (a-SMA) in
renal fibroblasts.77 Vice versa, the secretome of preconditioned mesen-
chymal stem cells drives polarization and reprogramming of M2a mac-
rophages toward an interleukin (IL)-10-producing phenotype, thus
improving their regenerative and immunomodulatory capacities78 and
in cancer. The tumor microenvironment is rich in crosslinked colla-
gen79 and other ECM components, creating niches for tumor-
promoting macrophages.80,81 This bidirectional communication can
also explain pharmacological side effects or be exploited therapeuti-
cally. Na€ıve, M1, and M2 macrophages are affected by the antipsy-
chotic drug Olanzapine, known to cause metabolic side effects by
promoting obesity and diabetes, as the macrophage-derived secretome
is sufficient to confer olanzapine-mediated insulin resistance in human
adipocytes.82 Macrophages thereby play key roles in shaping healthy
cell niches, as well as the tumor microenvironment, tumor immunity,
and the response to immunotherapy.4,83 Fibrotic pathologies84,85 and
ageing86,87 are also associated with major changes in the ECM compo-
sition and crosslinking, which alters the physical properties of the cell
niches, to which the cells respond in a negative feedback loop. This ulti-
mately leads to a loss of organ function. Indeed, the “big five” contribu-
tors to fibrotic pathologies of a range of organs have been proposed to
include: macrophages, myofibroblasts, matrix, mechanics, and mis-
communication.88 Yet, how the synergy of physical and biochemical
stimuli together orchestrate cell niche functions is not fully understood.
This is particularly striking when we consider that the failure of proin-
flammatory macrophages to revert to anti-inflammatory macrophages
is associated with the onset of fibrotic diseases.88,89

III. CELL MORPHOLOGY AS A PHYSICAL PHENOTYPE
STABILIZER OR MARKER OF MACROPHAGE
ACTIVATION

More than a century ago, it was first reported that brain-resident
macrophages, i.e., microglia, have a characteristic morphology defined
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by a small cell body with fine ramified processes [Fig. 2(a), left].90 The
first hand-drawn images of resting and activated microglia were
sketched by Merzbacher in 1909, which interestingly suggested signifi-
cant changes in microglia morphology upon inflammatory activa-
tion.90 The LPS-activated microglia were found to be rounder and
flatter with a pancake-like morphology [Fig. 2(a), right].90 These
hand-drawn sketches also suggested an increased spreading area upon
pro-inflammatory activation with LPS. In the absence of bioengineer-
ing tools and techniques at that time it was not possible to deduce any
potential regulatory and functional link between changes in microglia
morphology and their inflammatory state. It took the scientific com-
munity more than a century to finally establish these links.

As for tissue resident macrophages, also the pro-inflammatory
activation of bone marrow derived macrophages (BMDMs) with LPS
leads to major morphological changes: with a delay of a few hours, the
cell spreading area increases significantly and the macrophages transi-
tion from an elongated to a more rounded cell shape [Fig. 2(b)],12

which is concomitant with enhanced actin polymerization [Fig. 2(c)].
Interestingly, removal of LPS restores the resting morphology,
although over a longer timescale, further confirming a functional link
between macrophage morphology and pro-inflammatory pheno-
type.12 In contrast, pro-healing, anti-inflammatory differentiation of

macrophages to an M2 phenotype, using interleukin (IL)-4/IL-13,
results in elongated morphologies13 [Fig. 2(b)]. Elongation factor,
defined as the length of the longest axis divided by the length of the
shortest axis across the cell nucleus, increases more than threefold in
M2 macrophages.

IV. PROINFLAMMATORY AND PRO-HEALING
MACROPHAGES RESPOND DIFFERENTLY TO SPATIAL
MICRO- AND NANOSCALE FEATURES

With the advent of bioengineering tools and techniques, we can
now address in detail the key question: Does macrophage activation
first lead to a change of gene expression profile which is then followed
by a change in cell morphology, or vice versa? Recent data show that
certain cell morphologies, as imposed by spatial constraints, can help
in stabilizing macrophage phenotype. To ask whether staging a fully
fledged inflammatory response requires actin polymerization, bioengi-
neered tools were used to spatially confine macrophages on micropat-
terned adhesive islands of defined sizes and shapes. For example, the
production of inflammatory cytokines including IL-6 and tumor
necrosis factor-alpha (TNF-a) was greatly reduced when the spreading
of BMDMs was restricted by culturing them on adhesive islands of
appropriate size, in hemispherical pores, or in a close-packed cell

FIG. 2. Macrophage activation leads to changes in cellular morphology, actin polymerization, and nuclear translocation of transcription factors: (a) early hand-drawn sketches
of unactivated microglia (left) and activated microglia (right) show characteristic ramified and flat morphology, respectively (permissions are not needed).90 (b) Representative
images of (i) control (M0), (ii) LPS-treated (M1), and (iii) IL-4/IL-13-treated (M2) bone marrow derived macrophages (BMDMs) stained for F-actin (green).12 (c) Cell spreading
area vs total F-actin content in LPS-treated BMDMs.12 (d) Time course changes in cell spreading areas, nuclear levels of MRTF-A and F/G-actin ratios in LPS-treated BMDMs
for different periods of time.12 Data adapted and modified from Ref. 12. Reproduced with permission from N. Jain and V. Vogel, Nat. Mater. 17, 1134–1144 (2018). Copyright
2018 Springer Nature Limited.
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layer.12 This shows nicely that imposing spatial confinement can
indeed modulate the pro-inflammatory response of macrophages.
Importantly, using fibronectin coated stripes or nanofibers that can
cause cell elongation, it has been shown that BMDMs can be polarized
toward the M2 phenotype without any additional stimulation with IL-
4/IL-13.13,82,83 Furthermore, by confining macrophages in 2D and 3D
substrates, our lab has shown that the expression of pro-inflammatory
secondary response genes (IL-6, iNOS, CXCL9), necessary for prolong-
ing the process of inflammation, is dependent on macrophage spread-
ing.12 Moreover, these spatial constraints can dampen or synergize
with chemical stimulants to decrease or increase the inflammatory
phenotype of macrophages. These data suggest that morphological
cues may be used to complement or dampen the effects of cytokines
or other pro-inflammatory factors already present in the cell
microenvironment.

These findings are significant, as tissue resident macrophages are
found in a range of tissue-specific sizes and shapes, surrounded by
niches with tissue-specific characteristics including stiffness, ECM
composition, fiber density, and fiber tension.91 While M1 macro-
phages greatly increase in circularity and cell area upon activation
in vitro,12 M2 macrophages elongate with little change in the cell
spreading area.12,13 Such changes may have relevance to disease patho-
genesis, for example, macrophage elongation is also seen in certain dis-
ease states such as atherosclerosis.92,93 In addition to topographical
cues, physiological levels of interstitial flow are also able to stabilize the
M2-like phenotype.94 Also substrate stiffness tunes M2 activation,
whereby cells on softer substrates show enhanced M2-like phenotypes
as regulated by RhoGTPase signaling.68 While many other effects have
described how physical factors impact macrophage behavior and phe-
notype,14,33,95,96 our emphasis here is to ask how selected physical fac-
tors impact the cytokine gene transcription machinery of
macrophages. For example, what is the impact of environmentally
imposed elongation on the M1 phenotype? One report suggested that
enforcing cell elongation has only a limited effect on the M1
response,12 whereas another report suggests that elongation protects
macrophages from M1 polarization by inflammatory stimuli.13 These
differential findings clearly suggest the need for further research.

V. MACROPHAGE MORPHOLOGICAL CHANGES ARE
DRIVEN BY THE REMODELING OF THE ACTIN
CYTOSKELETON

Changes in cellular morphology are coupled with a reorganiza-
tion of the cytoskeleton. As the first fragile contacts, i.e., focal adhe-
sions, become mechanically reinforced, assembly of a mature
cytoskeleton progresses rapidly, guided by the spatial locations of the
point of contact to the extracellular matrix. Major insights into these
processes were gained via research on mesenchymal cells through the
micro- and nanofabrication of adhesive contacts. These studies illus-
trated how the cytoskeletal filaments are bundled along with the pri-
mary directions of force transmission through the cell, as imposed by
the spatial presentation of environmental anchor points.42,97–99

Microcontact printing of adhesive islands revealed that changes in
fibroblast cell morphology are associated with the reorganization of
the cytoskeletal architecture.100,101 For example, a triangular fibroblast
shows triangular pockets of polymerized F-actin around the nucleus
whereas a circular cell shows circular rings of F-actin around the
nucleus.100 However, establishing such connections in macrophages is

more difficult as macrophages do not have actomyosin fibers. The
majority of studies have largely focused on quantifying the levels of F-
actin and myosin-II contractility during macrophage activation [Fig.
2(c)]. An increase in the cell spreading area during pro-inflammatory
activation of macrophages is coupled with a significant increase in
actin polymerization and formation of actin microfilaments (F-actin)
within 3–6 h post-LPS treatment [Fig. 2(c)].12 Monomeric actin (G-
actin) constitutes about 60% of cellular actin prior to LPS stimulation,
which increases the F/G actin ratio and, thus, shifts the balance toward
actin polymerization [Fig. 2(c)].12 These increased polymerized actin
levels go along with increases of the cell size; thus, spatial confinement
of macrophages restricts their spreading and reduces actin
polymerization.12

Initiating actin polymerization involves the phosphorylation of
paxillin on tyrosine 118 and Neural Wiskott-Aldrich syndrome pro-
tein (N-WASP) on serine 484/485, two actin-regulatory proteins
important for actin polymerization and reorganization.102

Importantly, an increase in actin-polymerization is necessary to elicit
the pro-inflammatory response of macrophages. The depolymeriza-
tion of actin, using pharmacological inhibitors like latrunculin-A,
results in a significant decrease in the expression of pro-inflammatory
genes and cytokines and is also coupled with a significant decrease in
the cell spreading area.12 Similar experiments using cytochalasin-D
and other drugs targeting actin polymerization and pathways have
established that the actin cytoskeleton is a key mediator in the process
of macrophage proinflammatory activation.103–105 Given the mecha-
nosensitive nature of actin and the importance of actin polymerization
in regulating the staged response of macrophages, it should be noted
that the levels of p-myosin light chain upon LPS stimulation, i.e., a
measure of cell contractility, remained unchanged during macrophage
pro-inflammatory activation.12 Even though the total cellular contrac-
tility was found to be similar, traction force microscopy (TFM) sug-
gested higher traction forces in M1 macrophages upon LPS/interferon
(IFN) c stimulation, as compared to M0 mouse BMDMs.106 It should
be noted that in human BMDMs, an opposite effect was found using
TFM, i.e., that M1 macrophages generate significantly less force than
M0 or M2 macrophages,107 suggesting that a careful and detailed anal-
ysis of macrophage contractility as a function of stimulants and sub-
strate properties needs to be performed. Also, the details of how
mechanical forces and spatial cues reinforce and reorganize the cyto-
skeleton in macrophages have still not been fully characterized.

VI. THE RELEASE OF ASSOCIATED TRANSCRIPTION
FACTORS DUE TO ACTIN POLYMERIZATION
UPREGULATES THE PRO-INFLAMMATORY RESPONSE

Actin polymerization has been shown to drive macrophage pro-
inflammatory activation by regulating the nuclear-to-cytoplasmic
shuttling of critical transcription factors.12,108 The transcription factor
MRTF-A binds to G-actin in the cytoplasm, and the onset of actin
polymerization leads to its release and results in its nuclear transloca-
tion. Upon complexation with the serum response factor (SRF), the
complex drives the expression of various genes,109 yet the role of the
MRTF-A-SRF complex has only recently been probed during macro-
phage activation12,110 (Fig. 3). Using MRTF-A knockout (KO) or SRF-
KO BMDMs revealed that the MRTF-A-SRF complex positively drives
the expression of critical pro-inflammatory genes like IL-6 and Nos2
(Ref. 12) (Fig. 3). Mechanistically, the regulation is mediated via
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recruitment of the nuclear factor jB (NF-jB), another critical tran-
scription factor110 in the promoter region of pro-inflammatory genes,
which requires MRTF-A. Another, central mechano-sensitive tran-
scription factor complex, yes-associated protein (YAP), has recently
been shown to promote the pro-inflammatory response by increasing
IL6 expression (Fig. 3), while concomitantly decreasing pro-healing,
anti-inflammatory responses by decreasing arginase-I expression.108

LPS activation of macrophages leads to a higher accumulation of YAP
in the nucleus, which depends on actin polymerization, and depolymeri-
zation of actin inhibits nuclear translocation of YAP, thereby reducing
the secretion of pro-inflammatory cytokines like TNF-a108 (Fig. 3).
Again, this influence was independent of myosin-II phosphorylation.
Vice versa, genetic deletion of YAP/TAZ leads to impaired pro-
inflammatory activation of macrophages. It is also important to note
that unlike in fibroblasts, nuclear translocation of NF-jB is not sensitive
to changes in macrophage spreading, suggesting cell-specific mechano-
sensitivity of certain classes of transcription factors.12,100

While the activity of most of these transcription factors dur-
ing pro-inflammatory activation was characterized downstream of
toll-like receptor 4 (TLR4) signaling, the major receptor that medi-
ates LPS signaling,111 there is growing evidence that other surface
molecules,112 mainly integrins113 and ion-channels like piezo-1,114

co-regulate the activity of these mechanosensitive transcription
factors like MRTF-A and YAP (Fig. 3). As the piezo channel open-
ing is regulated by membrane tension, which will change as cells
bind and pull on their environment. It is expected that blocking
integrin signaling decreases LPS induced production of TNF-a as
well.113 Piezo1 activity promotes Interferon-c and LPS-induced
inflammatory and suppresses IL-4 and IL-13-induced healing
responses,114 illustrating membrane-mediated crosstalk between
these different membrane receptors, i.e., TLR4, integrins, and ion-
channels.113,115 How the crosstalk between these receptors and
transcription factors are regulated by the physical properties of
macrophage niches in different tissue environments is unclear
(Fig. 3), and understanding this will help in probing whether the
physical properties of these niches tune macrophage differentia-
tion and stabilize tissue-resident macrophage phenotypes.

Contrary to pro-inflammatory macrophage activation, the orga-
nization and levels of actin polymerization during pro-healing M2
macrophage activation are still not well characterized. Even though
certain reports suggest that inhibiting actin polymerization and myo-
sin contractility significantly reduce M2 activation, without altering
their cell elongation,13 the specific role of the cytoskeleton during M2
activation needs further clarification.

FIG. 3. Mechano-regulation of the pro-inflammatory transcription in macrophages: Chemical and metabolic signaling pathways implicated in M1 macrophage polarization. An
initial stimulus leads to the activation and nuclear translocation of sequence-specific transcription factors that eventually mediate changes in the transcriptional output. Note
that conventional signaling diagrams do not consider the possibility that some of the signaling processes are mechanoregulated. Various signaling steps were recently
described to be regulated by cellular sensing of physical factors which we marked here in red. This includes recently uncovered mechanosensitive transcription factors like
MRTF-A and YAP, and how they are under the regulation of integrins and piezo channels. Abbreviations—CSF: colony-stimulating factor; GM-CSF: granulocyte macrophage
colony-stimulating factor; IFN: interferon; IL: interleukin; IRF: interferon-regulatory factor; JAK: Janus kinase; MSK: mitogen- and stress-activated kinase; NF-jB: nuclear factor
jB; Nos2: nitric oxide synthase 2; STAT: signal transducer and activator of transcription; TLR4: toll-like receptor 4; MRTF-A: myocardin related transcription factor-A; YAP: yes-
associated protein 1. Cartoon adapted and modified from.111 Permission obtained from T. Lawrence and G. Natoli, Nat. Rev. Immunol. 11, 750–761 (2011). Copyright 2011
Springer Nature Limited.
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VII. MACROPHAGE POLARIZATION RESHAPES THE
NUCLEAR ARCHITECTURE, NUCLEUS-CYTOSKELETON
CONNECTIONS, INTERNUCLEAR GENOMIC SPACE,
AND EPIGENETIC REGULATION

As cytoskeletal components mechanically couple the cell adhe-
sions of the plasma membrane to the cell nucleus, the nucleus can get
mechanically strained leading or at least contributing to its

remodeling. In fibroblast and epithelial cells, highly tensed actin stress
fibers, called the actin-cap,116–118 span the cell nucleus and compress
it,99,117 which has a profound impact on the architecture of the nuclear
lamina119 and the nucleus117 [Fig. 4(a)]. This is largely mediated via
force transmission from extracellular anchor points via the cytoskeletal
filaments, including intermediate filaments, to the nucleus, where
Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes couple

FIG. 4. Physical coupling of the actin cap and the cytoskeleton to the nuclear lamina via the LINC complex proteins: (a) color coded height map of actin. Blue, green, and yel-
low colors represent the actin structure at the basal, middle, and apical plane (paxillin in red). Middle panel: Zoom in view of actin at apical, middle, and basal plane. Right
panel: 3D reconstruction of actin and nucleus. Cartoon adapted and modified from.118 Reprinted from Li et al., Biomaterials 35, 961–969 (2014). Copyright 2014 Elsevier. (b)
LINC complexes consist of KASH-domain-containing nesprin isoforms on the outer nuclear membrane (ONM) that are connected to the cytoplasmic actin filaments, intermedi-
ate filaments, and microtubules. SUN proteins interact with the nuclear lamina decorating the inner nuclear membrane (INM). SUN proteins and nesprins are connected
through KASH-SUN interactions in the perinuclear space. Cartoon adapted and modified.120 Reproduced with permission from Sneider et al., Cell Adhes. Migr. 13, 50–62
(2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) license. (c) Representative image of a single BMDM, stained for F-actin and nuclei,
showing the absence of a conventional actin-cap.12 Scale bars, 10lm. Physical connections between nucleus and cytoplasm via LINC complex are not characterized in mac-
rophages. Cartoons adapted and modified from.12 Reproduced with permission from N. Jain and V. Vogel, Nat. Mater. 17, 1134–1144 (2018). Copyright 2018 Springer Nature
Limited.
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the cytoskeletal filaments to the nuclear lamina [Fig. 4(b)].120 These
LINC proteins establish a direct physical linkage from the cytoskeleton
via the nuclear lamina to chromatin and, thus, play a pivotal role in
nuclear mechanosensing [Fig. 4(b)].120,121 The inner nuclear mem-
brane is thereby linked to the nuclear lamina via a meshwork of type
V intermediate filaments, the nuclear lamins, and associated pro-
teins.122 The nuclear lamina interacts with chromatin and tethers het-
erochromatin to the nuclear periphery. The term “heterochromatin”
was coined by Emil Heitz to distinguish regions that remained strongly
stained throughout the cell cycle from those that became invisible dur-
ing interphase.123 Heterochromatin is associated with a dense chroma-
tin structure, where genes are thought to be inaccessible to
transcriptional factors necessary for gene activation. The main mam-
malian lamins are lamin-A and C (also called lamin-A/C) and
the evolutionarily older lamins B1 and B2.122 Cryo-electron tomogra-
phy insights into the molecular arrangement of the nuclear lamina
reveal a fiber-like morphology of lamin networks decorated with glob-
ules, forming filaments that are packaged into a 14 nm thick layer (the
lamina).124–126 Disruptions of either the LINC complex or its physical
coupling to the nuclear lamina or of lamin self-assembly into filaments
by point mutations directly impinge on the nuclear architecture
leading to multiple disease conditions collectively known as
laminopathies.127

In contrast to mesenchymal cells, blood born cells often must
crawl through tiny constrictions to reach their destiny, including
transmigration through the endothelium, which requires that they
undergo extreme cellular and nuclear deformations.128–130 Even
though the functional and regulatory role of the LINC complex has
been extensively studied for mesenchymal cells and more recently for
immune cells, their potential role in regulating macrophage homeosta-
sis vs their inflammatory or pro-healing responses are still largely
unknown [Fig. 4(c)]. As the assembly of conventional actin stress
fibers has so far not been described for macrophages, how they estab-
lish a physical connection between cytoskeleton and nuclear lamina is
not known. As the nuclear architecture and the nuclear lamina regu-
lates gene expression by controlling the three-dimensional organiza-
tion of genes and their distal regulatory sequences,131–140 the intra-
nuclear space and chromosome rearrangement during macrophage
differentiation, polarization, and inflammatory activation has yet to be
revealed.

VIII. MACROPHAGE POLARIZATION INDUCES
CHANGES IN NUCLEAR MORPHOLOGY AND IN THE
PHOSPHORYLATION OF MECHANO-SENSITIVE
NUCLEAR ENVELOPE PROTEINS

As cell size and nuclear size are positively correlated, it has been
shown that pro-inflammatory M1 activation of macrophages results in
a significant increase in the nuclear projection area and nuclear vol-
ume.12 In contrast, during M2 activation, macrophage elongation cor-
relates with an increased nuclear aspect ratio.12 LPS induced increases
in nuclear projection area and volume are dependent on the level of
polymerization of actin.12 Depolymerization of actin in LPS activated
BMDMs results in a significant decrease in nuclear size.12 Lamin-A/C
is abundantly expressed in most differentiated cells, but the amount of
lamin-A/C varies greatly between immune cell types with macro-
phages and dendritic cells (another early initiator of inflammation)
expressing high levels, but resting T and B cells expressing low to

barely detectable amounts.141–144 Research on the role of lamin-A/C
during inflammation has largely been focused on T cells, which show
a significant upregulation of lamin-A/C upon activation.145 Lamin-A
expression accelerates T cell receptor (TCR) clustering and leads to
enhanced downstream signaling, including extracellular signal-
regulated kinase 1/2 (ERK1/2) signaling as well as increased target
gene expression contributing to T-cell activation.144

Differentiation of rat and human macrophages has been shown
to be accompanied by increased expression of lamin-A/C,143 which
also increases during the differentiation of human peripheral blood
monocytes into macrophages.146 Even though these studies have char-
acterized the levels of lamin-A/C in different macrophage types, the
central question which needs to be addressed is whether lamin-A/C
expression has any potential role during macrophage inflammatory
activation. A recent study from our lab suggests a potential and previ-
ously unknown role of lamin-A/C in regulating the pro-inflammatory
response.147 Reanalyzing publicly available RNA-Seq data148–153

revealed that in several tissue-resident macrophages, both in mice and
humans, upon LPS activation (both in vitro and in vivo), there is a sig-
nificant decrease in the levels of lamin-A/C mRNA (Fig. 5).
Concomitantly, the pro-inflammatory activation of BMDMs also
results in a significant decrease in lamin-A/C protein levels.147

Previous studies have quantified the turnover rate of lamins in quies-
cent fibroblasts, revealing that around 10% of lamin-A/C is replaced
within 24 h in the lamina meshwork with newly synthesized lamin-A/
C proteins.154 Since a decrease in more than 50% is seen within 12–18
h of activation, lamin-A/C downregulation is an active process, which
is due to lamin-A/C phosphorylation followed by its degradation.147

Mechanistically, lamin-A/C downregulation is necessary to drive pro-
inflammatory gene expression, as inhibiting lamin-A/C degradation in
BMDMs blocks pro-inflammatory gene expression (IL-6 and TNF-a)
and also pro-inflammatory cytokine secretion. Regarding tissue-
resident macrophages, lamin A/C ablation in immune cells results in a
selective depletion of lung alveolar macrophages and a heightened sus-
ceptibility to influenza infection.155 These alveolar macrophages also
display DNA damage and p53-dependent senescence, hallmarks of
inflammation and ageing, further confirming a potential role of
nuclear lamina in macrophage function and inflammation. Finally, the
overexpression of the lamin-A mutant progerin, a truncated version of
the lamin-A protein,156 which does not properly integrate into the
lamina and disrupts the nuclear lamina meshwork, leads to significant
disfigurement of the nucleus.156 This induces endothelial cell dysfunc-
tion, characterized by increased inflammation and oxidative stress
together with persistent DNA damage, increased expression of cell
cycle arrest proteins, and cellular senescence, further providing proof
of lamin-A/C as inflammatory regulator.157

Downregulation and degradation of the nuclear lamina are thus
a mechano-regulated process and depend on a variety of physical
parameters, including substrate stiffness.158,159 A recent study has
revealed that lamin-A/C phosphorylation and turnover depend on the
rigidity of the extracellular matrix. For example, mesenchymal stem
cells (MSCs) grown on soft polymeric substrates show higher lamina
degradation as compared to ones on stiff substrates.158 Even though
the available evidence points toward a functional role of lamin-A/C
during macrophage pro-inflammatory activation (Fig. 5), a detailed
understanding of how the phosphorylation and subsequent degrada-
tion of lamin-A/C might drive inflammatory gene expression is
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FIG. 5. Pro-inflammatory macrophage acti-
vation results in a reversible lamin-A/C
downregulation: Color coded map shows
the mRNA expression levels of various
pro-inflammatory genes and lamin-A/C in
microglia of LPS-injected mice (5mg/kg),
in LPS-treated mouse microglia, bone
marrow derived macrophages (BMDMs)
and in LPS treated human monocyte and
alveolar macrophages. Also shown are the
expression levels in the LPS treated mac-
rophage cell line THP-1 (human).
Expression data were obtained from public
repositories.148–153
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lacking. The regulation could be at multiple levels starting from tran-
scriptional regulation. Lamin-A/C has previously been shown to alter
the spatial localization and activity of critical transcription factors like
NF-jB160 and MRTF-A.161,162 One potential mechanism by which
lamin-/C degradation could cause changes in a pro-inflammatory geno-
mic program is by tuning the differential nuclear-to-cytoplasmic locali-
zation of these transcription factors. Similarly, there is a strong
regulatory coupling between nuclear lamina and histone modifications
(as discussed below in Sec. X). Thus, whether changes in lamin-A/C lev-
els during M1 activation drive inflammatory histone modifications and
epigenetic remodelling could be another interesting question to address.
This includes probing major histone modifications like H3K4me3, a his-
tone mark that is accumulated in the promoter region of pro-
inflammatory genes upon LPS activation.163 At the same time, it is
also absolutely crucial to explore the role of other nuclear envelope
(NE) proteins in order to develop a more complete picture of the reg-
ulatory landscape by which macrophage activation is regulated by
alterations of the NE, thus tuning the balance between pro-
inflammatory and pro-healing macrophages.

IX. STRUCTURAL REORGANIZATION
OF INTRANUCLEAR SPACE UPON
PROINFLAMMATORY ACTIVATION

Expression of the pro-inflammatory secretome requires access to
the corresponding genes. It is worth mentioning that the changes in
accessibility of chromatin and genes, as probed using Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-Seq),
has shown that accessibility depends on the mechanical environment
and mechanical status of cells. Uniaxial cyclic stretching of MSCs, for
example, induces differentiation into osteoblasts by upregulating the
chromatin accessibility of genes associated with the regulation of cell
morphogenesis, cell–substrate adhesion, and ossification.164 Another
study has shown that stiff ECM induces a tumorigenic phenotype
through changes in nuclear morphology, chromatin state, and accessi-
bility of chromatin.165 Cells cultured in stiff matrices displayed more
accessible chromatin sites, which exhibited footprints of specific pro-
tein 1 transcription factor binding, and this transcription factor acts
along with the histone deacetylases 3 and 8 to regulate the induction
of stiffness-mediated tumorigenicity.165

During the past decade, genome-wide mapping methods
have identified genomic regions that are in close contact with the
nuclear lamina, termed lamina-associated domains (LADs).166,167

Transcriptionally inactive genes are generally positioned at the nuclear
lamina and are part of these LADs;135,168 however, only �30% of
LADs, as identified by sequencing, map to the nuclear periphery. LADs
are of particular interest because most of the several thousands of genes
in LADs are expressed at very low levels, thus suggesting a role in gene
repression.135,168 Single-cell techniques like DamID, a method to cap-
ture contacts between DNA and a given protein of interest, have facili-
tated the identification of genomic regions in contact with the nuclear
periphery and nuclear lamina.169 A few recent studies have shown that
lamins differentially regulate distinct LADs at the nuclear periphery,
which can in turn influence global 3D genome organization and gene
expression.44,170 Gene activation inside LADs typically causes detach-
ment of the entire transcription unit from the nuclear lamina, whereas
inactivation of active genes can lead to increased nuclear lamina con-
tacts.131 Lamin loss causes expansion or detachment of specific LADs

in mouse embryonic stem cells (ESCs). The detached LADs disrupt
interactions of both LADs and chromatin, thereby impacting genome
organization and potentially genomic profiles.44 However, our under-
standing of LADs in macrophages is minimal. It is worth probing
whether pro-inflammatory genes are part of these LADs and whether
nuclear lamina degradation releases LADs in the interior of the nucleus
so as to facilitate the expression of pro-inflammatory genes, which are
otherwise silent and/or lowly expressed in resting macrophages.

Nuclear lamina-influenced changes in gene expression are also
associated with changes in gene positioning. For example, knockdown
of lamin A/C deregulates expression levels of genes; both KLK10
(Chr.19, LADþ) and MADH2 (Chr.18, LAD�) were significantly
repressed, while BCL2L12 (Chr.19, LAD�) was de-repressed.171 These
genes also reposition with respect to the nuclear envelope upon Lamin-
A/C knockdown. One recent study showed the relocation of pro-
inflammatory genes like TNF-a, a highly transcribed gene in LPS acti-
vated macrophages, within the nuclear space during macrophage acti-
vation.172 In contrast, the down-regulated genes did not change their
position.172 A more detailed study involving several genes is required
though to confirm that gene repositioning is necessary to regulate the
pro-inflammatory protein expression. Whether and how nuclear lam-
ina degradation is critical for this relocation is completely unknown.

Finally, it has been shown in several cell types that changes in the
nuclear lamina and in lamin-A/C aid the repositioning of chromosomes
due to altered interactions between chromosomes and the inner nuclear
membrane. Three-dimensional DNA-immunoFISH revealed that the
repositioning of chromosomal regions to the nuclear lamina is depen-
dent on breakdown and reformation of the nuclear envelope during
mitosis. During mitosis, chromosome movement correlates with reduced
lamin association with the nuclear rim.173 This requires phosphorylation
of lamin at sites analogous to those that open lamina network crosslinks
in mitosis.173 Failure to remodel the lamina results in delayed meiotic
entry, altered chromatin organization, and slowed chromosome move-
ment.173 Nuclear lamina disruption in Drosophila S2 cells also leads to
chromatin compaction and repositioning from the nuclear envelope.174

Additionally, the downregulation of lamin-A/C results in increased
nuclear dynamics, thereby enabling relative displacement of chromo-
somes within the nucleus, leading to the formation of new chromosome
surroundings and interactions. Even though similar processes are
expected to regulate macrophage phenotypes, whether chromosome
repositioning takes place during macrophage inflammatory activation
and regulates their response remains unknown. Whether the phosphory-
lation induced degradation of the nuclear lamina during macrophage
activation helps in chromosome repositioning is also not known and is
worth future investigations to better characterize and fully understand
the process of inflammatory activation.

X. INFLAMMATORY EPIGENOME REGULATES GENE
EXPRESSION PROFILES, BUT MECHANO-SENSITIVITY
NEEDS INVESTIGATION

Epigenetics is the study of how cells control gene activity without
changing the DNA sequence.175 Epigenetic changes/modifications are
modifications to DNA that regulate whether genes are turned on or
off and the set of modifications that regulate the expression of genes in
a cell is termed the “epigenome.” The term, “epigenetics,” was first
used to refer to the complex interactions between the genome and the
environment that is involved in development and differentiation in
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higher organisms. Conrad Waddington coined the term “epigenetic
landscape” defined by the molecular mechanisms that convert the
genetic information into observable traits or phenotypes.176 Epigenetic
modifications are either heritable chemical or physical changes in
chromatin, and the main types of epigenetic modifications include his-
tone modifications and DNA methylation. Gene expression is also
influenced epigenetically by non-coding RNAs such as microRNA
(miRNAs) and long non-coding RNA (lncRNAs).177–180 Epigenetic
modifications steer the response of macrophages to external physical
or biochemical stimuli and include the downstream secretion of pro-
inflammatory or pro-healing factors. The secretome differs signifi-
cantly between M1 and M2 activated macrophages,12,181–185 and the
role of mechanical forces and physical factors is still being explored.
The mechano-response of immune cells, however, might not necessar-
ily be steered by the same epigenetic modifications as described so far
for mesenchymal cells, in part due to their rather different cytoskeletal
architecture, a possibility we will now explore further.

The first evidence of the link between LPS stimulation and epige-
netic regulation in inflammatory genes dates back to 1999, as LPS
stimulation induces the cytokine IL-12p40 production in murine mac-
rophages by rapid and specific nucleosome translocation at the pro-
moter region.186 A nucleosome is a section of DNA that is wrapped
around a core of proteins. Each nucleosome is composed of a little less
than two turns of DNA wrapped around a set of eight proteins called
histones, which are known as a histone octamer. Each histone octamer
is composed of two copies each of the histone proteins H2A, H2B, H3,
and H4. With the advent of advanced sequencing techniques, changes
in epigenetic modifications, mainly histone modifications and DNA
methylation during macrophage inflammatory activation, have now
been extensively probed.9,182,187,188 The development of chromatin
immunoprecipitation assays in conjunction with advanced sequencing
technologies has allowed researchers to probe different histone modifi-
cations and map the locations of specific proteins across the genome
at high resolution during macrophage activation.188,189 LPS activation
is a TLR4-dependent event and results in the acetylation and methyla-
tion of histones H3 and H4.190 Trimethylation of histone 3 lysine 4
(H3K4) is associated with active gene transcription, and trimethylation
of H3K9, H3K27, and H3K79 is linked to silencing of gene expression
during inflammation.190 As a major role of pro-inflammatory macro-
phages is to sterilize wound sites through the secretion of various cyto-
kines, trimethylation of H3K4 on pro-inflammatory cytokine gene
promoters must be induced in M1 macrophages in response to TLR
stimulation.

Various histone modifications in response to alterations of physi-
cal properties of the cell microenvironment have recently been
reported for mesenchymal cells. Acetylation of H3 on Lysine 9
(AcH3K9), for example, depends on the cell spreading area of fibro-
blasts.100 Similarly, stiff polymeric matrices lead to significantly higher
levels of AcH3 but decreased levels of AcH4.165 Fibroblasts cultured in
grooves (10lm in width and spacing) showed not only markedly
increased global AcH3 marks, but also a significant increase in methyl-
ation (both di- and tri-methylation) of histone H3 at lysine 4
(H3K4me2 and H3K4me3, respectively) relative to flat surfaces.191

Increased levels of histone H3 acetylation have also been reported in
mesenchymal stem cells cultured on elastic membranes patterned with
parallel microgrooves (10lm wide).192 Importantly, other histone
modifications are also sensitive to the physical properties of the cell

microenvironment. Even in primary BMDMs, confining cells in a 3D
environment induces trimethylation of histone 3 at residue K4
(H3K4me3).193 Several other histone modifications have been
reported to be under the regulation of physical properties of the micro-
environment, such as topography, lamina flow, substrate stiffness, and
3D collagen gels, and this has been reviewed extensively.194

In contrast, whether histone modifications induced during mac-
rophage activation are cell niche dependent was not known until
recently (Fig. 6). H3K36me2, a crucial histone modification to pro-
mote pro-inflammatory gene expression, is dependent on whether
macrophages are free to spread or are spatially confined.12 Another
central histone modification, AcH3 which is necessary for pro-
inflammatory responses, has been shown to be dependent on the cell
shape, being lower in elongated cells.106 The mechano-sensitivity of
other modifications remains to be explored (Fig. 6). Even though it is
well accepted that changes in cell spreading and confinement signifi-
cantly alter nuclear architecture,100,101 whether the histone modifica-
tions are sensitive to these changes in the nuclear architecture has not
been elucidated. Since chromatin is physically anchored to the nuclear
lamina,174,195–197 it can be hypothesized that changes in the nuclear
architecture and nuclear lamina could potentially drive differential his-
tone modifications. In support of this, changes in the pattern of his-
tone modifications in fibroblasts have been associated with mutations
in A-type lamin, whereby heterochromatin markers, such as H3K9 tri-
methylation and heterochromatin-associated protein HP1c, are
reduced in cells with mutated lamin-A genes.198–200 In contrast,
H4K20 trimethylation is increased in laminopathy fibroblasts, which
have a lamin-A mutation.201 In addition, mutations in the lamin-A
gene also result in a decreased level of H3K27 trimethylation on the
inactive chromosome X.201 This shows that histone modifications are
correlated and potentially regulated by lamin-A and nuclear lamina.
Thus, we suggest a potential regulatory route by which changes in pro-
inflammatory histone modifications during macrophage activation
occur via mechanosensitive nuclear lamina and associated proteins.

Histone modifications are largely driven by histone methyltrans-
ferases (HMTs), histone acetyltransferases (HATs), and histone deace-
tylases (HDACs), which have been extensively reviewed elsewhere51

(Fig. 6). Even though HATs have been shown to be involved in initiat-
ing gene expression in macrophages during inflammation, only a lim-
ited number of reports have detailed to date how HATs catalyze the
expression of specific M1 or M2 macrophage associated genes.182 In
contrast, several HDACs, mainly HDAC3,202,203 are known to be
involved in M1 activation and play a prominent role in the regulation
of immunological pathways. In response to LPS, HDAC3-deficient
macrophages are unable to induce the expression of several pro-
inflammatory genes including IL-6.12 Insight into whether these his-
tone remodeling enzymes are mechano-regulated, and whether their
spatial localization and activity are driven by biophysical forces, has
only recently been gained. HDAC3 nuclear translocation depends on
macrophage spreading, being lower in spatially confined macrophages,
establishing HDAC3 as a mechano-sensitive histone modification
enzyme.12 Even though HDAC3 translocation in fibroblasts is depen-
dent on actin polymerization,100 whether a similar mechanism exists
in macrophages is still not known. p300 HAT enzymatic activity is
also dependent on macrophage elongation. p300 is an important HAT
associated with macrophage pro-inflammatory activation.204 LPS
treated BMDMs, cultured on fibronectin coated micropatterned
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stripes, showed a lower enzymatic activity of p300 HAT,106 establish-
ing p300 as a mechano-responsive histone remodeling enzyme.
However, such data provide only preliminary evidence that the spatial
localization and activity of HDACs and HATs, and potentially of other
HMTs, are driven by a diverse set of mechanical and/or biochemical
signals. Altogether, this provides first insight into the biophysical

control of histone modification and chromatin remodeling enzymes
and thereby how physical factors can regulate gene expression during
macrophage activation.

DNA methylation, together with histone modifications, can also
regulate gene expression.205–207 DNA methylation, and specifically
methylation of the 5-carbon of cytosine (5 mC), is the most studied

FIG. 6. Mechano-regulation of enzymes
involved in histone modifications and DNA
methylations during macrophage polariza-
tion: Cartoon shows relevant epigenetic
enzymes that regulate the macrophage
phenotype as summarized by their influ-
ence. As shown in the balance model, the
enzymes above the arrows have been
shown to have activating effects, while
those under the T-shaped support stand
have repressive effects on M1/M2 activa-
tion. However, their regulatory depen-
dence on different physical factors, which
are known to exist in tissues, still needs to
be probed. Cartoon adapted from.190

Reproduced with permission from Chen
et al., Cell Mol. Immunol. 17, 36–49
(2020). Copyright 2020 Authors, licensed
under a Creative Commons Attribution
(CC BY) license.
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and among the most significant epigenetic modification207,208

[Fig. 7(a)]. DNA hypermethylation results in gene silencing by affect-
ing the binding of methylation-sensitive DNA binding proteins and/or
by further interacting with various histone modifications and co-
repressors that alter DNA accessibility to transcriptional factors.208,209

DNA methylation is catalyzed by DNA methyltransferases (DNMTs)
[Fig. 7(a)], including DNMT1, DNMT3a, and DNMT3b. DNMT1,
which is responsible for DNA methylation maintenance, binds to
methyl groups in hemimethylated DNA strands during DNA replica-
tion, whereas de novo DNMT3a and DNMT3b add methyl groups to
CpG dinucleotides of unmethylated DNA.206 DNMT1 may also have
a role in de novo DNA methylation.210 Recently, more attention has
been given to 5-hydroxymethylcytosine (5hmC), which is an oxidation
product of 5mC, and contrary to 5mC, the presence of 5hmC has gen-
erally been associated with increased gene expression211–213 [Fig. 7(a)].
The mammalian enzymes responsible for generating these modifica-
tions are the three ten-eleven translocation (TET) dioxygenases
(TET1, TET2, and TET3) that utilize the co-factors a-ketoglutarate,
reduced iron, and molecular oxygen to oxidize the methyl group
(demethylation) at the 5 position of 5mC.214–216 Optical mapping
techniques revealed that pro-inflammatory activation of BMDMs
results in a significant decrease in the levels of DNMTs, i.e., DNMT1,
DNMT3a, and DNMT3b with a concomitant increase in the levels of
the TET2 enzyme [Fig. 7(b)].217

Whether DNA methylation is a mechano-regulated process
remains elusive (Fig. 6). Only recently, it has been shown for various
cell types, but not yet in macrophages, that DNA methylation depends
on the biophysical properties of the cellular microenvironment.194 As
cells engage in reciprocal interactions with their matrix, it is not sur-
prising that DNA methylation is sensitive to ECM stiffness with global

hypermethylation under stiff ECM conditions in mouse embryonic
stem cells and embryonic fibroblasts compared with soft ECM.218 Stiff
ECM enhances DNA methylation of both promoters and gene bodies,
especially the 50 promoter regions of pluripotent genes.218 The
enhanced DNA methylation is functionally required for the loss of
pluripotent gene expression in mESCs grown on stiff ECM, allowing
them to differentiate along a specific lineage.218 Moreover, the altered
DNA methylation is driven by ECM-regulated nuclear transport of
DNA methyltransferase three-like (DNMT3L), which is promoted by
a stiff ECM.218 Finally, using gastric cancer cells, it has been shown
that the stiffness of the ECM reversibly regulates the DNAmethylation
of the promoter region of the mechanosensitive protein YAP.219

Similarly, seminal findings have been published showing that DNA
methylation and DNA methyltransferases are also sensitive to shear
stress.220–222 Both in vitro and in vivo blood flow models revealed that
disturbed flow, as observed during atherosclerosis and characterized
by low and oscillating shear stress, induces expression of DNMT1 and
thereby regulates the genome-wide DNA methylation pattern.
However, whether the tissue-dependent mechanical properties of
microniches as discussed above drive macrophage homeostatic func-
tion and inflammation via DNA methylation remains unknown.
As cells cannot only feel the stiffness of their microenvironment but
also respond to the stretch-induced switching of the functional display
of ECM fibers,49 future work is also needed to elucidate how changes
of the mechanobiology of ECM alter the above-mentioned
dependencies.

Finally, non-coding RNAs (miRNAs and lncRNAs) are impor-
tant regulators of epigenetic modifications and, thus, gene expression,
and their regulatory role during macrophage polarization has only
recently been explored.177–180 Even thoughMicroRNA-503-5p inhibits

FIG. 7. Changes in DNA Epigenetic modifications (DNA Methylation) during LPS induced pro-inflammatory macrophage activation: (a) depiction of cytosine methylation and
demethylation processes. The different modified forms of cytosine (5mC, 5hmC, 5fC, and 5caC) along with the corresponding enzymes responsible for each modification are
shown.217 (b) Bar graph shows the differential levels of various DNMTs, TETs, and TDG enzymes in M0 and M1 BMDMs as obtained from RNA-Seq and qPCR experiments,
both performed after 6 h of LPS treatment.217 DNMTs: DNA methyltransferases; TET: ten-eleven translocation; TDG: thymine-DNA glycosylase. Data adapted from Ref. 217.
Reproduced with permission from Jain et al., Epigenetics 14, 1183–1193 (2019). Copyright 2019 Taylor and Francis Group.217
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stretch-induced osteogenic cell differentiation and bone formation223

and microRNA-103a functions as a mechanosensitive microRNA to
inhibit bone formation through targeting Runx2,224 it is not yet known
whether they play a mechano-regulated role in macrophage activation.
While the mechano-sensitivity of epigenetic modifications and
microRNA has been reviewed with a focus on endothelial and mesen-
chymal cells,225–229 our knowledge in the context of macrophages thus
remains sparse.

XI. PHYSIOLOGICAL IMPLICATIONS OF PHYSICAL CELL
NICHE ALTERATIONS DURING INFLAMMATION AND
AGE-ASSOCIATED INFLAMMATORY DISEASES

Physiological ageing is accompanied by a chronic, sub-clinical
increase in pro-inflammatory cytokines (TNFa, IL-6) and reduced
anti-inflammatory cytokines (IL-10) in the blood, termed inflammage-
ing.230,231 This gradual progression with advancing age is a biomarker
of ageing associated with an increased risk of several age-related dis-
eases, including cardiovascular disease,232 sarcopenia,233 cancer,234

and dementia.235 Importantly, humans who reach very old age, i.e.,
centenarians, maintain a low inflammatory status with increased levels
of anti-inflammatory cytokines, thus minimizing inflammageing.236

Understanding the causes of inflammageing enables better rational
therapeutic strategies that would have broad health benefits, helping to
deliver a healthy old age and prevent many age-related diseases and
frailty.

While inflammageing is driven by many factors, a key contribu-
tor is the appearance of monocytes/macrophages that are in a state of
low-level constitutive activation, resulting in the secretion of pro-
inflammatory cytokines in the absence of infection.237 The differentia-
tion of monocytes/macrophages to either a pro-inflammatory or more
regulatory phenotypes is influenced by a variety of processes, including
signals from cytokines but also in response to their physical environ-
ment as reviewed here. Research has shown that the direction of polar-
ization can be influenced by ECM components as well as by culturing
these cells on substrates of differing stiffnesses.238,239 Interestingly, the
stiffness of the macrophage itself, again regulated by actin polymeriza-
tion, also influences its phenotype. The mechanisms underlying the
shift with age to pro-inflammatory phenotypes are poorly understood
but appear to involve changes within cells and their response to micro-
environmental biomechanical changes.

In a variety of cell types, there is increasing evidence that ageing
is associated with changes in the mechanical properties of cells and
strong correlations exist between age and cytoplasmic stiffness.240

Indeed, the mechanical stiffness of skin fibroblasts has been shown to
correlate with biological age in humans.17 Ageing also influences the
ability of cells to transduce biophysical changes into intracellular sig-
nals, altering the response of cells and tissues to mechanical forces.241

In the case of macrophages, the literature is focused on the response of
these cells to their environment with age and little is known about age-
related effects on macrophage stiffness. Recent studies have shown
that culturing BMDMs from mice on substrates of increasing stiffness
led to induction of a pro-inflammatory phenotype,242 confirming ear-
lier reports of the ability of biomechanical forces to influence macro-
phage polarization.243 This earlier study also revealed that the
mechanotransduction signal to achieve the inflammatory phenotype
was mediated via transient receptor potential vanilloid 4 (TRPV4), a
mechanosensitive ion channel.243 Thus, although the literature is

sparse currently, there is support for the mechanical changes experi-
enced by the macrophage in the aged environment contributing to its
pro-inflammatory state and, thus, to inflammageing.

Other important contributors to inflammageing include senes-
cent cells. These proliferatively quiescent cells are highly metabolically
active, producing a complex pro-inflammatory secretome termed the
senescence associated secretory phenotype (SASP).244 Senescent cells
undergo profound morphological changes indicating an important
role for mechanical signals in cell senescence.245 Senescent cells have
increased vimentin, decreased actin, tubulin, and the focal adhesion
protein paxillin.245 In the human progeria syndrome,
Hutchinson–Gilford progeria syndrome increased cytoskeletal stiffness
and RhoAGTPase activation in progeria cells was directly coupled
with the morphological changes of cell senescence and induction of
the pro-inflammatory response.246

As stated earlier, it is now widely recognized that most age-
related diseases have a strong inflammatory component. The source of
this inflammation is varied ranging from increased adiposity to
reduced physical inactivity but includes the increased pro-
inflammatory status of macrophages and cell senescence.230,231 That
both cell and tissue mechanical properties change during disease is
also now being appreciated with altered stiffness of cardiac muscle
influencing the pro-inflammatory phenotype of infiltrating macro-
phages.242 In fibrotic diseases such as Idiopathic Pulmonary Fibrosis,
matrix stiffening is evident and pathogenic, whereby a6-integrin is a
matrix stiffness-regulated mechanosensitive molecule, which confers
an invasive fibroblast phenotype.187 In neurodegenerative diseases
such as Alzheimer’s disease, a pathological feature is increased neuro-
inflammation, mediated through central nervous system based macro-
phages, the microglia. These cells, like their peripheral counterparts,
have an activated, pro-inflammatory phenotype in Alzheimer’s dis-
ease.247 Whether this is related to alterations in the stiffness of brain
regions, for example, due to the presence of misfolded proteins such as
amyloid, or simply a straight immune response to these proteins is yet
to be determined.

XII. CONCLUSIONS AND OUTLOOK

It is of uttermost importance to find cures for the many inflam-
matory diseases that are responsible for the majority of deaths and
whose incidence increases with age. What has become evident is that
an improved understanding of the role of mechanical forces in modu-
lating the inflammatory status of cells such as macrophages and senes-
cent stromal cells will deliver novel therapeutic options going forward.
Creating new paradigms, which integrate biochemical, immunological,
and mechanobiological factors, will produce significant new insights
into age-related disease pathogenesis. Defining how to regenerate tis-
sues affected by inflammatory pathologies, a major challenge in regen-
erative medicine, also requires mechanobiological knowledge. Since
the demonstration that substrate stiffness correlates withmesenchymal
stem cell differentiation fate,24 for example, many bioengineers
focused on synthesizing new biomaterials that match tissue specific
Young’s moduli. Importantly, cells not only sense Young’s modulus of
their microenvironment: as they pull on the extracellular anchor
points, they displace the adhesive ligands, which vice versa impacts
integrin clustering and downstream mechanosensation,23,25–28,41 and
at the same time stretch the ECM fibers, which can switch mechano-
regulated molecular binding sites either on or off.49,248–250 As
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macrophages are major contributors to adverse inflammatory and
fibrotic responses to implanted biomaterials,251 the development of
immunomodulating biomaterials and of therapies to regenerate organs
will require an improved understanding of howmacrophage activation
and polarization is steered by the physical properties of their niches,
among all the other well described regulatory factors. Gaining a thor-
ough understanding how physical properties of cell niches tune the
pro-inflammatory response of macrophages, or if altered promote
their pro-healing M2 phenotype, will thus be highly significant for
many disciplines from cell biology to developmental biology. This
knowledge will also impact medicine and translational approaches for
novel therapies for age-related disease, as the efficacies of therapeutics
are impacted by the complexity of the pathological cell niches. The
identification of mechanosensitive targets in signaling cascades that
regulate the pro-inflammatory or pro-healing phenotype can further
be explored as new therapeutic targets.
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