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MP, 0000-0001-9045-7829; OLP, 0000-0002-7724-1633

Much of life’s diversity has arisen through ecological opportunity and

adaptive radiations, but the mechanistic underpinning of such diversification

is not fully understood. Competition and predation can affect adaptive

radiations, but contrasting theoretical and empirical results show that they

can both promote and interrupt diversification. A mechanistic understanding

of the link between microevolutionary processes and macroevolutionary

patterns is thus needed, especially in trophic communities. Here, we use a

trait-based eco-evolutionary model to investigate the mechanisms linking

competition, predation and adaptive radiations. By combining available

micro-evolutionary theory and simulations of adaptive radiations we show

that intraspecific competition is crucial for diversification as it induces disrup-

tive selection, in particular in early phases of radiation. The diversification rate

is however decreased in later phases owing to interspecific competition as

niche availability, and population sizes are decreased. We provide new insight

into how predation tends to have a negative effect on prey diversification

through decreased population sizes, decreased disruptive selection and

through the exclusion of prey from parts of niche space. The seemingly dispa-

rate effects of competition and predation on adaptive radiations, listed in the

literature, may thus be acting and interacting in the same adaptive radiation

at different relative strength as the radiation progresses.
1. Introduction
It is well known that ecological and evolutionary time scales can overlap and

that community richness can be a consequence of both ecological and evol-

utionary processes acting in concert [1]. These ideas are supported by

empirical studies showing that diversity of various organisms has arisen

through adaptive radiations [2–4]. Such diversification is thought to be facili-

tated by ecological opportunity and niche availability through colonization of

a novel environment or mutations that lead to innovations [2,5].

Several mechanisms have been suggested for the link between ecological

opportunity and adaptive radiations [2]. Theory for ecological speciation shows

that frequency-dependent competition for common resources can drive diversifi-

cation [6–8]. Interspecific competition can thus be one of the main drivers of

adaptive radiations [9–11]. Conversely, competition for niche space also affects

niche availability, which is one of the major prerequisites for adaptive radiations

[12–14]. Competition can also decrease population size, which in turn may lead

to reduced genetic variation, fewer beneficial mutations, reduced disruptive selec-

tion and ultimately low diversity [4,15,16]. Such effects may underlie empirical

results showing that competition can both promote [17] and reduce [18]
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Figure 1. Model illustration (a – c) and example of model output (d – f ). A species pool of top consumers (a) with some trait z (e.g. birds of prey with body size z)
and a pool of competitive consumers (b) with trait u (e.g. granivorous birds with beak size u) that interact on an island (c) defined by some implicit resource
distribution with peak abundance as uopt and width sK. The three trophic levels are distributed on the same trait dimension (e.g. size) here illustrated by colour.
Competition between species is dictated by their niche width (black and grey Gaussian kernels), and we assume that populations with similar traits interact more
than less similar ones. The invasion fitness of a mutant is thus a function of its trait-matching to its resources, the traits of its competitors on the same trophic level
and their niche widths. We simulate adaptive radiations (e) and community data ( f ) with the assumption of ecological opportunity by seeding the system with
monomorphic populations with trait value equal to uopt. From this starting point at each evolutionary time step we computed community equilibrium, we allowed
for mutations, computed mutant invasion fitness (d ), and we either added the mutant population to the community or replaced the mutating population with the
mutant population. Grey and red colour in (d – f ) denote data associated with prey and predators, respectively.
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diversification, but to fully understand such contrasting results,

a better link between radiations and competition is required.

Predation can also drive adaptive radiations [5]. Diver-

gence can occur when prey adapt in different ways to

predation by a common predator [19,20]. Theory also supports

the idea that trophic interactions can induce disruptive selec-

tion on prey populations and thus drive evolutionary

branching [21–23]. Conversely, predation may reduce prey

population size which can reduce prey diversification owing

to reasons explained above. The empirical support for one or

the other of such effects of predation is, however, limited as

few studies have focused on this issue [5,24,25].

Each of the effects presented above makes sense when

viewed in isolation. However, their combined effect is largely

unknown, which makes the full mechanistic link between

ecological opportunity and adaptive radiations elusive [2].

Theory that links ecological and evolutionary processes on

the micro-scale with macroevolutionary patterns (see examples

of such patterns in [3,4,17]) is thus needed [26]. Along these

lines, evolutionary radiations in predator–prey systems have

been investigated [22,23,27,28] but much is still unknown

about the mechanisms behind adaptive radiations in trophic

communities. With this in mind, we aim to reconcile theory

on ecological speciation and some of the seemingly disparate

causalities between ecological interactions and adaptive radi-

ations. We adopt a trait-based [7,29,30] adaptive dynamics

approach [6] and we construct a simulation model based on

the assumption that ecological opportunity for diversification

exists (figure 1). As a baseline for our investigations, we first

study how the degree of competition between competitor

species (defined through their niche width) affects diversifica-

tion of a community of only competitors. Then, as we are

interested in quantifying the effect of predation on the diversi-

fication of competitors, we investigate how predator properties
like niche width, attack rate and predator mutation rate affect

predator–prey co-evolution in adaptive radiations. We use

this approach to test two a priori predictions derived from

current theoretical and empirical work. First, if species niche

width of the radiating organism is narrow in relation to the

total niche availability then adaptive radiations will be facili-

tated [6,7,22,31] and the radiation will continue with declining

diversification rate as niche space is filling up and population

sizes decline [32–35]. This scenario has been studied before,

with similar models. We used it as a baseline for our extended

analysis including both competition and trophic interactions.

Second, predator niche width, attack efficiency and mutation

probability may affect prey radiations negatively through

decreased divergent selection on prey and reduced prey popu-

lation sizes [4,36]. To test these predictions, we follow the

radiation process throughout evolutionary time and quantify

community metrics like species richness, trait distributions,

population size, competition strength and predation.
2. Ecological model
We use the generalized Lotka–Volterra (GLV) model as the

basis for the eco-evolutionary dynamics of prey and predator

populations [37] (figure 1). The ecological dynamics, in per
capita form, of n prey populations and p predator populations

are described as:

dNi

Nidt
¼ rþ

Xn

j¼1

�raijNj

Ki
�
Xp

k¼1

aikPk ð2:1Þ

and

dPk

Pkdt
¼ �dþ c

Xn

i¼1

aikNi, ð2:2Þ
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for i ¼ 1 to n, k ¼ 1 to p and where Ni and Pk denote prey and

predator population size respectively. The parameter r is the

intrinsic growth rate, and Ki denotes the carrying capacity of

prey population i. The parameter aij denotes competition

between prey populations’ i and j. Parameter d is the intrinsic

death rate of the predators, c is the conversion coefficient

from prey to predator and aik denotes the rate of attack

from predator k on prey i.
The model in its basic form, as it is formulated above, does

not include trait dependent interactions or explicit resource

utilization. However, similar to other trait-based models

[7,29,30] we expand on this model and describe the competitive

community with dynamic vectors N and P, representing

prey and predator population abundances respectively.

We also introduce static (on ecological time scale) vectors u

and z, representing the prey and predator population traits.

We then reformulate carrying capacity (Ki), the prey inter-

actions (aij) and predator–prey interactions (aik) as trait

dependent functions:

Kiðui, uoptÞ ¼ K0e� ððuopt�uiÞ2=2s2
KÞ, ð2:3Þ

aijðui, ujÞ ¼ e�ððui�ujÞ2 =2s2
aÞ ð2:4Þ

and aikðui, zkÞ ¼ bmaxe� ððui�zkÞ2=2s2
a Þ, ð2:5Þ

where Ki(ui, uopt) represents the carrying capacity for a

monomorphic population of prey individuals with trait value

ui in a habitat characterized by a resource distribution

with its peak resource availability at the point uopt. For

simplicity, but without loss of generality, we set uopt ¼ 0

throughout our analysis. K0 denotes the maximal carrying

capacity (at u ¼ uopt) and it follows from equation (2.3)

that the resource availability declines symmetrically as u
deviates from uopt according to the width of the resource

distribution (sK).

Equation (2.4) models the interaction coefficient, aij(ui, uj),

between the focal prey population (defined by its trait ui) and

its competitors (defined by their traits uj). Here, we standardize

the competition coefficients so that, for a focal population i,
aii ¼ 1 and 0 , aij , 1 (ui = uj). sa determines the degree of

competition between individuals given certain utilization

traits and can thus be viewed as the niche width of the prey.

Equation (2.5) models the interaction, aik(ui, zk), between a

focal predator population k with trait value z and a prey popu-

lation i with trait value u. The parameter bmax denotes the

maximum attack rate obtained when ui ¼ zk and this rate

then falls of symmetrically as ui deviates from zk according to

a Gaussian function with variance sa. Similar to the sa par-

ameter, sa can be viewed as the niche width of the predator.

From the above, it follows that our full trait-based ecological

model is formulated as:

dNi

Nidt
¼ rþ

Xn

j¼1

�raijðui,ujÞNj

Kiðui, uoptÞ
�
Xp

k¼1

aikðui, zkÞPk ð2:6Þ

and

dPk

Pkdt
¼ �dþ c

Xn

i¼1

aikðui, zkÞNi, ð2:7Þ

and it also follows that prey populations compete for resources

and predators consume prey in a spatially distinct and homo-

geneous habitat and local resources are distributed in the same

trait dimension as the predator and prey resource utilization

trait. Similar to, for example, Doebeli & Dieckmann [36] we
assume that consumer–resource and consumer–consumer

trait matching dictates resource utilization and competition

respectively. Given these general assumptions and similar to

previous community models [9,10,38], the per capita growth

(fitness) of a focal competitor individual associated with a

given population is thus a function of its resource utilization

trait, the abundance of the individual’s own population, the

local resource distribution and the abundance of all other

populations competing for the same resources. The fitness of

a predator is a function of its trait, the traits and abundance

of its prey and the traits and abundance of other predators

to which the focal predator competes.
3. Evolutionary analysis
The fitness landscape in trait space for both predator and

prey will be determined by the distribution of species and

their abundances as well as the resource distribution in trait

space. The resource utilization traits (u and z) are under selec-

tion with the potential to evolve as a response to the

ecological properties of the system. Fitness will be low in

parts of trait space where many abundant populations

occur owing to competition, even though the underlying

resources may be abundant initially. Contrary, fitness can

be positive in parts of trait space where resources may be

scarce if there is little or no competition for those resources.

We adopt the adaptive dynamics framework [6,39] to formu-

late trait dependent fitness for an arbitrary predator and prey

mutant mathematically as:

Gpreyðu0, u, z, N, PÞ ¼ rþ
Xn

j¼1

�raðu0, ujÞNj

Kðu0, uoptÞ
�
Xp

k¼1

aðu0, zkÞPk

ð3:1Þ

and

Gpredðz0, u, NÞ ¼ �dþ c
Xn

i¼1

aðui, z0ÞNi, ð3:2Þ

where u0 denotes the trait value of the mutant prey and z0

denotes the trait value of a mutant predator. The vectors u,

z, N and P are defined as above containing the resident

community trait distributions and abundances.

The expressions stated in equations (3.1) and (3.2) are gen-

eral, describing the fitness of any focal species conditioned on

its traits and the traits of other species with whom it may inter-

act. As our study is focused on adaptive radiation under the

assumption of ecological opportunity, we start our evolution-

ary analysis with only one (in the prey only case) or two

(predator–prey case). Focusing on our baseline prey analysis

for now and following adaptive dynamics theory, the slope

of the prey fitness functions presented above dictates the

speed of prey evolution. For our model the slope, or the prey

fitness gradients, is formulated as:

@Gprey

@u0

����
ðu0¼u,N¼N�ðuÞÞ

¼ � r
s2

K
u: ð3:3Þ

This partial derivative describes eco-evolutionary dynamics

when it is introduced in the generally formulated canonical

equation first presented by Dieckmann & Law [40]:

du
dt
¼ 1

2
ms2N�ðuÞ @Gðu0, uÞ

@u0
ju0¼u: ð3:4Þ

Equation (3.4) describes how the value of an ecological trait (u)
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evolves depending on the per capita mutation probability (m,

related to our parameters mprey and mpred), the variance of

mutation size (s, related to our smut), the population size at

equilibrium (N*) and the selection gradient (equation (3.3)). It

follows that the fitness gradient is positive for u , 0, negative

for u . 0 and zero at u ¼ uopt ¼ 0.

Differentiating equation (3.3) with respect to u gives us:

d

du
@G
@u0

� �
¼ � r

s2
K

, ð3:5Þ

which tells us that u ¼ 0 is always a convergent stable evolution-

ary singular point. A population of individuals with trait u away

from zero will always evolve towards u ¼ 0. What happens

when the population has reached u ¼ 0 is model dependent

and can be analysed through the second order partial derivative

of the prey fitness function, with respect to u0:

@2G
@u02

���� u0 ¼ 0
u ¼ 0

N ¼ N�(0)

¼ r
1

s2
a

� 1

s2
K

� �
: ð3:6Þ

Equation (3.6) tells us that selection is disruptive and evolution-

ary branching can occur if mutant populations are allowed to

invade and if sa , sK. If sa . sK the selection is stabilizing

and no branching will occur [36].

Now, introducing the predators with trait value z ¼ uopt we

analyse the first evolutionary singular point of the predator–

prey system by recalculating the derivatives presented in

equations (3.3), (3.5) and (3.6) with the predator included.

First, we need to find the expressions for the prey and the pred-

ator populations at u ¼ z ¼ uopt. Prey equilibrium (N*) is easily

computed by solving equation (2.7) with respect to N. By

substituting N for N* in equation (2.6) and solving with respect

to P we get P*. Equilibrium population sizes for our model then

becomes:

N� ¼ d exp(u2=ð2s2
aÞÞ

a0C
ð3:7Þ

and

P� ¼ r exp(u2=s2
aÞ

K0a0c expð�ðu2=ð2s2
aÞÞÞ � d expðu2=ð2s2

KÞÞ
K0a2

0c
:

ð3:8Þ

The expressions in equations (3.7) and (3.8) can now be

substituted into equation (3.1) and the second-order partial

derivatives computed above now becomes:

d

du0
@G
@u0
ju0¼u

� �
u¼0

¼ � r
s2

K

d
K0a0C

þ r
s2

a
1� d

K0a0C

� �
ð3:9Þ

and

@2G
@u02
ju0¼u¼0 ¼ r

s2
K � s2

a

s2
Ks

2
a

d
K0a0C

þ r
s2

a
1� d

K0a0C

� �
: ð3:10Þ

Equations (3.9) and (3.10) tell us that the convergent

stable evolutionary branching point in the prey system at

uopt becomes an unstable repellor for large parts of parameter

space, when a predator with trait value z ¼ uopt is introduced.

This result is intuitive, prey tends to evolve away, in trait

space, from predators unless the resource peak is very large

(e.g. high K0) or if the predator is weak (e.g. high d or low

a0 and c).
4. Simulation algorithm and parameter values
The analytical investigation presented above gives us an

idea of how the system behaves initially, but it tells us little

about adaptive radiations. We use simulations to study adap-

tive radiations in competitive prey communities without

predators (our reference community) and we compare these

reference communities to co-radiating predator–prey commu-

nities. We start by setting up the model described above, we

implement the assumption of ecological opportunity by seed-

ing the system with one (in scenarios without predators) or

two (in the predator–prey scenario) monomorphic popu-

lation(s) with trait value equal to uopt and we compute the

equilibrium population size by solving our ecological model

numerically (equations (2.6) and (2.7)). We refer to the popu-

lation(s) with positive abundance in the system at ecological

equilibrium as resident population(s) from now on. From this

starting point, with resident population(s) at equilibrium,

we then ask whether a mutant with trait value u0 or z0 can

invade. Similar to, for example, Ito & Dieckmann [31] for

each evolutionary time step we compute community equili-

brium, we allow for mutations, compute mutant invasion

fitness, mutant and resident mutual invasibility and we

either add the mutant population to the community or replace

the mutating population with the mutant population.

We compute the equilibrium population sizes by integrat-

ing over equations (2.6) and (2.7) until equilibrium or a steady

state has been reached. Then, we introduce mutants. Popu-

lations mutate according to the product of the population

size and mutation probability (mprey and mpred). Abundant

populations are thus more likely to mutate than less abundant

ones. More specifically, a single mutant is drawn at each

evolutionary time step with probability weighted by popu-

lation sizes (related to the total number of individuals in

the system) and the mutation probabilities. We modelled

mutation size for both predators and prey as a random trait

value drawn from a normal distribution with mean equal to

the trait value of the mutating population and a variance

(smut) equal to 0.02. Mutation probability for the prey (mprey)

was kept constant at 0.01. We compute invasions fitness by

solving equation (3.1) for a prey mutant and equation (3.2)

for a predator mutant. If the mutant has positive invasion fit-

ness, we continue our analysis with a mutual invasibility test.

This means that the mutant is allowed to replace the resident

population, equilibrium is recalculated and the invasion fit-

ness of a population with the resident morph is quantified,

using the same procedure as described above. If the mutant

invasion fitness is positive but mutual invasibility does not

exist, the mutant will replace the resident. However, if

mutual invasibility does exist, the resident and the mutant

can coexist. After the mutant is either introduced alongside

the resident or replaced the resident, we recalculate the equili-

brium, removing populations that may have gone extinct

owing to the introduction of the new population. We thus pro-

gress into the next evolutionary step, repeating the whole

procedure and we run our simulations for 3000 evolutionary

steps. As a robustness check, additional simulations were also

run with 5000 evolutionary steps (electronic supplementary

material, appendix 1).

For each evolutionary step, we also assigned each popu-

lation to a species ID using a trait-based speciation

definition (see also [9,10]). We define species as populations

having common descent and a continuous distribution of
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traits (no gaps in the trait distribution . 3* sm). When a

gap . 3* sm was detected in the trait distribution within

an existing species, it was considered a speciation event

(i.e. one species branching into two). Although somewhat

arbitrary, this limit of 3* sm makes biological sense as it is

large enough to prevent speciation by only a few mutations.

By registering the time and origin of all speciation events

as well as trait distributions and abundance throughout

evolutionary history we have all the information required

to follow the dynamics of diversity, phylogenetic and

phenotypic community structure.

In our endeavour to understand radiations in our reference

competitive community, we simulate radiations with different

prey niche widths (sa ¼ 0.1–0.7). Prey niche width needs be

considered in relation to the width of the resource distribution

(sK). If sa is larger than or close to the width of the resource

distribution sK (here set as a constant ¼ 1), competition

strength will be high even among populations using opposite

ends of the local resource spectrum. Consequently, there will

only be room (regarding niche space) for one population and

no branching will occur in the local community [9,10]. If, on

the other hand, the biotic niche width is narrower (sa , sK),

then local evolutionary branching is facilitated, driving prey

speciation [6,7]. When we study predatory effects on competi-

tive prey radiations we investigate the effect of predator niche

widths (sa ¼ 0.1–0.7) which is a parameter that should be

interpreted in the same way as sa with the exception that pre-

dators consume discrete resources (prey populations) rather

than a continuous resource distribution defined through K0,

uopt and sK. We also analysed a range of predator efficiency

(bmax ¼ 0.0001–0.0007) and we varied predator mutation

probability (mpred ¼ 0.005–0.1). Constant model parameters

for the simulations were: K0 ¼ 10 000; sK ¼ 1; r ¼ 1; d ¼ 0.2;

c ¼ 0.3. All constants, as well as the ranges in the analysed

parameter space, were chosen to produce diverse enough com-

munities to analyse adaptive radiations within reasonable

computational time. Parameters r and d were chosen to

get stable ecological dynamics at simulation initiation. With

this being said, we do run simulations with different r and d
as a robustness check (electronic supplementary material,

appendix 1).
5. Results
As expected, we see a clear relationship between prey niche

width and the possibility for branching (figure 2). The popu-

lation finds itself at a fitness minimum, a branching point,

and given that the prey niche width is smaller than the width

of the resource distribution [36], frequency-dependent compe-

tition for resources makes all mutants beneficial. As formulated

by the canonical equation (equation (3.4)) the speed of which

that evolutionary change occurs is dependent on the fitness

gradient, population sizes, and mutation probability. We also

find that the curvature of the fitness landscape at the branching

point depends on prey niche width, suggesting that prey

branching can be rapid, such that incipient species diverge

fast, when niche width is narrow (figure 2a).

In the predator–prey system, also initiated with traits at

resource optimum, we find a similar prey branching point,

and the curvature at the fitness minimum is affected by preda-

tor niche width and efficiency (figure 2b,c and equation (3.10)).

For example, our numerical analysis shows that when predator

niche width is narrower, the curvature at the branching point is

steeper compared to when predators were absent. Again, the

speed at which that evolutionary change occurs is dependent

on the fitness gradient, population sizes, and mutation prob-

ability which suggests that predators can promote and speed

up prey branching. When predator niche width is wide, the

prey fitness landscape is, however, shallower, suggesting that

predators can slow down prey branching. Predator efficiency

also affects the disruptive selection acting on prey by making

the fitness landscape shallower, and a high efficiency interrupts

speciation more than a less efficient predator (figure 2c).

The results presented above can to some extent be derived

from the adaptive dynamics theory literature (e.g. [6,7,21,22]).

However, adaptive dynamics theory focuses largely on the

details of evolutionary singular points and while they give

an idea of how ecological interactions affects diversification,

they do not provide full understanding or predictions about

adaptive radiations, especially co-radiating predator–prey

radiations (but see [22]). Our results on prey adaptive radi-

ations show that diversity builds up over evolutionary time

with a negative relationship between diversification rate
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space combine to decrease population size (d, dashed lines) which in turn can decrease the evolutionary rate. If nothing else is stated parameters and traits were set
to: uopt ¼ 0; K0 ¼ 10 000; sK ¼ 1; r ¼ 1; sa ¼ 0.1; mprey ¼ 0.01.
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and prey niche width (figure 3a). Radiation occurs, and the

community spreads out in trait space and niche availability,

measured as the sum of positive invasion fitness for prey

mutants evenly distributed between 23 and 3 in trait space,

decrease (figure 3b). A consequence of the radiation spreading

out in trait space is that mean competition, computed as the

mean of all elements in the community matrix, decreases

(figure 3c). The decrease in available niche space leads to

increased niche packing which results in increased compe-

tition experiences by the species, measured as the mean of

the row sums of the community matrix (figure 3c). Mean car-

rying capacity and mean population size also decrease as

diversification progresses (figure 3d ). We thus find two pro-

cesses that combine to decrease diversification rate: (i) niche

availability is decreased such that the fitness landscape

becomes shallower, and (ii) population size decreases and

thus reduces evolvability (related to N* in equation (3.4)).

Both processes are also directly influenced by the niche

width of the radiating organism.

Adaptive radiations of trophic communities show that

predator–prey interactions largely interrupt prey diversifica-

tion and we find a general negative relationship between

prey diversification and predator niche width and efficiency

(figure 4a–c). Nevertheless, predation can push the prey

diversity beyond the diversity of the prey reference commu-

nity when predator niche width is high and when prey

niche width, predator efficiency, and mutation probability

are low, especially in late stages of the radiation (figure 4a
and electronic supplementary material, appendix 1, S1–S4).

The reason for this interesting exception can be viewed in
the radiations (figure 5). The predator interrupts the second

and third branching such that they occur later in evolutio-

nary time than they do in the reference community. They

also occur further apart in trait space compared to the refer-

ence, as the predator pushes the prey into the peripheral

parts of the resource distribution. Multiple distinct prey

clades are then radiating in trait space, a wide niche space is

filled up and a diverse community with a wide trait distri-

bution will eventually emerge (figure 5a,b). More specifically

the width of the resource distribution widens from 21.6

to 1.6 in the reference community to 22.5 to 2.4 in the

predator–prey community.

The reason for the general decline in prey diversity owing to

predation can be because of the effect that predators have on the

disruptive selection on prey (figure 2) or because of the preda-

tor-induced decline in prey abundance (figure 4g– i). Predator

diversity builds up with time (figure 4d– f), especially at inter-

mediate predator niche width, leading to more predators that

ultimately affects the prey radiation process. Furthermore, we

identify additional macroevolutionary effects. Either the pred-

ator can co-evolve with the prey, radiate alongside the prey

adaptive radiation (co-radiate) and continuously interrupt

prey radiations; or alternatively, the predator can exclude the

prey from parts of trait space and thus restrict prey radiation.

Co-radiation mainly occurs at intermediate predator niche

width (e.g. sa ¼ 0.3) and low to intermediate mutation prob-

ability (mpred ¼ 0.005 and 0.01) (figure 5a). The ultimate effect

of co-radiation will, however, also depend on predator effi-

ciency. If efficiency is low (e.g. bmax ¼ 0.0001, as figure 5a) the

predators have little or no effect on prey communities even
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though the predator is co-radiating. But if efficiency is high (e.g.

bmax ¼ 0.0005) predators can leave gaps in the prey trait distri-

bution (figure 5b) and thus reduce prey diversity. During such

conditions, the widening effect of the prey trait distribution still

occurs but this effect on prey diversity is counteracted by the

predator-induced gaps in prey niche space. Conversely, preda-

tors excluding the prey from large parts of trait space without

co-radiation, occurs when the predator’s efficiency is large

(e.g. bmax ¼ 0.0007), niche width is low (e.g. sa , 0.1) and

mutation probability is low (e.g. mpred ¼ 0.005) (figure 5c).

The repelling force away from uopt seen in equation (3.9) is

strong and the system is pushed away from this point before

the first branching occurs. The prey then radiates in parts of

niche space where the predator is not present. The predator

will not branch during such conditions, as there will be now

disruptive selection on predators. Finally, we find a clear

effect of predator mutation probability showing that high

values (e.g. mpred ¼ 0.1), in particular in combination with

high predator efficiency (e.g. bmax ¼ 0.0007), can interrupt the

branching altogether (figure 5d ).
6. Discussion
Ecological release through colonization of a novel habitat or

mutations leading to innovations are arguably some of the

most important prerequisites for rapid speciation and morpho-

logical diversification [2]. Many natural clades have diversified

through such ecological release followed by diversification in

adaptive radiations [2–4,18,41]. Competition, which may be

the most prominent factor that affects adaptive radiations can

both promote and interrupt diversification [42]. Similarly, pre-

dation has been suggested to promote divergent selection in

prey [19,20,43]. Here we conclude that intraspecific compe-

tition is crucial for diversification, but diversification rate

slows down as interspecific competition increases. Further-

more, predation generally has a negative effect on prey

diversification through decreased population sizes, decreased

disruptive selection and through the exclusion of prey from

parts of niche space.

More specifically, we identify a clear relationship between

niche width of the radiating organism, diversification rate
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and community diversity (figure 3a). The fact that niche width

affects eco-evolutionary speciation is known from before [6,7]

and here we confirm results from the adaptive dynamics litera-

ture that a narrow niche width also facilitates adaptive

radiations. Similar to macroevolutionary patterns that have

been statistically quantified by several empirical studies

[33,34] we see a decrease in diversification rate with evolution-

ary time and the decrease is directly linked to the niche width

of the radiating organism. The current knowledge of the

mechanistic underpinning of such empirical patterns is lim-

ited, but by combining knowledge from micro-evolutionary

theory and our simulations we identify three processes that

combine to produce such diversity dependent patterns. First,

intraspecific competition is crucial for each branching event

as this is the main driver of diversification. Second, as diversity

increases, niche availability is decreased owing to interspecific

competition. The fitness landscape becomes more shallow, and

the speed of evolution (formulated in the last term of equation

(3.4)) is thus also reduced. Third, a general decrease in popu-

lation size also reduces evolvability (related to N* in equation

(3.4)) and thus slows down diversification. All the proposed

effects of competition listed in the introduction of this paper

are thus acting and interacting in the same adaptive radiation

only the relative strength of them change as the radiation

progress.

We show novel results on how predators tend to decrease

prey diversification (figures 2 and 4). Predation can decrease

competition driven disruptive selection in prey and preda-

tion also decreases prey abundance (figure 4g– i) which
lowers the speed of prey diversification. In line with micro-

evolutionary theory and previous experimental work [4,36]

we thus conclude that that predator niche width, attack effi-

ciency, and mutation probability will affect prey radiations by

altering the prey fitness landscape and prey population sizes.

Interestingly, we also find that predators can exclude the prey

from parts of trait space and thus restrict prey diversification.

Finally, even though we show that predation can increase dis-

ruptive selection on prey species (figure 2), we rarely see an

increased diversification rate in co-evolving communities com-

pared to competitive communities only. Predators can promote

prey speciation in our simulations, but if this occurs early in the

adaptive radiation predators tend to go extinct after the first

prey branching (when predator niche width was low) or not

branch (when predator niche width was high). Predator-

driven adaptive radiations [44] thus seem difficult, at least

under the assumptions tested with our model. Nevertheless,

we do see that predator–prey co-evolution can induce high

prey diversity compared to the reference competitive commu-

nity, especially in late phases of the radiations and when

predator efficiency is low, and predator mutation probability

is low to intermediate (electronic supplementary material,

appendix 1 and figures S1–S4). This unprecedented pattern is

because of an interesting phenomenon of predators pushing

prey communities to evolve into a wide niche space and thus

increase the width of their trait distribution and diversity that,

to our knowledge, has not been observed or suggested before.

The results discussed above facilitate a general under-

standing of the eco-evolutionary drivers of adaptive radiations

through the link between microevolutionary processes

(equations (3.3)–(3.10)) and macroevolutionary patterns called

for by Gavrilets [26]. Although equations (3.3)–(3.10) do not

directly apply to macro-evolutionary processes and the speed

of adaptive radiations, we use them as guidance in our investi-

gations and interpretation of large-scale community patterns.

We thus provide a quantitative link between the concept of

ecological release through innovation, eco-evolutionary specia-

tion and adaptive radiations reviewed by Yoder, Clancey [2].

Our investigations give mechanistic insights to density and

frequency dependent speciation, and the role of competition

in macroevolution called for by [33,42] and the largely unknown

effect that predation may have on prey adaptive radiations

[4,45]. That said, as in any modelling study, our results are

restricted by model assumptions and the parameter space

analysed. We model asexual organisms, we assume a constant

environment and resource availability, we assume a one-

dimensional trait space, we omit space, and we make explicit

assumptions about competition, resource utilization through

trait matching and linear predator functional response (initial

simulations suggest that exploring the influence of a type 3 func-

tional response would be very interesting). It may also seem

unrealistic to compare communities that contain species with

either a narrow or a broad niche width, as most communities

will have both specialist and generalist species. Niche width

can also change with evolutionary time [46,47] and it can be

argued that our community assembly model through ecological

speciation is unrealistic as few if any natural communities are

assembled purely by an adaptive radiation. Even though our

results may be directly applicable to non-sexual organisms,

our aim is, however, not to model any particular empirical

system but rather investigate the fundamental causal effects

between ecological opportunity, eco-evolutionary microevo-

lutionary processes, and adaptive radiations. We thus isolate
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processes by specifying an ecological model and simulate the

eco-evolutionary assembly processes. We base this simulation

approach on a well-established ecological trait-based modelling

approach and eco-evolutionary adaptive dynamics theory.

We do not assume speciation rates or community richness.

Instead, our minimal assumptions about traits, trait matching

and trait evolution drive the eco-evolutionary dynamics, and

the community patterns will be emergent properties of those

focused assumptions. We elucidate some of the mechanisms

that underpin adaptive radiations, and it will be intriguing to

see future studies that may attempt to expand and apply this

theoretical investigation.
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