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Lysine succinylation is a typical protein post-translational modification and plays a crucial role of regulation in the cellular process.
Identifying succinylation sites is fundamental to explore its functions. Although many computational methods were developed to
deal with this challenge, few considered semantic relationship between residues. We combined long short-term memory (LSTM)
and convolutional neural network (CNN) into a deep learning method for predicting succinylation site. The proposed method
obtained a Matthews correlation coefficient of 0.2508 on the independent test, outperforming state of the art methods. We also
performed the enrichment analysis of succinylation proteins. The results showed that functions of succinylation were conserved
across species but differed to a certain extent with species. On basis of the proposed method, we developed a user-friendly web

server for predicting succinylation sites.

1. Introduction

Protein post-translational modification (PTM) refers to the
chemical interaction occurring prior to protein biosynthesis
and after mRNAs are translated into polypeptide chains.
PTM has different categories and is very prevalent in the
cells. More than 450 categories of PTMs were discovered to
date, such as phosphorylation, methylation, and acetylation
[1-3]. PTM increases diversity of protein structures and
functions, viewed as one of most regulating mechanisms in
the cellular process. Lysine succinylation is a type of protein
TPMs, in which a succinyl group (-CO-CH2-CH2-CO2H)
is attached to lysine residue of proteins [4]. Succinylation is
reversible, dynamic, and evolutionarily conserved, widely
existing in the prokaryote and the eukaryotes cells [5, 6].
The succinylation of proteins induces shift in the charge
and the structural alteration and thus would yield effects on
functions of proteins [6]. Growing evidences also showed
aberrant succinylations were involved in the pathogenesis
of some diseases including cancers [7], metabolism disease
[8, 9], and nervous system diseases [10]. Thus, identifying

succinylation sites and understanding its mechanism are cru-
cial to develop drugs for related diseases.

Identifying succinylation sites has two main routes:
experimental and computational methods. The experimental
methods were represented by mass spectrometry, which con-
tributed to the validation of succinylation and collection of
first-hand data. On the other hand, the experimental
methods are labor-intensive and time-consuming without
assist of the computational methods. The computational
methods are based on data yielded by the experimental
methods and build machine learning-based models to pre-
dict new succinylations. Therefore, identifying succinylation
is a cyclic iterative process from experiment to computation
and again from computation to experiment. We focused on
the computational methods to predict succinylation. In the
past decades, more than ten computational methods have
been developed for identifying succinylation [11-29]. Most
of these computational methods extracted features directly
from protein sequences, which were subsequently used for
training model. For example, Zhao et al. [11] used the auto-
correlation functions, the group weight-based encoding, the
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normalized van der Waals volume, and the position weight
amino acid composition. Kao et al. [25] exploited the amino
acid composition and informative k-spaced amino acid pairs.
Xu et al. [12] and Jia et al. [13, 19] employed pseudo amino
acid composition. Dehzangi et al. [23] exploited the structure
information. Hasan et al. [28] compared 12 types of feature
as well as two learning methods: random forest and support
vector machine for succinylation prediction. Different fea-
tures have different performance with species. So does the
learning methods. The best performance was no more than
0.83 AUC (area under receiver operating characteristic
curve) for independent test. Like sentences of language, the
protein sequences should have semantic. However, all the
methods above failed to seize semantic relationship hidden
among residues. Thapa et al. [29] presented a convolutional
neural network- (CNN-) based deep learning method Deep-
SuccinylSite for predicting succinylation. Different from tra-
ditional methods, the DeepSuccinylSite exploited word
embedding which translated word into vector, which was
an extensively used method in the field of natural language
process. The CNN is a widely used method to extract local
features especially in the field of image processing. Inspired
by the DeepSuccinylSite and loss of semantic relationship
between residues, we fused long short-term memory (LSTM)
and CNN into a deep learning method for succinylation
prediction.

2. Data

All the succinylated proteins were downloaded from the
PLMD (Protein Lysine Modifications Database) database
which is dedicated to specifically collect protein lysine mod-
ification [30-32]. The PLMD has evolved to version 3.0,
housing 284780 modification events in 53501 proteins for
20 types of lysine modification. We extracted 6377 proteins
containing 18593 succinylation sites. To remove dependency
of the proposed method on the homology, we used the soft-
ware CD-Hit [33, 34] to cluster 6377 protein sequences.
The sequence identify cut-off was set to 0.4, and we obtained
3560 protein sequences, of which any two kept sequence sim-
ilarity less than 0.4. We randomly divided these 3560 pro-
teins into the training and the testing samples at the ratio
of training to testing 4:1, resulting in 712 testing and 2848
training sequences. For each protein sequence, we extracted
all the peptides which centered the lysine residue with 15
amino acid residues in the downstream/upstream of it. For
peptides less than 15 amino acid residues, we prefixed or suf-
fixed “X” to supply it. The length of the amino acids is influ-
ential in prediction of succinylation sites. The short amino
acid peptides would miss key information, while the long
peptides would include noise or redundancy. Whether the
short or the long peptides would cause low accuracy of pre-
diction. Among methods to predict succinylation sites,
iSuc-PseAAC [12] adopted the shorter peptides of 15 amino
acid residues; SuccinSite2.0 [20] and GPSuc [22] adopted the
longer 41 amino acid residues, while the most methods
including SSEvol-Suc [23], Success [24], iSuc-PseOpt [13],
pSuc-Lys [19], SucStruct [18], and PSSM-Suc [17] adopted
peptides of 31 amino acid residues, which is of moderate
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length. Thus, we chose 31 amino acid residues as basic pep-
tides. The peptides with succinylation sites were viewed pos-
itive samples and the others as negative ones. For the training
set, the negative samples extremely outnumbered the positive
ones. Unbalanced training set would cause preference to neg-
ative samples in the process of prediction. Therefore, we ran-
domly sampled the same size of negative examples as the
positive ones. Finally, the training set comprised 6512 posi-
tive and 6512 negative samples, while the testing set 1479
positive and 16457 negative samples. All the experimental
data are freely available to scientific communities.

3. Method

As shown in Figure 1, the proposed deep learning network
consisted mainly of embedding, 1D convolution, pooling,
bidirectional LTSM, dropout, flatten, and fully connected
layers. Peptides with 31 amino acid residues were entered
to the embedding layer and were translated into vectors with
shape of (31, 64). Then, two different network structures,
respectively, took the embedding as input, and their outputs
were concatenated as input to the fully connected layer. One
structure was the convolution neural network, and another
was the bidirectional LSTM neural network. The final output
was a neuron representing probability of belonging to the
positive sample. The parameters and the shape of output of
each layers in the deep neural network are listed in Table 1.
The total number of trainable parameters is 336,897.

3.1. Embedding Layer. Most machine learning-based
methods for predicting protein post-translational modifica-
tion generally required an encoding step which translated
sequences into vector representation. For example, the fre-
quently used encoding schemes included position specific
scoring matrix [35], amino acid composition, composition
of k-space amino acid pair [14], and pseudo amino acid com-
position [36]. For sequences of text, these methods might lose
hidden semantic. The word2vec [37, 38] is different from the
above methods, embedding word into vector. The word2vec
is capable of extracting semantic of word. An interesting
example is that King - Man + Woman = Queen. Similar to
the word2vec [37, 38], the embedding layer translated words
into vector representations. In this method, the character of
amino acid corresponds to word.

3.2. 1D Convolution Layer. The convolution neural network
(CNN) proposed by LeCun et al. [39, 40] is a feed forward
network. Compared with the conventional neural network,
the CNN has two notable properties: local connectivity and
parameter sharing. The local connectivity lies that two neigh-
boring layers are not fully connected but locally connected.
That is to say, the neuron in a layer is not connected to all
neurons in the neighboring layers. The CNN implemented
the parameter sharing via the filter (also called convolution
kernel). The filter slides on the image and convoluted with
all sections in image. The filter is shared by the image. In
the last ten years, many deep convolution neural networks
such as AlexNet [41], VGG [42], GoogleNet [43], and ResNet
[44] have been proposed and applied to computer vision. The
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FiGure 1: Flowchart of the proposed method.

TaBLE 1: Number of parameters and shape of output in the
LSTMCNNsucc.

Layers Parameters Output
Embedding 1472 (None, 31, 64)
Bidirectional LSTM 197632 (None, 31, 256)
Dropout 0 (None, 31, 256)
Flatten 0 (None, 7936)
1D convolution 10272 (None, 27, 32)
Pooling 0 (None, 32)
Dense (16) 127504 (None, 16)
Dense (1) 17 (None, 1)

CNN achieved significant advance in terms of classification
error in comparison with the previous deep neural network.
The convolution is of 1-dimension, 2-dimension, or more
than 2 dimensions. Here, we used 1D convolution. Suppose
a discrete sequence was « = [a,, d,,"*+,4, ], and the convolu-
tion kernel was f3=[by, b,,--b,,]. The 1D convolution prod-
uct of o and 3 was expressed by

axf= [Zajd+i—lbi])j=1’2"”’k’ (1)
i=1

where d was the stride of convolution and k was the
length of the output sequence. Generally, k was the most inte-
ger less than or equal to (n —m)/d + 1.

3.3. Pooling Layer. The pooling operation firstly appeared in
the AlexNet [41] and is increasingly becoming one of compo-
nents of the deep CNN architecture. The pooling operation
has such categories as max pooling, min pooling, and mean
pooling. The role of pooling operation included removal of
redundancy information and reduction of overfitting. Here,

we used the max pooling operation. Given an n-channel
input A = (a; ), the max pooling operation was defined by

mjax{a,-,j,k}. (2)

3.4. Bidirectional LSTM Layer. Recurrent neural network
(RNN) [45, 46] is a different framework of neural network
from multiple layer perception. The RNN shares weights
and is especially suitable to the field of sequence analysis such
as language translation and semantic understanding. An
unfolded RNN model was shown in Figure 2(a). The hidden
state H, at the time step t was not only dependent on the cur-
rent input but also on the previous hidden state, which was
computed by

H,=f(X,W+H,_ U +a), (3)

where f was an activation function and « was a bias. The out-
put O, at the time step ¢ was computed by

O, =g(H:S+p), (4)

where g was also an activation function and 3 was a bias. For
long sequences, there was a fatal question with the RNN, i.e.,
vanishing gradient. Among all the solutions to the vanishing
gradient, the LSTM [47] is one of the better. The LSTM con-
tains a candidate memory cell and three gates: forget gate,
input gate, and output gate, as shown in Figure 2(b). The for-
get gate F,, the input gate I,, and the output gate P, at the
time step t were computed, respectively, by

=0 (X,Wp+H_ W +by),

o(X Wy +H, Wy, +b), (5)

Ft
It
Pt O(Xt Wx,o + Ht—l Wh,o + bo)’



BioMed Research International

(0

()

e

Or
Hy, Hy, (>0 ® 0~E¥;%|
X, X, ® o o X

FiGure 2: The structure of neural networks: (a) for RNN, (b) for LSTM, and (c) for directional LSTM.

where W, . and W), , were weights of the LSTM from input
to forget gate and from the hidden state to the forget gate,
respectively. W, ; and W, ; were link weights from input to
input gate and from the hidden state to the input gate, respec-
tively. W, , and W, , were link weights from input to output
gate and from the hidden state to the output gate, respec-
tively. by, b;, and b, were the bias of the forget and the input
and the output gate, respectively. o was the activation func-
tion. The candidate memory cell was calculated by
Ct = tanh (Xt Wx,c + Ht—l Wh,c + bc)’ (6)
where W, and W, were weights of the LSTM from input to
the candidate memory and from the hidden state to the can-
didate memory, respectively, and b, was the bias. The mem-
ory cell at the time step t was computed by
C=FQC+ It®Ct’ (7)
where (X) was defined as element-wise multiplication. The
hidden state was updated by
H,=I,Qtanh (C,). (8)
The previous RNN was forward. The output at the time
step t was only dependent on the preceding inputs and the
hidden state. In fact, the output might be relevant to the latter

input and the hidden state. Schuster et al. [48] proposed a
bidirectional RNN to model this relationship, showed in

TaBLE 2: Comparison with state of the art methods.

Method SN SP ACC MCC
LSTMCNNsucc 0.5916 0.7957 0.7789 0.2508
SuccinSite [15] 0.3977 0.8635 0.8272 0.1925
iSuc-PseAAC [12] 0.1258 0.8929 0.8296 0.0165
DeepSuccinylSite [29] 0.7438 0.6879 0.6923 0.2438

Figure 2(c). The forward hidden state at the time step ¢ was
computed by

H{ = U(Xt Wi,h + H{—lwi,h + b}i) > 9)

while the backward hidden state was computed by
H'=0 (thj;h +HY W+ bﬁ) . (10)

The output at the time step t was computed by
0, = {H{,Hf} Wi + by (11)

3.5. Dropout Layer. The deep neural network is prone to lead
to overfitting when the number of training samples was too
less. To deal with this issue, Hinton et al. [49] proposed the
dropout concept. Due to its effect and efficiency, the dropout
is increasingly becoming the frequently used trick in the deep
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FIGURE 3: The numbers of shared terms (a) for biological process, (b) cellular component, and (c) molecular function.

learning area [41, 50-53]. The neurons were dropped out at a
certain rate of dropout, and parameters of only preserved
neurons were updated in the training stage, while all the neu-
rons were used in the predicting stage.

3.6. Flatten Layer and Fully Connected Layer. The role of flat-
ten layer was only to convert the data into one-dimension
and then facilitated connection of the fully connected layer.
No parameters were trainable in the flatten layer. The fully
connected layer was similar to hidden layer in the MLP, each
neuron connected to the neurons in the preceding layer.

4. Metrics

We adopted to evaluate the predicted result these frequently
used metrics in the binary classification questions such as
sensitivity (SN), specificity (SP), accuracy (ACC), and Mat-
thews correlation coefficient (MCC), which were defined by

SN = TP
~ TP+EN’
N
P=— |
FP + TN
TP+ TN
ACC= >
TP + FN + FP + TN
TP x TN — FP x FN
MCC=

/(TP + EN)(TP + FP)(IN + FN) (TN + FP)’
(12)

where TP and TN were defined as numbers of the true posi-
tive and the true negative samples, respectively, FP and FN,
respectively, as numbers of the false positive and the false
negative samples in the prediction. SN reflected the accuracy
of the correctly predicted positive samples, SP accuracy of the
correctly predicted negative samples, and ACC the average
accuracy of the correctly predicted samples. SN, SP, and
ACC ranged from 0 to 1, larger meaning better performance.
MCC was Matthews correlation coefficient, representing cor-
relation between the true class and the predicted class. MCC
ranged from -1 to 1. 1 meant perfect prediction, 0 random
prediction, and -1 meant that the prediction was completely
opposite to the true.

5. Results

Table 2 showed the predicting performance of the trained
model on the 712 testing sequences. Although more than ten
approaches or tools for predicting succinylation have been pro-
posed in the past ten years, either they did not provide online
predicting server or the web server could not work. We com-
pared the proposed method to three methods whose web pre-
dicting server still can work [28]: SuccinSite [15], iSuc-
PseAAC [12], and DeepSuccinylSite [29]. 712 testing sequences
were used to examine three approaches. Among 712 testing
sequences, at least 225 sequences repeated in the training set
of the SuccinSite, and at least 223 repeated in the training set
of DeepSuccinylSite. These minus 225 sequences were used to
examine the SuccinSite and these minus 223 sequences to test
the DeepSuccinylSite. iSuc-PseAAC [12] obtained best SP and
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TaBLE 3: Significant KEGG pathway terms.
Species KEGG terms Benjamini
Metabolic pathways 3.30E-08
Biosynthesis of amino acids 1.00E-06
E. coli Biosynthesis of secondary metabolites 2.40E-04
Biosynthesis of antibiotics 7.40E-04
Lysine biosynthesis 3.30E-03
Biosynthesis of antibiotics 3.70E-10
Metabolic pathways 2.80E-09
Ribosome 3.40E-08
Valine, leucine, and isoleucine degradation 1.30E-06
Carbon metabolism 6.20E-06
Oxidative phosphorylation 1.10E-05
H. sapiens Parkinson’s disease 2.60E-05
Citrate cycle (TCA cycle) 1.00E-04
Huntington’s disease 4.10E-04
Alzheimer’s disease 7.80E-04
Aminoacyl-tRNA biosynthesis 1.00E-03
Butanoate metabolism 3.40E-03
Proteasome 8.20E-03
Metabolic pathways 6.20E-26
Parkinson’s disease 8.50E-11
Oxidative phosphorylation 3.40E-10
Nonalcoholic fatty liver disease (NAFLD) 1.00E-09
Huntington’s disease 2.80E-09
Alzheimer’s disease 1.40E-08
Ribosome 3.30E-07
M. musculus .
Peroxisome 1.80E-06
Glycine, serine, and threonine metabolism 1.50E-05
Pyruvate metabolism 9.00E-05
Propanoate metabolism 2.40E-04
Valine, leucine, and isoleucine degradation 1.90E-03
Glyoxylate and dicarboxylate metabolism 3.10E-03
Biosynthesis of antibiotics 5.60E-03
Metabolic pathways 1.00E-04
Microbial metabolism in diverse environments 2.50E-04
M. tuberculosis Biosynthesis of antibiotics 4.40E-04
Biosynthesis of secondary metabolites 1.00E-02
Propanoate metabolism 1.00E-02
Metabolic pathways 5.20E-05
Biosynthesis of amino acids 3.30E-04
S. cerevisiae 2-Oxocarboxylic acid metabolism 7.90E-04
Biosynthesis of antibiotics 3.50E-03
Oxidative phosphorylation 3.50E-03




best ACC but worst SN and worst MCC. The SuccinSite [15]
reached better SP and better ACC but worse MCC and worse
SN. The iSuc-PseAAC [12] and the SuccinSite [15] were in
favor of predicting the negative samples. The DeepSuccinylSite
[29] was better than the LSTMCNNsucc in terms of SN, worse
than the LSTMCNNsucc in terms of sp. The overall perfor-
mance of the LSTMCNNsucc was slightly better than that of
the DeepSuccinylSite.

5.1. Functional Analysis. We used the statistical over-
representation test of gene list analysis in the PANTHER clas-
sification system [54, 55] to perform function enrichment
analysis of the succinylated proteins. The significant biological
process, the molecular function, and the cellular component
terms (p value<0.01) were listed in the supplementary mate-
rials 1 and 2. For five species, Escherichia coli (E. coli), Homo
sapiens (H. sapiens), Mus musculus (M. musculus), Mycobac-
terium tuberculosis (M. tuberculosis), and Saccharomyces cer-
evisiae (S. cerevisiae), they shared some common functions,
but they had also own specific functions. The numbers of
shared terms among five species are shown in Figure 3. H.
sapiens and M. musculus shared 36 significant biological pro-
cess terms and 35 cellular component terms, much more than
the numbers of shared terms between any other two species
(Figures 3(a) and 3(b)). Five species shared eight biological
process GO terms: “biosynthetic process (GO:0009058)”, “car-
boxylic acid metabolic process (GO:0019752)”, “organic acid
metabolic process (GO:0006082)”, “organic substance biosyn-
thetic process (GO:1901576)”, “organonitrogen compound
biosynthetic process (GO:1901566)”, “organonitrogen com-
pound metabolic process (GO:1901564)”, “oxoacid metabolic
process (GO:0043436)”, and “small molecule metabolic pro-
cess (GO:0044281)”; 5 cellular component GO terms: “cyto-
plasm (GO:0005737)”, “cytoplasmic part (GO:0044444),
“cytosol (GO:0005829)”, “intracellular (GO:0005622)”, and
“intracellular part (GO:0044424)”; and two molecular function
GO terms: “catalytic activity (GO:0003824)”, and “molecular_
function (GO:0003674)”. H. sapiens had much more own spe-
cific functions than other species, with 75 specific biological
process GO terms, 14 GO cellular component terms, and 21
molecular function GO terms. No specific functions existed
in both M. tuberculosis and S. cerevisiae whether for biological
process, cellular component, or molecular functions.

We also performed enrichment analysis of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway by functional
annotation in the DAVID tool [56, 57] to investigate in which
pathway the succinylated proteins were involved. The statisti-
cally significant KEGG terms (Benjamini < 0.01) are listed in
Table 3. Different species were involved in some identical
pathways. For example, both metabolic pathways and biosyn-
thesis of antibiotics were enriched in the succinylated proteins
for five species, implying the universal role of succinylation.
On the other hand, different pathways were involved in differ-
ent species. H. sapiens and M. musculus shared more pathway
and had more pathways than other three species, implying
species-specific role of the succinylation.

5.2. LSTMCNNsucc Web Server. We built a web server of the
proposed LSTMCNNSsucc at http://8.129.111.5/. Users either
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directly input protein sequences in a fasta format or upload a
file of fasta format to perform prediction. When both protein
sequences and files were submitted, the file was given to pri-
ority of prediction.

6. Conclusion

We presented a bidirectional LSTM and CNN-based deep
learning method for predicting succinylation sites. The
method absorbed semantic relationship hidden in the succi-
nylation sequences, outperforming state-of-the-art method.
The functions of succinylation proteins were conserved to a
certain extent across species but also were species-specific.
We also implemented the proposed method into a user-
friendly web server which is available at http://8.129.111.5/.

Data Availability

The experimental succinylation and nonsuccinylation sites
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all scientific communities.
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