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Abstract

Automatic boundary detection of 4D ultrasound (4DUS) cardiac data is a promising yet 

challenging application at the intersection of machine learning and medicine. Using recently 

developed murine 4DUS cardiac imaging data, we demonstrate here a set of three machine 

learning models that predict left ventricular wall kinematics along both the endo- and epi-cardial 

boundaries. Each model is fundamentally built on three key features: (1) the projection of raw US 

data to a lower dimensional subspace, (2) a smoothing spline basis across time, and (3) a strategic 

parameterization of the left ventricular boundaries. Model 1 is constructed such that boundary 

predictions are based on individual short-axis images, regardless of their relative position in the 

ventricle. Model 2 simultaneously incorporates parallel short-axis image data into their 

predictions. Model 3 builds on the multi-slice approach of model 2, but assists predictions with a 

single ground-truth position at end-diastole. To assess the performance of each model, Monte 

Carlo cross validation was used to assess the performance of each model on unseen data. For 

predicting the radial distance of the endocardium, models 1, 2, and 3 yielded average R2 values of 

0.41, 0.49, and 0.71, respectively. Monte Carlo simulations of the endocardial wall showed 
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significantly closer predictions when using model 2 versus model 1 at a rate of 48.67%, and using 

model 3 versus model 2 at a rate of 83.50%. These finding suggest that a machine learning 

approach where multi-slice data are simultaneously used as input and predictions are aided by a 

single user input yields the most robust performance. Subsequently, we explore the how metrics of 

cardiac kinematics compare between ground-truth contours and predicted boundaries. We 

observed negligible deviations from ground-truth when using predicted boundaries alone, except 

in the case of early diastolic strain rate, providing confidence for the use of such machine learning 

models for rapid and reliable assessments of murine cardiac function. To our knowledge, this is the 

first application of machine learning to murine left ventricular 4DUS data. Future work will be 

needed to strengthen both model performance and applicability to different cardiac disease 

models.
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1. Introduction

As heart disease remains the number one cause of death in the United States [1], 

echocardiography remains an integral tool to the proper diagnosis and prognosis of abnormal 

cardiac function. Furthermore, the development of murine models of cardiac disease have 

provided researchers a strong foundation to further our understanding of pathological 

hallmarks and how specific genetic and/or environmental factors might drive progression 

[2-6]. To bridge the gap between imaging technology and murine disease models, high-

frequency ultrasound uses MHz frequency ultrasonic waves to acquire images of small 

structures (e.g., mouse left ventricle with a thickness of ~1 mm) that are rapidly moving 

(e.g., mouse heart rate is ~500–600 bpm), thus too difficult to be adequately viewed using 

clinical ultrasound systems. Recent advancements in high-frequency ultrasound technologies 

have also introduced a collection of four-dimensional ultrasound (4DUS) approaches, 

allowing for more thorough analyses of cardiac motion beyond global metrics based on 

idealized geometries (i.e., ejection fraction, stroke volume), similar to that commonly 

reported with clinical cine-magnetic resonance imaging (cine-MRI) [7-9].

In tandem with the advancement of ultrasound imaging technology, integrations of machine 

learning and artificial intelligence algorithms—particularly deep neural nets—have shown 

promise in rapidly and robustly characterizing cardiac kinematics and ultrasound data in 

general [10-17]. While machine learning has demonstrated notable successes in ventricle 

segmentation on 4D cardiac MRI data [18-20], epicardial fat segmentation in Computed 

Tomography (CT) data [21,22], and even boundary detection in clinical 2DUS 

echocardiography data [10], applications to murine 4DUS data remain limited [12]. This is 

in part due to unique challenges presented by 4DUS data. Most notably, cardiac US images 

in mice show lower image contrast in combination with large amounts of speckle noise. 

Furthermore, as the probe typically covers half of the entire ventral thorax, these artifacts 

can even renderer manual segmentation difficult. Finally, 4DUS data in general suffer from 
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high dimensionality; even 3DUS segmentation is considered a difficult problem given 

current tools [10]. The high dimensionality in combination with the relatively small sample 

sizes commonly seen in medical applications, of which our dataset is no exception, presents 

even further challenges.

Here, we develop a machine learning model to contour 4DUS data acquired from healthy 

and diseased (i.e., hypertrophic cardiomyopathy) mice. To our knowledge, this is the first 

publication of machine learning applied to murine cardiac 4DUS data. While our model is 

described in detail below, it contains three fundamental components: (1) a low dimensional 

representation of the raw US data, (2) a basis expansion of time to incorporate the regularity 

in epicardial movement throughout the cardiac cycle, and (3) the requirement that the model 

need only predict output values at preselected anchor points using interpolating cubic splines 

to form the final output structure.

The following section “Materials and Methods” outlines the procedures followed to acquire 

the data used in training our models, details each model’s composition, and describes how 

we test each model’s predictive accuracy. The “Results and Discussion” section then 

demonstrates our quantitative model performance tests’ results and provides context 

regarding broader applicability and limitations. Finally, we discuss other modelling 

approaches for future work and potential clinical translatability.

2. Materials and Methods

2.1. Ultrasound Data

Imaging was performed using a Vevo3100 high-frequency ultrasound system (FUJIFILM 

VisualSonics Inc., Toronto, ON, Canada) with a 40 MHz center frequency transducer 

(MX550D) and a translating linear step motor. In preparation for imaging, mice were 

anesthetized using approximately 1.5–2.0% isoflurane, secured supine on a heated stage 

with gold-plated electrodes that collected cardiac and respiratory signals, and had hair 

removed from the ventral surface via a depilatory cream. Each 4DUS dataset was acquired 

by translating through short-axis slices from below the apex of the heart to above aortic arch, 

with a sampling frame rate of approximately 300 fps and total scan time of 6–10 min.

A total of 136 4DUS datasets were used to implement the machine learning algorithm, taken 

from previous studies on genetically-induced cardiac hypertrophy. One effort focused on a 

mutation of Nkx2-5183P/+ [23-25], consisting of 24 mutant and 24 littermate-control 4DUS 

datasets. The second focused on a mutation of CPT2M−/− [26,27], consisting of 41 mutant 

and 47 littermate-control 4DUS datasets. While each of these studies does include repeated 

imaging on some mice at numerous time-points, for the scope of this work each 4DUS scan 

was treated as independent data. All animal experiments were approved by the Purdue 

University Institutional Animal Care and Use Committee (protocol code 121100077326; 

approved 11 December 2015).

2.2. 4DUS Analysis and Contour Structure

Each 4DUS dataset is loaded into a custom interactive toolbox developed in MATLAB 

(MathWorks Inc., Natick, MA, USA), where data are first reoriented to align to a standard 
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axis and then the endo- and epi-cardial boundaries are manually tracked across a 

representative cardiac cycle (Figure 1A). The standard axes follow a cartesian coordinate 

system, and are defined by: (1) the left-ventricular apex and center of the base both fall on 

the z-axis, (2) the anterior and posterior walls fall along the y-axis, and (3) the septal wall 

falls on the negative x-axis (i.e., standard radiological orientation). Following reorientation, 

the z-axis location of the apex and base are tracked across the cardiac cycle (Figure 1B). 

Then, iteratively at each point in time, four equally spaced parallel short-axis slices are 

interpolated from the reoriented 4DUS data, corresponding to 25, 50, 75, and 100% of the 

distance from the apex to base. The initial tracking of base and apex locations allows for 

through-plane motion to be compensated for during subsequent wall-tracking.

In order to create a final three-dimensional mesh of the endo- and epi-cardial boundaries of 

the left ventricle, a structured subset of points was defined (Figure 1C) such that (1) each of 

the four parallel slices contains six points for each of the two boundaries, (2) those points are 

constrained to equally spaced rotations around the central z-axis (i.e., 30, 90, 150, 210, 270, 

and 330 degrees relative to the positive x-axis), and (3) the distance between each point and 

the central z-axis is a function of relative time across the cardiac cycle. Once all points are 

individually repositioned across the cardiac cycle to define the regional kinematics, hobby 

splines were used to interpolate a three-dimensional mesh of the left-ventricle at a 

standardized array of cycle-positions. Specifically for this work, the final 4D mesh of the 

left-ventricle included 60 locations around the z-axis, 60 locations from the apex-to-base 

along the z-axis, and 60 time-points across the cardiac cycle.

2.3. Machine Learning Algorithms

2.3.1. Prediction Objective—In this context, a machine learning model takes a given 

4DUS image as input and returns two predicted 3D surfaces (one for the endocardial 

boundary, one for the epicardial boundary) for each timepoint. The nature of the task 

immediately presents several difficulties: the data are high dimensional (160,000 pixels per 

image with about 5000 total images), US data naturally contain speckle noise, and the model 

output consists of two smooth 3D surfaces across time with no specified parametric form. 

The data processing approach described in Section 2.2 significantly reduces the problem 

complexity while still allowing for flexible contours to be estimated. Predicting radial 

distances of each anchor point becomes a regression problem, with the complete contours 

being inferred using smoothing splines after the anchor points have been estimated.

2.3.2. Modeling Approach—In order to manage the high dimensionality of the image 

data, principal component analysis (PCA) was used to project the US images onto a lower 

dimensional subspace. Since the selected anchor points have fairly regular movement 

patterns, we further incorporated smoothing splines to capture the average path for each 

anchor point across time. The full model incorporates both the rotated, compressed image 

data along with a smoothing spline basis:

yθ, b, z(t) = W k, zβθ, b, z + Φ(t)γθ, b, z (1)
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where yθ, b, z indicates the predicted response vector of radii for the anchor point indexed by 

the given angle, boundary, and horizontal slice respectively. Wk is represents the pixel image 

data for image slice z, which has been compressed using the first k principal components. 

Φ(t) represents the time-dependent smoothing spline basis, and βθ,b,z and γθ,b,z represent 

the parameter vectors to be fit for each (θ, b, z) combination. The model was fit using least 

squares.

2.3.3. Model Variants—We also explored two other model variations for comparison. 

With model 1 (Equation (1)) given above, the second model (Equation (2)) uses principal 

components from all z slices combined for each anchor point, instead of only using the 

horizontal slice of the target anchor point:

yθ, b, z(t) = W kβθ, b, z + Φ(t)γθ, b, z (2)

This approach was utilized to see if information from the other three slices aids in model 

prediction. Our third model (Equation (3)) simulates a scenario where the machine learning 

model is human-assisted:

yθ, b, z(t) = W kβθ, b, z + Φ(t)γθ, b, z + δμθ0, b0, z0 (3)

where μθ0,b0,z0 is the true radius for the given anchor point, and δ is a single additional 

scalar parameter to be fit. In this case, the model assumes that a user has provided the 

annotation of a single anchor point, of the 48 total, at the beginning image of each full US 

dataset. Thus, the model has access to the true target response value for one of the roughly 

1500 anchor points to be predicted for a given spatiotemporal location. This approach was 

taken to see whether a single annotation could significantly help in the prediction of the rest 

of the anchor points in the video sequence. If effective, this strategy could enhance model 

accuracy with only minor additional effort from a user.

2.3.4. Measuring Model Performance—To test the effectiveness of the developed 

models, 100 iterations of Monte Carlo crossvalidations were used on the dataset with a 

training/validation/test split ratio of 6:1:1. The validation sets were used to select the number 

of principal components for each permutation of the data, while mean squared error (MSE) 

and R2 values were evaluated on the held-out test set. To provide an additional measure of 

difference between the models, we performed pairwise t-tests across the three models for the 

MSE within each permutation of the test set for each setting of (θ, b, z). Due to the large 

test-set sample size (i.e., over approximately 500), assumption of normality of the sample 

mean difference was considered appropriate. The percentage of t-tests with p < 0.05 was 

computed, aggregated across the angles, short-axis slices, and Monte Carlo sample. We note 

that this does not necessarily provide any statistical guarantees regarding Type I/II error 

rates, but is intended instead to serve as an additional metric for model comparison.

2.4. Description of Metrics Derived from LV Mesh

Once a final 4D mesh of the left-ventricle is created, a series of metrics that characterize its 

regional kinematics are systematically extracted based on the Lagrangian-definition of linear 
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or engineering strain [28-31] in both the circumferential (Equation (4)) or longitudinal frame 

(Equation (5)):

εC(t, z) = perimetert − perimetert = 0
perimetert = 0

(4)

εL(t, θ) = lengtℎt − lengtℎt = 0
lengtℎt = 0

(5)

where each metric is a function of time t (i.e., a given position within the cardiac cycle), and 

circumferential and longitudinal strain curves are a function of both position z (i.e., location 

along the z-axis) and angle θ (i.e., rotation from the positive x-axis), respectively. 

Furthermore, additional metrics can be derived from each curve including the early/late 

systolic strain rates and early/late diastolic strain rates, providing insight into how the heart 

is moving between end-diastolic and peak-systolic states.

To assess the robustness and practical use of the machine learning-based predictions of wall 

kinematics, these metrics were computed at select locations in the circumferential (e.g., 

basal, mid-LV, and apical) and longitudinal (e.g., anterior, posterior, anterior free-wall and 

septum, and posterior free-wall and septum) frames. Derived metrics from both the ground-

truth and machine learning-predicted boundaries were compared using paired t-tests with 

Bonferroni–Dunn’s multiple comparisons corrections. We note that the distribution of 

several metrics showed some minor deviations from normality (e.g., slight skewness). 

Adjusted Shapiro–Wilk tests suggested non-normality for roughly 10% of the cross-

validation samples. However, the central limit theorem ensures that even when deviations 

exist from normality among the individual observations, the sampling distribution of the test 

statistic converges to a normal distribution with larger sample sizes. The recommended 

sample size threshold for assuming normality via the central limit theorem is 30 [32]. As the 

sample sizes used for our t-tests were roughly 600, it is safe to assume normality of the 

computed test statistics.

3. Results and Discussion

3.1. Model Fitting Results

A visual summary of the test set prediction results for models 1, 2, and 3 are demonstrated in 

Figure 2A-C, respectively. Qualitatively, we can see improvements in R2 and mean squared 

error (MSE) for each successive model. Of note, we observed higher MSE for all three 

models around the posterior-septum in the basal slice. We believe this may be because the 

basal septum commonly lies posterior to the sternum and is thus affected by shadowing 

artifacts. Not only does that make the basal septum harder to annotate, which lowers 

precision in the ground-truth data, but also the lack of border contrast means it may be 

incorrectly accounted for in the PCA-based image compression.

Table 1 provides a numerical summary of the three models’ performance. We notice that 

with regard to every metric in Table 1, model 2 outperforms model 1, and model 3 

outperforms model 2. Taken together, these results suggest that simultaneously incorporating 
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all four slices in the prediction model (model 2) yields modest but noticeable improvement 

over using individual slices (model 1). Furthermore, annotation of a single point at t = 0 

(model 3) can significantly improve model predictive accuracy above the previous versions 

not incorporating user annotations.

While Figure 2 and Table 1 summarize aggregated model performance across all 100 test-set 

permutations, it also is instructive to see a particular example of the models’ predictions vs. 

the ground truth. Figure 3A shows the predicted vs. actual radii for the 30° endocardial 

anchor point at the base of the heart plotted for a single test set using model 2. Qualitatively, 

model 2′s predictions overall appear relatively close to the ground truth. Errors in 

predictions seem to be mainly due to offsets in the size of the heart, rather than the wall 

kinematics (i.e., curve shape is correct but placed off from border). Figure 3B,E shows the 

accuracy gained using model 3 by incorporating user-assistance on an endocardial point. 

The heart size is more accurately inferred in this case, yielding better predictions overall. 

These results illustrate that qualitatively, both the unassisted and assisted models show 

reasonable performance for both the endocardial and epicardial boundaries on unseen data, 

with slightly higher accuracy for the endocardial boundary (Figure 3A,B vs. Figure 3D,E). 

Additionally, although the unassisted model’s predictions are relatively close to the ground 

truth (Figure 3A,D), the assisted model yields noticeably improved performance, especially 

for the endocardial boundary (Figure 3B).

3.2. Performance of Predication-Based Metrics

Aiming to assess the practicality of using the three proposed models to characterize cardiac 

function, we computed all metrics described in Section 2.4 and compared results based on 

predicted and ground-truth boundaries. The results of paired t-tests on all 80 metrics, with 

Bonferroni–Dunn’s multiple comparisons corrections, are shown in Supplemental Table S1, 

stratified by model. Following trends observed in Section 3.1, the number of metrics that 

were flagged as significantly different (i.e., adjusted p < 0.001) from the ground-truth values 

were relatively low amongst models 1 (8/80), 2 (7/80), and 3 (8/80). Interestingly, seven 

metrics showed significant differences regardless of model, suggesting further refinement of 

the modelling approach would be needed to trust those values if based on machine learning 

predictions alone. As shown in Table S1, these metrics were all variants of early diastolic 

strain rate: (1) circumferential early diastolic strain rates at the mid-ventricle and apex; and 

(2) longitudinal strain at each of the six rotations around the z-axis, except at the posterior-

septum. While it is not clear why early diastolic strain rate has trouble being properly 

inferred using our methods, it may be due to the incorporation of severely diseased mice 

with abnormal diastolic kinematic profiles adversely skewing the imposed temporal-

smoothing.

It should be noted that no global function metrics (i.e., end-diastolic or peak-systolic 

volumes, ejection fraction, or stroke volume) or peak-strain values showed any statistically 

significant differences between the gold-standard and prediction-based analyses. These 

results appear promising as the errors are only observed with strain-rate values, specifically 

early diastolic strain rate, suggesting that the machine learning model predictions of left-

ventricle boundaries can be used reliably to assess both global cardiac function and peak 
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circumferential and longitudinal strain. Nevertheless, it is important to note that accurate 

measurements of early diastolic strain rate are critical to the assessment of diastolic 

dysfunction [33]. Future work increasing model complexity or implementing novel 

strategies is thus critical to providing more reliable assessments of cardiac kinematics and 

function for researchers and clinicians.

3.3. Limitations

While we are able to measure model performance, more thorough assessment of 

interobserver variability in creation of ground-truth could be used to give further confidence 

in the physiological accuracy of detected boundaries. For example, if model predictions 

were well within the range of different users’ annotations, then this would give further 

support to the model’s capability. Furthermore, as seen in Figure 2 and visualized in Figure 

4, the septal and posterior walls at the base of the left ventricle are susceptible to prediction 

errors due to the presence of sternum shadow artifacts and the mitral valve and myocardium 

interface, respectively. The shadow artifacts can be mitigated by angling the ultrasound 

probe during acquisition; however, this must be traded-off with undesirable air-based 

artifacts from the left lung. Additionally, while the mitral valve blending into the 

myocardium can reduce local contrast, carefully selecting a base location just inferior to the 

interface can help maintain a proper view of the endo- and epi-cardial borders.

Another natural limitation in working with medical image data is the tendency to have small 

sample sizes relative to the dimensionality of the data. While we did have a moderate 

number of videos to work with—136 in total with 30–40 temporal samples—this is 

relatively few compared to several standard machine learning datasets (e.g., the ImageNet 

database containing 14 million plus images), but future work will be needed increase the 

number of training datasets used to build these models. Larger sample sizes not only 

improve the performance of a given model, but allow for more flexible (i.e., higher 

dimensional) models to be trained with less risk of overfitting.

3.4. Future Applications

As more data are gathered, several avenues exist for extensions or alternatives of the 

methods proposed in this paper. Notably, with a larger number of images, the use of deep 

learning for image segmentation, especially convolutional neural networks, would likely 

become a promising option to explore. Even with moderate sample sizes, the use of deep 

generative models such as generative adversarial networks (GANs) [34] may provide a 

mechanism to augment the true dataset with near-realistic images that would enhance model 

training. GANs have already shown promise in several areas of medical imaging [35-38], 

and thus would be a natural choice for generation of realistic-looking murine US images. 

Other data augmentation strategies that have been proposed for medical image generation 

specifically, such as ASNG [39], could be explored as well.

Transfer learning [40] may be a viable option that could be applied even without additional 

real or generated data, incorporating a pre-trained network from another application domain. 

Finally, if a network were developed that could segment murine cardiac images with very 
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high accuracy, it is likely that such a model would be useful in clinical applications, even if 

downstream transfer learning is only used to fine-tune models on human cardiac images.

Another aspect of this work that could have a more direct impact on clinical translation is 

the use of a structured grid to sample cardiac kinematics (i.e., four-slices across and six 

rotations around the LV). While recent studies into 3D speckle-tracking echocardiography 

have shown promise in characterizing clinical data [41], contours of the left-ventricular 

boundaries are often unstructured and tracking speckle-patterns is susceptible to error 

propagation if there is subpar image quality or notable image artifacts. Using an approach 

similar to the one presented here could allow for the problem of boundary predictions to be 

simplified and lead to more robust results when speckle-tracking is insufficient, which is a 

common obstacle associated with murine 4DUS data analysis.

4. Conclusions

We demonstrate here the first application of machine learning to the prediction of left-

ventricular wall boundaries in murine 4DUS image data. Our results demonstrate notably 

better agreement between ground-truth and predicted locations when using a model based on 

a combination of parallel short-axis images compared to treating all images separately. This 

agreement of predicted locations can then be marginally improved further when 

incorporating a single boundary point starting location into the model. Furthermore, our 

results suggest that reliable assessments of global cardiac function and strain, except early 

diastolic strain-rates, can be derived from the machine learning predictions alone. While 

future work will aim to strengthen the model efficiency and account for additional murine 

cardiac disease models, this study reveals that incorporation of machine learning can help 

vastly increase the reliability and speed of murine cardiac 4DUS data analysis.

5. Patents

Patent Pending: “FOUR-DIMENSIONAL IMAGING SYSTEM FOR 

CARDIOVASCULAR DYNAMICS” (USPTO # 16/903,039).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic for post-acquisition analysis on left-ventricular 4DUS data, including: (A) spatial 

reorientation to align with a central z-axis (i.e., inferior (−z) to superior (+z)), (B) tracking 

of apex and base locations, and (C) definition of boundary points on the endo- and epi-

cardial boundaries (Equation (1)), excluding papillary muscles, to be tracked across the 

cardiac cycle.
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Figure 2. 
Heatmap representations of median mean-squared-error (left) and associated R values (right) 

following 100 Monte Carlo simulations of the 6:1:1 testing paradigm, stratified by theta, b, 

and z. Predictions are based on models (A) 1 (i.e., individual z slices), (B) 2 (i.e., combined 

z slices), and (C) 3 (i.e., assisted). Specifically here, model 3 was assisted by incorporating t 

= 0 radius values taken from the endocardial anterior mid-ventricle position (i.e., z = 0.5, 

theta = 90 deg).
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Figure 3. 
Example predictions on a series of anterior free-wall test set data, based on the implemented 

6:1:1 Monte Carlo cross-validation. Raw predictions for 17 separate mice are shown 

overlaid onto the ground-truth data for unassisted (model 2) predictions at both the (A) 

endocardial and (D) epicardial borders, as well as for the (B,E) assisted (model 3) 

predictions. Squared error plots at each temporal sample for the (C) endocardial and (F) 

epicardial positions demonstrate the potential lower errors resulting from the assisted 

approach.
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Figure 4. 
Example short-axis ultrasound image at the base of the heart demonstrating the location of 

sternum shadow artifacts (yellow) and mitral valve attachments to the left ventricular 

myocardium (red). Points most commonly affected are color-coded and displayed on a 

corresponding long-axis schematic.
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Table 1.

Numerical comparison of model performance for both endocardial and epicardial boundaries. With each 

model, mean test-set mean squared error (MSE) with associated standard deviations and R2 values are 

displayed. Additionally, the percentage of significant t-tests when the given row’s model’s test set MSE is 

smaller than that of the model indicated in the column is also provided.

Endocardial Epicardial

MSE (mm2) R2 vs. M1
(%)

vs. M2
(%) MSE (mm2) R2 vs. M1

(%)
vs. M2

(%)

Model 1 0.069 ± 0.054 0.41 — — 0.068 ± 0.044 0.51 — —

Model 2 0.060 ± 0.049 0.49 48.7 — 0.058 ± 0.039 0.59 54.4 —

Model 3 0.030 ± 0.021 0.71 88.0 83.5 0.037 ± 0.020 0.71 81.9 71.3
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