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The serine/threonine kinase Akt is a master regulator of many diverse cellular functions,
including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine
kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-
3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The
signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast
range of downstream substrates is thus central to control of cell physiology in many
different contexts and tissues. This axis must be tightly regulated, as disruption of
PI3K-Akt signaling underlies the pathology of many diseases such as cancer and
diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the
spatial and temporal compartmentalization of Akt activation and function, including in
specific nanoscale domains of the plasma membrane as well as in specific intracellular
membrane compartments. Here, we review the evidence for localized activation of PI3K-
Akt signaling by receptor tyrosine kinases in various specific cellular compartments,
as well as that of compartment-specific functions of Akt leading to control of several
fundamental cellular processes. This spatial and temporal control of Akt activation and
function occurs by a large number of parallel molecular mechanisms that are central to
regulation of cell physiology.

Keywords: receptor tyrosine kinase, endocytosis, plasma membrane, endosome, lysosome, nucleus,
phosphatidylinositol-3,4,5-trisphosphate, phosphatidylinositol-3-kinase

INTRODUCTION

Signaling by the phosphatidylinositol-3-kinase (PI3K)-Akt pathway is a central regulator of cell
growth, metabolism, and survival (Fruman et al., 2017; Manning and Toker, 2017). PI3K-Akt
signaling is involved in a wide range of physiological processes in many different cells and tissues,
and at various stages of development including homeostasis of adult tissues. Disruptions of PI3K-
Akt signaling also contribute to disease, such as the insulin resistance and type II diabetes that
results from impaired PI3K-Akt signal transduction in insulin-responsive tissues (Boucher et al.,
2014; Manning and Toker, 2017). In contrast, inappropriate amplification of PI3K-Akt signaling is
present in many different types of cancer cells thereby driving cell growth and tumor progression
(Cheng et al., 2005; Carracedo and Pandolfi, 2008; Liu et al., 2009; Fruman and Rommel, 2014;
Thorpe et al., 2015; Fruman et al., 2017; Manning and Toker, 2017).
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PI3K-Akt signaling occurs following a wide range of
cues emanating from the plasma membrane, such as
receptor tyrosine kinases, G-protein coupled receptors
and immune receptors (Fruman et al., 2017; Manning
and Toker, 2017). Activation of these receptors, typically
but not exclusively resulting from ligand binding, leads to
signals that classically activate class I PI3K, leading to the
production of phosphatidylinositol-3,4,5-trisphosphate (PIP3)
from phosphatidylinositol-4,5-bisphosphate (PI45P2). In
addition, receptor signaling can lead to the production of
phosphatidylinositol-3,4-bisphosphate (PI34P2), either by
dephosphorylation of PIP3 by 5-phosphatases or by activation
of class II PI3Ks that phosphorylate phosphatidylinositol-
4-phosphate (PI4P). PIP3 and PI34P2 trigger membrane
recruitment and potentiate signals that lead to the activation of
Akt. In turn, Akt exerts control of >100 substrates distributed
throughout the cell including the plasma membrane, various
endomembrane compartments, the mitochondria, cytosol, and
the nucleus (Wang and Brattain, 2006; Santi and Lee, 2010; Ebner
et al., 2017a), thus directing multiple facets of cell physiology.

A central question in the regulation of receptor signaling is
the control of these signals by their spatiotemporal organization,
such as afforded by the endomembrane system. Many receptor
complexes initiate signaling at the plasma membrane and
subsequently undergo endocytosis upon ligand binding leading
to the transit of active receptor signaling complexes through
various endomembranes, which depending on the membrane
traffic itinerary of each receptor can include early, recycling
and late endosomes (Scita and Di Fiore, 2010; Goh and Sorkin,
2013; Barbieri et al., 2016). This endocytic movement has
led to the central hypothesis that the plasma membrane and
various internal membrane compartments represent distinct
signaling environments, such that activated receptors may trigger
unique signals from each membrane locale. Moreover, the
plasma membrane, and by extension various endomembrane
compartments are non-homogenous lipid bilayers, comprised of
various nanodomains defined by the presence of unique proteins
such as clathrin, caveolin, flotillin and tetraspanins, as well as
actin-dependent nanodomains, each of which also represent
unique signaling nano-environments for activated receptors
(Delos Santos et al., 2015; Lu and Fairn, 2018).

Distinct signaling environments, ranging from nanoscale
domains at the plasma membrane to microscale endomembrane
compartments represent opportunities for distinct activation,
regulation or functional outcome of PI3K-Akt signaling. In this
review, we first examine the identity of the molecular players
that trigger the initial activation of and/or regulate PI3K-Akt
signaling by cues that initiate at the cell surface. Although Akt
activation also occurs in response to other intracellular cues,
such as in response to DNA damage (Liu et al., 2014), we focus
here on signals triggered at the plasma membrane by receptor
tyrosine kinases (RTKs). We direct the reader to several excellent
recent reviews that examine the spatiotemporal organization
of signaling by GPCRs and other receptors (Kholodenko
et al., 2010; Subramanyam and Colecraft, 2015; Gahbauer
and Böckmann, 2016; Calebiro and Sungkaworn, 2018). We
examine the evidence for specific localization of PI3K-Akt

signals to various subcellular compartments, including nanoscale
domains of the plasma membrane and various endomembrane
compartments. Subsequently, we examine the evidence that the
spatiotemporal organization of PI3K-Akt signaling within these
various compartments may result in distinct outcomes of Akt
signaling at each locale.

MOLECULAR MECHANISMS OF
PI3K-Akt SIGNAL ACTIVATION

Receptor tyrosine kinases are a family of 58 human proteins
that are critical for a wide range of physiological processes,
from development to maintenance of tissue homeostasis in
adults (Lemmon and Schlessinger, 2010; Lemmon et al., 2014).
RTK activation can trigger signals that promote cell growth,
proliferation, survival, migration or differentiation, and these
outcomes depend on the specific ligand, receptor, and cellular
context. RTKs for the most part bind extracellular ligands, which
then leads to activation of intrinsic kinase domains that then relay
the signal from ligand binding to intracellular signaling networks
(Yarden, 2001; Lemmon and Schlessinger, 2010). RTK activation
typically occurs either by ligand binding to a constitutive receptor
dimer (as is the case for insulin receptor) (McKern et al.,
2006; Siddle, 2011), or by stabilization of a receptor dimer (as
is the case for the epidermal growth factor receptor, EGFR)
(Alvarado et al., 2010).

For many RTKs, activation of their intrinsic kinase domain
results in phosphorylation of multiple tyrosine residues within
cytosolic motifs of the receptor itself, which in turn serve
as ligands to recruit signaling adaptors or enzymes harboring
phospho-tyrosine binding (PTB) or Src-homology 2 (SH2)
domains. This, in turn, leads to activation of a vast network of
signals, which has been extensively reviewed elsewhere (Yarden
and Shilo, 2007; Lemmon and Schlessinger, 2010; Wagner et al.,
2013; Wee and Wang, 2017). Here, we focus on signals that lead
to activation of PI3K, leading in turn to the production of specific
phosphoinositides, such as PIP3 and PI34P2, and subsequently
Akt activation. To this end, we discuss PI3K enzymes, how these
are activated by direct binding to RTKs or to scaffolding proteins,
and how this leads to the activation of Akt. We also consider
negative regulation by relevant lipid and protein phosphatases.

PI3K Isoforms
Phosphatidylinositol-3-kinase enzymes are classified into three
classes (I–III). Class I PI3K are comprised of one of several
p110 catalytic subunits and one regulatory subunit of variable
size (Jean and Kiger, 2014; Thorpe et al., 2015). RTKs primarily
activate a subset within this group, Class 1A PI3K, which are
comprised of a heterodimer of one p110α, β, or δ catalytic
subunit and one p85α (or splice variants p50α and p55α), p85β

or other regulatory subunits. Class 1B PI3Ks are comprised of
the p110γ catalytic subunit and the p101 and p87 regulatory
subunits and are largely activated by GPCR signaling (Vadas et al.,
2013), and thus will not be examined here as we focus on RTK
signaling. For Class IA PI3Ks, the interaction of regulatory and
catalytic subunits is constitutive and in the absence of signals
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serves to suppress the p110 subunits (Miled et al., 2007; Vadas
et al., 2011). Binding of the regulatory subunit to specific motifs
harboring phosphorylated tyrosines (e.g., on RTKs or scaffolding
proteins, see below) via its SH2 domains relieves the inhibition
on p110 subunits. Specific regulatory subunits have additional
domains that expand the mechanisms of activation, such as
the p110 subunits that can also be activated by binding to Ras
via N-terminal Ras-activating domains (Vanhaesebroeck et al.,
2010). The activation of Class IA PI3Ks leads to production of
PIP3 from PI45P2.

Class II PI3Ks are comprised of three isoforms in humans,
PI3KC2α, β, and γ (Falasca and Maffucci, 2007; Posor et al., 2013,
2014; Marat et al., 2017). These isoforms are each comprised of
C2 and PX domains that mediate binding to lipids, especially
PI45P2 (Liu et al., 2006; Stahelin et al., 2006; Wang et al., 2018),
and a kinase domain that catalyzes the formation of PI34P2 from
PI4P, as well as phosphatidylinositol-3-phosphate (PI3P) from
phosphatidylinositol (Falasca and Maffucci, 2007; Posor et al.,
2013). Additional protein interaction domains and activities are
present in each isoform, such as binding to clathrin for PI3KC2α

and β (Domin et al., 2000; Gaidarov et al., 2005; Posor et al.,
2013). The regulation of Class II PI3Ks is less well understood.
Class II PI3Ks may constitutively associate with membranes and
require additional activation signals such as the conformational
change in PI3KC2α induced by binding to specific proteins and
PI45P2 (Wang et al., 2018).

Class III PI3K has a sole member, Vps34, which functions at
the early endosome to produce PI3P from PI (Schu et al., 1993;
Kim et al., 2013; Backer, 2016). Vps34 and PI3P are essential for
membrane traffic from the plasma membrane to early endosomes
and also regulate a number of sorting phenomena, including
assembly of the retromer cargo retrieval complex (Herman and
Emr, 1990). As PI3P produced by Vps34 does not appear to
contribute to activation of Akt signaling directly, we here focus
on Class I and II PI3Ks and discuss Vps34 only in the context of
its requirement for membrane traffic regulation of Akt signaling.

PI3K Activation by RTKs
As a result of decades of intensive research, there is considerable
insight into the mechanism of activation of Class IA PI3K by
RTKs. Some receptor tyrosine kinases can directly bind and thus
activate PI3Ks, while others require a scaffolding or binding
protein. Here, we illustrate the latter with EGFR and the former
mechanism with ErbB3.

In the case of EGFR, binding to ligands leads to activation of
the kinase domain, which in turn, leads to the phosphorylation
of a number of residues on the C-terminal tail of the receptor
(Bessman et al., 2014; Lemmon et al., 2014; Freed et al., 2017).
The phosphorylation of Y1068 is essential for binding of Grb2
via its SH2 domain, which then recruits Grb2-associated binder1
(Gab1) via an SH3-proline rich domain interaction (Lock et al.,
2000). The phosphorylation of Gab1 on Y447, Y472, and Y589
leads to recruitment of Class IA PI3Ks, and production of PIP3
leading to Akt activation (Holgado-Madruga et al., 1996; Mattoon
et al., 2004; Kiyatkin et al., 2006). Gab1 possesses a PH domain
that binds PIP3, and as Gab1 membrane binding contributes to
PI3K activation, this mechanism of activation of PI3K is subject

to positive feedback regulation (Rodrigues et al., 2000). Other
RTKs such as MET use a similar mechanism of activation, but
MET can directly bind Gab1 via a Gab1-binding module found
in the cytosolic portion of this receptor (Schaeper et al., 2007).
Gab1 is related to other scaffolding or docking proteins that
function to control PI3K activation by RTKs, including insulin-
receptor substrate (IRS) and fibroblast growth factor receptor
substrate 2 (FRS2), which either recruit class IA PI3K directly
(Brummer et al., 2010; Shaw, 2011; Boucher et al., 2014) or via
Gab1 recruitment upon activation of specific RTKs (Kouhara
et al., 1997; Melillo et al., 2001; Schlessinger, 2004; Degoutin et al.,
2007; Gotoh, 2008).

In contrast to adaptor-mediated recruitment, other RTKs can
directly bind PI3K. Upon binding its ligand, such as neuregulin
(Carraway et al., 1997), and phosphorylation, ErbB3 interacts
directly with class IA PI3K leading to PI3K activation (Hellyer
et al., 1998; Baselga and Swain, 2009; Smirnova et al., 2012).
Given the distinction of direct receptor binding versus adaptor-
dependent PI3K-Akt signal activation by various RTKs, spatial-
temporal differences and strength of the signal may occur;
however, this remains to be explicitly examined.

Class II PI3Ks can also be activated downstream of RTK
activation. PI3KC2α and β are recruited to EGF and platelet-
derived growth factor receptor (PDGFR) signaling complexes
(Arcaro et al., 2000), via recruitment to adaptor protein
complexes that include Grb2 (Wheeler and Domin, 2001; Katso
et al., 2006). The detailed mechanisms for this class of PI3K
remain much less well understood than class I PI3K, and
additional insight into the regulation of class II PI3K would be
very informative.

Akt Activation by RTK Signaling
The production of either PI34P2 or PIP3 is essential for
the recruitment and activation of Akt by RTKs. There are
three isoforms of Akt (1–3), each comprised of an N-terminal
pleckstrin homology (PH) domain, an internal kinase domain,
and a C-terminal regulatory domain. The isolated PH domain
of each isoform of Akt is able to bind either PI34P2 or PIP3
with similar affinity, but in the context of the full-length protein,
Akt1 and 3 preferentially bind PIP3 while Akt2 preferentially
binds PI34P2 (Liu et al., 2018). In each case, binding to either
PI34P2 or PIP3 elicits recruitment of Akt to the membrane,
in parallel to similar membrane recruitment by these lipids
of 3-phosphoinositide-dependent kinase 1 (PDK1) via its PH
domain. PDK1 phosphorylates Akt on T308, which together
with membrane binding leads to a substantial increase in Akt
activity (Stephens et al., 1998; Scheid et al., 2002; Higuchi
et al., 2008). Phosphorylation of Akt on S473 further enhances
Akt activity, which in the context of RTK signaling is elicited
by the mechanistic target of rapamycin complex 2 (mTORC2)
(Sarbassov et al., 2005; Oh and Jacinto, 2011; Gaubitz et al.,
2016). Alternatively, phosphorylation can also be mediated by
DNA-PK in other contexts (Feng et al., 2004; Bozulic et al., 2008;
Szymonowicz et al., 2018). Regardless, the dually phosphorylated
Akt has a substantial increase in activity (Hart and Vogt, 2011).

While membrane binding and phosphorylation on T308
and S473 represent the canonical activation of Akt by
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RTKs, there is an increasing appreciation of many different
modifications and regulators of Akt (Risso et al., 2015).
Notably, K63-ubiquitinylation of Akt on K8 and K14, mediated
by TRAF6 upon IGF1 stimulation (Yang et al., 2009) or
Skp2 SCF upon EGF stimulation (Chan et al., 2012) is
required for Akt activation, membrane recruitment and substrate
phosphorylation, a modification that is negatively regulated
by the deubiquitinase CYLD (Yang et al., 2013). This K63-
ubiquitinylation does not appear to control Akt degradation.
Further adding to the complexity of regulation of Akt activation
by post-translational modification, Akt methylation on K64 by
SETDB1 promotes the binding of JMJD2A, which functions
as an adaptor to recuit TRAF6 or the Skp2 SCF and K63-
ubiquitinylation of Akt, required for Akt activation (Wang et al.,
2019). While mechanisms such as K63-mediated ubiquitinylation
control Akt activation, much remains to be determined about
how these mechanisms are regulated, and how these impact Akt
cellular localization.

All three isoforms of Akt follow this activation mechanism and
share some overlapping substrates. However, there are substrates
of Akt that are isoform-specific, and in many contexts, Akt
isoforms are non-redundant with distinct roles in cellular and
systemic physiology (Stambolic and Woodgett, 2006; Gonzalez
and McGraw, 2009b; Schultze et al., 2011; Roy et al., 2017).
For example, Akt1 but not Akt2 phosphorylates palladin, an
actin-bundling protein (Chin and Toker, 2010). This may
contribute to the distinct ability of Akt1 to promote breast tumor
initiation and impair invasion and migration (Hutchinson et al.,
2004; Irie et al., 2005), while Akt2 enhances the invasive and
metastatic capabilities of breast tumors (Arboleda et al., 2003;
Irie et al., 2005).

Attenuation of PI3K-Akt Signaling
Downstream of RTKs
Given the impact on various aspects of cell physiology,
mitogenic signaling emanating from RTKs and propagated
through PI3K-Akt signaling is subject to negative regulation
at various levels. A large number of phosphatases negatively
regulate phosphorylation of RTKs and their adaptors and
scaffold/docking proteins (Lemmon and Schlessinger,
2010; Yao et al., 2017; Neben et al., 2019). RTKs are also
subject to negative regulation by degradation secondary to
internalization. Examination of this aspect of RTK signaling
is beyond the scope of this review, but we direct the reader
to several excellent comprehensive reviews on this subject
(Roepstorff et al., 2008; Sorkin and Goh, 2009; Sorkin
and von Zastrow, 2009; Hurley, 2010; Caldieri et al., 2018;
Critchley et al., 2018).

Several lipid and protein phosphatases regulate these signals
directly at the level of PI3K-Akt. PTEN is a lipid phosphatase that
negatively regulates PI3K-Akt signaling by dephosphorylation of
PIP3 to produce PI45P2 (Lee et al., 2018), and also negatively
regulates PI34P2 (Malek et al., 2017). Given its central role in
negative regulation of PI3K-Akt signaling, PTEN is a potent
tumor suppressor, and disruptions of PTEN actively promote
tumor growth and progression (Lee et al., 2018). In addition,

SH2-domain containing inositol phosphatase 2 (SHIP2, also
known as INPP1L) dephosphorylates the 5-position of PIP3,
leading to the production of PI34P2 (Goulden et al., 2018;
Liu et al., 2018). While regarded in some ways as a negative
regulator of PI3K-Akt signaling by catalysis of turnover of
PIP3, that SHIP2 leads to the production of PI34P2 may
potentiate the activation of specific isoforms of Akt. Indeed
SHIP2 is responsible for the production of PI34P2 that selectively
activates Akt2 (Liu et al., 2018). An additional phosphatase,
INPP4B, has recently emerged as a negative regulator of PIP3
and PI34P2 (Kofuji et al., 2015), yet other studies have noted
that INPP4B promotes Akt signaling by relieving negative
regulation of Class I PI3K (Reed and Shokat, 2017). Hence,
while PTEN and INPP4B are potent suppressors of PI3K-Akt
signaling, SHIP2 has a more complex role in the regulation
of this pathway.

Several phosphatases act to directly regulate phosphorylation
of Akt. Protein phosphatase 2A (PP2A) is a well-established
negative regulator of Akt that elicits Akt dephosphorylation, in
particular on the T308 site (Rodgers et al., 2011; Seshacharyulu
et al., 2013). In addition, PH domain leucine-rich repeat protein
phosphatase (PHLPP) 1 and 2 are two phosphatases that act
selectively on the S473 site (Gao et al., 2005). Interestingly,
these two PHLPP isoforms exhibit specificity for different Akt
isoforms, such that PHLPP1 regulates signaling by Akt2 and
PHLPP2 regulates signaling by Akt3 (Brognard et al., 2007).

With this framework of activators and negative regulators of
PI3K-Akt signaling, we next discuss the critical contributions
of spatiotemporal activation of Akt signals at different scales:
within nanodomains at the plasma membrane, and within
endomembrane compartments. Subsequently, we examine how
Akt functionally controls cell and systemic physiology, with a
focus on compartment-specific activation and functions of Akt.

LOCALIZATION OF PI3K-Akt SIGNALING
WITHIN PLASMA
MEMBRANE NANODOMAINS

The initiation of signaling at the plasma membrane involves
the spatiotemporal organization of receptors and cytoplasmic
proteins that transduce extracellular signals to the appropriate
intracellular destination. Recent technological advances,
particularly in the field of live-cell fluorescence microscopy, have
revealed that signaling receptors are heterogeneously distributed
in the plasma membrane, as a result of enrichment in distinct
plasma membrane nanodomains. These nanodomains vary in
lifetime and composition and include cholesterol-rich structures
(caveolae and flotillin), clathrin structures, tetraspanin-enriched
nanodomains, dorsal actin ruffles, and Ras nanoclusters. From
this vantage, these nanodomains serve to compartmentalize
signaling complexes into transient signaling hotspots on the
plasma membrane. In the case of caveola and clathrin, which
are capable of forming bona fide endocytic vesicles, endocytosis
of receptor/nanodomain complexes might also serve as a
checkpoint for the redistribution of active signaling complexes
to distinct subcellular locales or termination of the signal
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through degradative pathways. The following examines the
evidence for localized PI3K-Akt signaling within specific plasma
membrane nanodomains.

Clathrin
Cells have adopted several unique mechanisms for the
internalization of extracellular material, membrane proteins,
lipids, and solutes. Perhaps the best-described mechanism
involves the formation of clathrin-coated pits (CCPs) at
the plasma membrane and subsequent clathrin-mediated
endocytosis (CME). CCPs initiate by the recruitment of the
clathrin adaptor protein complex 2 (AP2), to the plasma
membrane by recognition of internalization motifs on cargo
proteins destined for CME and by binding PI45P2 (Schmid
and McMahon, 2007; Mettlen et al., 2009, 2018; McMahon
and Boucrot, 2011; Taylor et al., 2011; Cocucci et al., 2012;
Kadlecova et al., 2017). This is followed by the assembly of other
components the clathrin coat, which in addition to clathrin
includes accessory proteins, eventually leading to scission
from the membrane by the GTPase dynamin. Following this
internalization, nascent vesicles undergo uncoating, followed
by membrane traffic and sorting. CME has been described
in the context of cell signaling as an essential regulator of
EGFR signaling dynamics, whereby EGF (ligand) stimulation of
EGFR leads to internalization of the ligand/receptor complex
(Sorkin and Goh, 2009; Goh and Sorkin, 2013; Schmid, 2017;
Critchley et al., 2018). Internalized ligand/receptor complexes
are delivered to the endosomal system, which can lead to
ubiquitin-dependent lysosomal degradation or recycling back
to the plasma membrane. Thus, depending on the cellular
context, RTK internalization by CME can attenuate signaling
through receptor internalization, lead to degradation, or prolong
signaling by receptor recycling.

Beyond their role in endocytosis, recent evidence suggests
that a subset of plasma membrane CCPs may also represent
unique clathrin nanodomains that directly influence Akt
signaling by orchestrating the assembly of transient receptor
signaling complexes on the plasma membrane. This previously
unrecognized role of clathrin nanodomains as signaling scaffolds
suggests another critical level of control over receptor signaling.
EGF treatment of ARPE-19 cells leads to the accumulation of
EGF and phosphorylated Gab1 (pY627), the most receptor-
proximal upstream activator of PI3K/Akt, in clathrin structures
on the plasma membrane (Garay et al., 2015; Lucarelli et al.,
2016, 2017). Perturbation of CCP formation, but not receptor
endocytosis, attenuates Gab1 (pY307 and pY627) and Akt (pT308
and pS473) phosphorylation (Garay et al., 2015), supporting
a role for some clathrin structures as signaling nanodomains
required for PI3K-Akt signaling. Interestingly, the engineered
expression of ErbB2 in ARPE-19 cells, which normally express
little ErbB2, rescues the inhibitory effects of clathrin perturbation
on Akt (pS473) phosphorylation (Garay et al., 2015).

In addition, phosphorylated Akt and PTEN preferentially
localize to short-lived CCPs in MCF10A breast epithelial cells
(Rosselli-Murai et al., 2018). Deletion of PTEN in these cells
or addition of supplemental PIP3 enhanced the initiation of
short-lived CCPs. These effects were mirrored in MDA-MB-231

and SUM149PT triple negative breast cancer cells, which lack
ErbB2 and functional PTEN, respectively. Together, these studies
suggest that a distinct subpopulation of clathrin structures at
the plasma membrane form nanodomains required for PI3K-Akt
activation in cells lacking ErbB2. In contrast, co-expression of
ErbB2 leads to EGFR-dependent Akt activation that is clathrin-
independent (Garay et al., 2015). Furthermore, PI3K/Akt
signaling at clathrin nanodomains is directly influenced by the
phosphatase activity of PTEN, through the control of PIP3
abundance on the plasma membrane (Rosselli-Murai et al., 2018).
Collectively, these studies support the notion that a subset of
clathrin structures function as signaling nanodomains at the
cell surface, as has been proposed for certain aspects of GPCR
signaling (Eichel et al., 2016, 2018; Eichel and von Zastrow, 2018).

Components of the PI3K/Akt signaling pathway impinge on
different stages of CCP formation and play a reciprocal role in
regulating CME. Akt activity positively regulates CME through a
mechanism that leads to dephosphorylation and thus activation
of dynamin-1 (pS774) (Reis et al., 2015). Collectively, these
studies establish the existence of a reciprocal regulation network
in which plasma membrane clathrin nanodomains directly
facilitate Akt activation at the plasma membrane, followed by
modulation of ligand/receptor complex traffic after CME. In turn,
multiple levels of signaling converge to control CME.

Caveolin and Flotillin Membrane
Nanodomains
Caveolae are 50–100 nm bulb-shaped invaginations on the
plasma membrane that are primarily composed of oligomers of
the integral membrane protein caveolin-1, and the cavin proteins,
which are essential for caveolae formation (Hill et al., 2008).
Caveolae are typically thought of as a type of membrane rafts.
This is due to the ability of caveolins to bind cholesterol, the
sensitivity of caveolae to disruption of membrane cholesterol,
and the low buoyant density of isolated caveolae (Smart et al.,
1995). Insights into the role of caveolae in PI3K/Akt signaling
has mostly been inferred through rather harsh disruption of
the cell surface by cholesterol depletion or overexpression of
caveolin-1 in cell lines without endogenous caveolin-1 expression
(Parpal et al., 2001; Fiucci et al., 2002) but given the limitations
of these approaches, the interpretation of such results should be
taken with caution (Zhuang et al., 2002). Furthermore, caveolin-
1 knockout mice are viable suggesting that essential growth
factor signaling remains intact (Drab et al., 2001; Parton, 2001).
While silencing of caveolin-1 has been reported to enhance
Akt activity in endothelial cells (Gonzalez et al., 2004), the
limitations of methods used to alter caveola have contributed
to the inconsistencies in the literature concerning the effects of
caveolin-1 on PI3K/Akt signaling, and thus results should be
interpreted with caution.

Many studies revealed interaction of receptor tyrosine kinases
with caveolin proteins or incorporation of receptors within
caveolae (Delos Santos et al., 2015). The impact of this nanoscale
compartmentalization is complex and in some cases impacts
regulation at the level of the receptors themselves, thus broadly
impacting multiple signaling pathways (Yamamoto et al., 1998;
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Nystrom et al., 1999; Baumann et al., 2000; Vainio et al., 2002;
Cohen et al., 2003a,b, 2004; Foti et al., 2007; Wang et al., 2011;
Bridges et al., 2012; Delos Santos et al., 2015; Yamaguchi et al.,
2016; Lu and Fairn, 2018). In addition, while there is little
direct evidence that EGFR is detected within caveolae (Delos
Santos et al., 2015) interactions of EGFR within caveolin-1,
perhaps in the context of non-caveolar assemblies of caveolin-
1 proteins (Head and Insel, 2007; Lajoie et al., 2007; Nassar
et al., 2015; Khater et al., 2018) negatively regulate EGFR (Couet
et al., 1997; Engelman et al., 1998; Park et al., 2000; Williams
et al., 2004; Lajoie et al., 2007; Lambert et al., 2008). Indeed,
caveolin proteins harbor a caveolin-scaffolding domain (CSD,
amino acids 82-101) that allows interaction with many different
proteins (Jung et al., 2018), suggesting a mechanisms for how
protein-protein interactions involving caveolins may control
RTK signaling to PI3K-Akt.

While these studies establish several different possible
modalities of control of receptor tyrosine kinase signaling by
caveolins and caveolae at the level of the receptors, there is
also evidence of enrichment and control of PI3K/Akt signaling
intermediates in these structures. Both PI45P2 and PIP3 are
detected in membrane nanodomains (Wang and Richards, 2012),
and insulin-like growth factor (IGF1) stimulation triggers PIP3
partitioning into membrane nanodomains that are sensitive to
cholesterol perturbation (Lasserre et al., 2008). While these
studies establish the non-homogenous partitioning of PIP3
in the plasma membrane, it is not clear how these lipid
nanoclusters relate to caveolae. Caveola or caveolin proteins may
also regulate Akt activity through interactions with Akt kinases
and phosphatases. In prostate cancer cells, caveolin-1 sustains
Akt signaling by inhibiting the Akt phosphatases PP1 and
PP2A through direct interaction with the CSD (Li et al., 2003).
Growth factor stimulation by EGF or PDGF activates PDK1 in
membrane raft nanodomains defined by Lyn localization that are
spatially distinct from membrane regions of PTEN recruitment
(Gao et al., 2011). This spatial segregation of activating kinase
(PDK1) and negative regulation by phosphatases (PTEN) was
proposed to be critical for Akt signaling, and disruption of
this compartmentalization by ceramide impaired Akt activation
(Goswami et al., 2005; Hajduch et al., 2008; Gao et al., 2011).

Flotillin nanodomains are a subset of membrane rafts
distinct from caveolae that may also control RTK signaling.
These structures are composed of oligomers of the highly
conserved flotillin-1 and flotillin-2 proteins (Kurrle et al., 2012;
Banning et al., 2014). While these nanodomains may also
control PI3K/Akt signaling, much less is known about this
phenomenon. Several studies that perturbed flotillin function
observed impaired Akt signaling (Amaddii et al., 2012; Jang
et al., 2015; Liu et al., 2015), yet it is not clearly established if
this represents specific effects on PI3K-Akt signaling or broad
regulation of RTKs. Consistent with the latter possibility, flotillins
may function to control receptor membrane traffic such as that
of IGF1R (Jang et al., 2015), or expression of specific receptor
tyrosine kinases (Pust et al., 2013; Asp et al., 2014). Thus, both
caveolae and flotillin nanodomains can contribute to control
of Akt signaling by receptor tyrosine kinases at many levels,
including at the level of the receptor thus broadly impacting

many aspects of signaling. Much remains to be learned about the
mechanism by which flotillins, caveolins and/or nanodomains
formed by these proteins compartmentalize signals leading to Akt
activation by receptor tyrosine kinases.

Tetraspanin-Enriched Nanodomains
Tetraspanins are a large family of 33 proteins in humans, each
with four membrane-spanning domains, that form membrane
nanodomains through the interaction with other tetraspanins,
integral membrane proteins, and cytoplasmic signaling proteins.
Given the number of tetraspanin family members and their
ubiquitous or tissue-specific distribution, it is no surprise
that tetraspanins have been implicated in a diverse array of
(patho)physiological processes and signaling pathways involved
in immunity, angiogenesis, cancer, and many others (Yáñez-Mó
et al., 2009; Charrin et al., 2014; Beckwith et al., 2015; Delos
Santos et al., 2015; Berditchevski and Odintsova, 2016; Termini
and Gillette, 2017; van Deventer et al., 2017; Schaper and van
Spriel, 2018).

One of the primary functions of tetraspanins is the
organization of plasma membrane receptors to facilitate
signaling. Various tetraspanins, including CD9, CD63, CD81,
CD82, and CD151 (Odintsova et al., 2000, 2003; Takahashi
et al., 2007; Murayama et al., 2008; Devbhandari et al., 2011;
Tugues et al., 2013; Berditchevski and Odintsova, 2016), have
been reported to interact with specific RTKs. Early studies on
tetraspanin CD82 demonstrated that ectopic CD82 expression
in cells alters the plasma membrane distribution of EGFR
(Odintsova et al., 2003). More recent studies using single particle
approaches have revealed that CD82 confines EGFR in distinct
regions of the plasma membrane, and loss of CD82 results in
enhanced clathrin-mediated endocytosis of the receptor and
impaired receptor signaling (Danglot et al., 2010).

Consistent with the ability of tetraspanins to control the
dynamic nanoscale localization of RTKs, perturbations or
alterations of tetraspanins impact certain aspects of RTK
signaling, from the activity of receptors to specific signaling
pathways. For instance, CD82 depletion or blocking antibody
treatment attenuates Akt activation, resulting in induction of a
pro-apoptotic phenotype (Nishioka et al., 2015). Furthermore,
in endothelial cells lacking CD151, Akt activation is attenuated,
resulting in impaired angiogenesis, which may be related to the
requirement for tetraspanins for the activation of eNOS signaling
(Takeda et al., 2007; Zheng and Liu, 2007). This regulation
is complex, as perturbation of CD82 can also promote EGFR
signaling to Akt activation in other contexts (Li et al., 2013).

Mechanistically, there remains much to be learned about
how tetraspanin nanodomains control PI3K/Akt signaling.
Tetraspanin domains are indeed enriched in specific signaling
regulators such as certain PKC isoforms (Zhang et al., 2001), lipid
enzymes such as phosphatidylinositol-4-kinase (Berditchevski
et al., 1997; Yauch and Hemler, 2000; Carloni et al., 2004;
Claas et al., 2005) and specific glycosphingolipids (Todeschini
et al., 2007; Hakomori, 2010; Hakomori and Handa, 2016). The
latter function in conjunction with CD82 to control signaling by
EGFR and MET (Li et al., 2013). As with caveolin and flotillin
nanodomains, it remains to be determined how tetraspanins
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may control RTK signaling leading to Akt activation, which
could result either from specific recruitment and regulation
of PI3K-Akt signaling intermediates or by broad control of
RTKs controlling many signaling pathways. Consistent with the
latter and with a context-dependent regulation of RTK signaling
by tetraspanins, CD151 deletion attenuates ERK but not Akt
activation in breast cancer epithelial cells expressing ErbB2
(Deng et al., 2012). It is plausible that the differences in Akt
activation in response to CD151 perturbation are the result of
cell-type specific effects, such as the expression of ErbB2, which is
known to modulate the dependence of Akt activation on clathrin
(Garay et al., 2015).

Future studies aimed at understanding how each of these
can impact activation of PI3K/Akt signaling, either directly or
in the context of complex regulation of signaling intermediates
by compartmentalization within other nanodomains, will be
very informative.

Dorsal Ruffles (DRs) and Other
Actin-Based Structures at the
Plasma Membrane
Receptor tyrosine kinase signaling triggers dynamic remodeling
of the cytoskeleton; in particular, activation of EGFR, PDGFR,
IR, MET, and others leads to the rapid formation of actin-
rich dorsal ruffles(DRs) at the plasma membrane (Abella et al.,
2010; Hoon et al., 2012; Delos Santos et al., 2015; Yoshida
et al., 2018). While not observed in all cells and contexts,
DRs can serve to compartmentalize RTKs into spatially distinct
membrane nanodomains for signaling. In addition, DRs act in
parallel to RTK internalization by CME as a clathrin-independent
mechanism for RTK internalization by macropinocytosis (Orth
et al., 2006; Abella et al., 2010; Gu et al., 2011; Yoshida et al., 2018).
Internalization of RTKs by DRs through the macropinocytic
pathway requires Arp2/3-dependent actin polymerization and
PI3K; disruption of each results in attenuated DR formation and
RTK macropinocytosis (Dharmawardhane et al., 2000).

In cells in which they are observed, DRs also serve as
a platform for PI3K/Akt signaling. In L6 myotubes, insulin
stimulates recruitment of the Class I PI3K subunits p110α and
p85 to DRs, leading to the production of PIP3 and subsequently,
Akt1 recruitment to these structures (Khayat et al., 2000; Patel
et al., 2003). Similarly, EGF stimulation of A431 cells leads to
enrichment of PI45P2 and PIP3 in DRs, suggesting increased
activity of class I PI3K in this compartment (Araki et al., 2007). In
NIH3T3 cells, PIP3 production in DRs leads to the recruitment of
the adaptor protein SH3YL1 along with SHIP2, which generates
PI34P2; knockdown of either SH3YL1 or SHIP2 attenuated DR
formation suggesting that PI3K/Akt signaling is essential for
DR maturation (Hasegawa et al., 2011). Finally, it was recently
shown that EGF and PDGF stimulate Akt activation in DRs, with
distinct requirements for microtubules (Yoshida et al., 2018).
Taken together, DRs comprise a distinct membrane-associated
nanodomain that serves as a platform for Akt activation and
signal termination via RTK macropinocytosis; this platform
requires dynamic remodeling of the actin cytoskeleton and in
certain contexts, microtubules.

Akt Activation at the Primary Cilia
The primary cilia is a microtubule-based protrusion at the plasma
membrane that acts as a hub for the integration of a number
of important mechanochemical signals which regulate cellular
growth, development, and quiescence. The primary cilia, of
which there is typically only one per cell, is anchored via its
assembly of microtubules to a centriolar anchor known as a
basal body (Pan and Snell, 2007; Malicki and Johnson, 2017).
The assembly of the primary cilia, known as ciliogenesis, occurs
following mitosis largely in quiescent cells (Goto et al., 2017).
Illustrating the importance of this structure, at least 35 human
diseases (ciliopathies) are caused by mutations in genes involved
in the function of cilia, including the primary cilia (Reiter and
Leroux, 2017). Many signaling pathways are either activated in
a localized manner at the primary cilia, or impact ciliogenesis,
or both, including those triggered by Hedgehog, Notch, Wnt,
Hippo, and certain GPCR ligands (Bangs and Anderson, 2017;
Wheway et al., 2018). Here, we highlight studies that examined
RTK-mediated Akt signaling in the primary cilia.

Platelet-derived growth factor (PDGF) receptor α is a RTK
that localizes to the mature primary cilia, and following PDGF
treatment, Akt is activated in the primary cilia of NIH 3T3
fibroblasts (Schneider et al., 2005). Genetic disruption of IFT88
or IFT20, two different component of the primary cilium
intraflagellar transport system, attenuates or enhances PDGFRα

and Akt activation at the ciliary basal body in fibroblasts,
respectively, thus altering wound healing (Schneider et al., 2010;
Clement et al., 2013; Schmid et al., 2018). As with caveolin
and flotillin nanodomains, it remains to be determined if cilia
specifically control PI3K-Akt signaling by localized recruitment
of these signals to cilia, or by a broader regulation that occurs
at the level of RTKs themselves, thus impacting many signaling
pathways. New insight in the former possibility may obtained
from observations that PI3KC2α is localized at the primary cilia
basal body (Franco et al., 2014) and that PDGFRα stimulation of
fibroblasts also leads to recruitment of phosphorylated Akt to the
basal body, where it can phosphorylate its substrate Inversin to
control ciliogenesis (Suizu et al., 2016).

Ras Nanoclusters
The Ras proteins (H-Ras, K-Ras, and N-Ras) are a family
of small GTPases that are important downstream effectors of
RTK signaling (Schubbert et al., 2007; Simanshu et al., 2017).
Following RTK activation by external stimuli, Ras proteins
are recruited by Son of sevenless (SOS)-Grb2 to the tyrosine
phosphorylated cytoplasmic residue of the receptor. From here
Ras is activated by SOS GEF activity, leading to canonical
activation of the Raf-MEK-ERK pathway. Single molecule and
EM imaging revealed that Ras proteins form short-lived signaling
nanodomains at the plasma membrane (Harding and Hancock,
2008; Abankwa et al., 2010; Janosi et al., 2012; Zhou and Hancock,
2015). These short-lived Ras nanodomains might regulate
PI3K/Akt signaling independently of RTK-Grb2-Gab1 axis, as
Ras proteins interact with the p110 catalytic subunit of Class I
PI3K isoforms leading to its activation (Murthy et al., 2018), and
genetic disruption of the Ras-PI3K interactions leads to impaired
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growth and development (Castellano and Downward, 2011). The
Ras-PI3K p110α interaction is mediated by phosphorylation of
K-Ras S191, and this causes formation of phosphorylated K-Ras
nanoclusters that are distinct from the membrane population of
non-phosphorylated K-Ras (Barceló et al., 2013). From here the
Ras-PI3K interaction can stimulate the production of membrane
PIP3 (Fukushima et al., 2018), which presumably triggers Akt
activation. Consistent with control of PI3K-Akt signaling by
Ras nanoclusters, a G12V mutant of K-Ras exhibits enhanced
clustering of PI45P2 and an enhanced ability to elicit Akt
activation compared to wild-type K-Ras (Zhou et al., 2017),
but the mechanism by which this control occurs remains to be
fully elucidated. Importantly, while these mechanisms of protein-
protein interaction predicts that PI3K-Akt signaling can be
triggered by Ras and thus controlled within Ras nanoclusters, this
remains largely speculative and is in need of further investigation.

As discussed in the preceding sections, there are numerous
mechanisms by which PI3K-Akt activation can depend on
or be facilitated by plasma membrane nanodomains. That
multiple such distinct nanodomains operate for different RTKs
is perhaps not surprising given the diversity of signals and
activation mechanisms of these receptors. However, there are also
numerous examples of specific RTKs for which different studies
have identified a role of distinct nanodomains in the activation of
PI3K-Akt signals. For example, EGFR-dependent Akt activation
requires clathrin, flotillin nanodomains and is also regulated by
caveolin-1 and dorsal ruffles. This suggests several possibilities:
(i) that several distinct nanodomains operate simultaneously
to coordinate different specific molecular events in sequence
that collectively lead to Akt activation or (ii) that distinct
molecular and cellular contexts underlie unique requirements
for specific nanodomains in specific situations. To this end,
studies that extend beyond the establishment of a functional
requirement for specific nanodomains to also resolve the specific
molecular mechanisms by which nanodomains facilitate RTK
signaling are very informative. Indeed, we previously showed
that clathrin nanodomains are required for activation of PI3K-
Akt signaling by EGFR only in the absence of ErbB2 (Garay
et al., 2015), providing a molecular explanation for the context-
dependent requirement for clathrin vs. other nanodomains for
EGFR-dependent activation of PI3K signaling. Also, studies
that undertake a systematic analysis of RTK signaling within
nanodomains at the cell surface will further illuminate how
each type of receptor and/or intracellular signal may engage
and require distinct nanodomains either simultaneously or
selectively, in a context-dependent manner. Such studies will
reveal the molecular details of the nanoscale organization of the
plasma membrane that is essential for PI3K-Akt signal activation.

LOCALIZATION OF PI3K-Akt
SIGNALING AMONG
ENDOMEMBRANE COMPARTMENTS

A fundamental, yet still incompletely answered question is
how is Akt able to synthesize diverse inputs into a response
that targets only the appropriate substrates at the proper

location. The conventional mechanism of Akt activation involves
recruitment of inactive Akt to membrane sites of PI34P2 or
PIP3 through interaction with its PH domain. Indeed, structural
studies elucidated that binding of the Akt PH-domain to
membrane phosphoinositides results in a conformational change
that relieves the autoinhibitory interaction between the PH
and catalytic domains, resulting in enhanced substrate binding
capacity and Akt activation (Ebner et al., 2017a; Lučić et al., 2018).
However, there are conflicting models regarding the ability of Akt
to phosphorylate non-plasmalemmal substrates. The first model
involves Akt activation on a particular membrane resulting in Akt
becoming “locked” in an active conformation, which then allows
redistribution of this active Akt to a multitude of other subcellular
locales where it acts on its effectors (Meier et al., 1997; Calleja
et al., 2009a,b; Antal and Newton, 2013). A second more recent
model suggests that Akt is activated in a compartment-specific
fashion, whereby inactive Akt is recruited to distinct subcellular
locales for activation and is mostly unable to redistribute to
other compartments once activated (Ebner et al., 2017a). Here,
we first examine the evidence for plasma membrane activation
of PI3K-Akt signals, then the evidence for activation of Akt on
various specific endosomes, then lastly discuss the evidence for
Akt activation in and/or redistribution to other compartments.

Plasma Membrane Akt Activation
Consistent with the role of plasma membrane nanodomains
in regulating Akt signaling, there is substantial evidence to
implicate the plasma membrane as the primary site of Akt
activation (Figure 1). Given that the substrate for the class I
PI3K, PI45P2 is highly enriched at the plasma membrane (Di
Paolo and De Camilli, 2006; Balla, 2013), it follows that PIP3
production occurs mainly within this compartment (Naguib,
2016). The recent development of sophisticated probes for lipid
imaging revealed that PIP3 is indeed produced exclusively at the
plasma membrane (Liu et al., 2018). Moreover, several studies
identified that the vast majority of PI34P2 is generated by SHIP2-
mediated dephosphorylation of PIP3 (Goulden et al., 2018; Liu
et al., 2018), suggesting that PI34P2 is produced secondary to
Class I PI3K, and as opposed to production by Class II PI3K
(Figure 1). Importantly, two distinct probes identified either
exclusive plasma membrane (Goulden et al., 2018) or plasma
membrane and endosome (Liu et al., 2018) production of PI34P2.
Notably, this localized production of PIP3 and PI34P2 was
associated with isoform-specific localized activation of Akt, with
Akt2 selectively activated at the plasma membrane or endosomal
sites by PI34P2 while Akt1 and Akt3 display a preference for
plasma membrane PIP3 (Liu et al., 2018). Thus, these findings
support the model of activation of class I PI3Ks at the plasma
membrane, leading to PIP3 production therein, which can then
be coupled to direct activation of Akt at the plasma membrane
(e.g., Akt1,3) or transport of PIP3 from the plasma membrane to
endosomes, allowing for PI34P2 production and Akt2 activation
in both compartments (Liu et al., 2018).

In addition to the roles of PI34P2 and PIP3 in Akt membrane
recruitment and activation, other species of membrane lipids
have also been implicated in driving the spatiotemporal
organization of PI3K/Akt signaling at the plasma membrane.
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FIGURE 1 | Activation of PI3K-Akt signaling by receptor tyrosine kinases. Upon activation, RTKs lead to recruitment and activation of class IA PI3K (with p110
catalytic subunit highlighted here), either by direct binding (not shown) or through various adaptors. This leads to the production of PIP3 from PI45P2; some PIP3 is
subject to conversion to PI34P2 by SHIP2. PIP3 and PI34P2 lead to membrane recruitment and activation of PDK1, which together with mTORC2 phosphorylate
Akt. Class II PI3K (PI3KC2) are also recruited to active RTK signaling complexes and are localized to clathrin endocytic pits, but the contribution of this class of PI3K
to production of PI34P2 and/or Akt activation upon RTK activation is not clear. Turnover of PI34P2 and/or PIP3 by PTEN limits signaling to Akt. As discussed in detail
in the text, spatial organization of signals in the plasma membrane, in nanodomains such as clathrin endocytic pits (e.g., PTEN, SHIP2, Akt, and PI3K) and specific
endosomes (e.g., INPP4B, PI3KC2 in EEA1- and/or Rab5-early endosomes) further define compartment-specific Akt activation or negative regulation. The
membrane traffic following RTK activation from the plasma membrane, including endocytosis and sequential transit through various endosomal compartments may
be important for the delivery of plasma membrane-derived signals (such as specific phosphoinositides or even active RTKs themselves) for compartment-specific
Akt activation. Akt may also redistribute from the site of activation to other compartments. While in some cases, Akt is shown to associate with specific lipids such as
PI34P2 and PIP3 (shown in blue), Akt is depicted as bound to a gray lipid headgroup in some compartment or circumstances to indicate that the interaction of Akt
with lipids is complex or unclear in such circumstances.

The PH domain of PDK1 binds PIP3 (Naguib, 2016), but it
also displays a high affinity for phosphatidylserine (PS), and
PI3K inhibition (and thus attenuation of PIP3 synthesis) fails
to attenuate PDK1-PH domain association with the plasma
membrane, while PS depletion results in accumulation of PDK1-
PH in the cytoplasm (Lucas and Cho, 2011). Similarly, PS
depletion renders the Akt-PH domain insensitive to stimulation
by IGF1, resulting in its cytoplasmic accumulation (Huang et al.,
2011). Akt activation is attenuated in fibroblasts expressing
a mutant PDK1-PH domain that fails to associate with the
membrane (Lucas and Cho, 2011), while mutation of the
Akt-PH domain to yield a PS-binding defective mutant fails
to activate Akt in response to IGF1 (Huang et al., 2011).
In the latter study, the authors suggest that PS binding to
Akt promotes a conformational change that facilitates PIP3
binding for subsequent T308 and S437 phosphorylation by
PDK1 and mTORC2, respectively (Huang et al., 2011). PS is
detected in the plasma membrane and on a variety of organelles
(Fairn et al., 2011), thus suggesting that modulation of Akt
activation by PS could occur at the plasma membrane as well as
other compartments.

Insulin stimulation results in a PI3K-dependent accumulation
of the Akt2 isoform at the plasma membrane in adipocytes,
while Akt1 was localized to the cytoplasm (Sasaoka et al.,
2004; Gonzalez and McGraw, 2009a). Akt1 was unable to
elicit phosphorylation of the RabGAP AS160 to control
membrane traffic of the facilitative glucose transporter

GLUT4, while a mutant of Akt1 that promotes its plasma
membrane accumulation rescued phosphorylation of AS160.
The preferential recruitment of Akt2 to the plasma membrane
following insulin stimulation may be partially mediated by ClipR-
59, a CAP-gly domain-containing protein that directly interacts
with phosphorylated Akt (Ding and Du, 2009). Furthermore,
insulin-stimulated plasma membrane Akt recruitment was not
only influenced by PIP3 production therein, but also controlled
by ubiquitin-like protein 4A (Ubl4A), which by association
with Arp2/3, generates actin structures that assist in delivering
Akt to the plasma membrane for subsequent ligand-stimulated
activation (Zhao et al., 2015). These studies support a model
where Akt localization to the plasma membrane, either by PIP3
production or via delivery by other mechanisms, is critical
for Akt activation.

The investigation of EGFR signaling supports further evidence
for the plasma membrane-centric view of Akt activation. As
previously mentioned in the section on clathrin nanodomains,
interfering with clathrin (but not receptor endocytosis per se)
attenuates Akt signaling, suggesting that the clathrin structures
on the plasma membrane orchestrate Akt signaling (Garay
et al., 2015). In cells depleted of all dynamin isoforms and
thus with effectively completely arrested EGFR endocytosis, EGF
stimulation leads to sustained, apparently normal Akt signaling
(Sousa et al., 2012). In support of these findings, interfering
with EGFR endocytosis or ubiquitination, both of which cause
EGFR membrane retention, results in an upregulation of an
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EGF-dependent gene expression program, some of which is Akt-
dependent (Brankatschk et al., 2012). Together, these studies
suggest that plasma membrane EGFR signaling is sufficient to
trigger normal Akt phosphorylation in the cell types examined,
at least when assessing the overall activation of Akt and primary
transcriptional outcomes.

Activated Akt in Multiple
Distinct Endosomes
Endocytosis of RTKs (EGFR, PDGFR, and others) by CME
from the cell surface provides the cell with a means for
regulating cell surface signaling while also directing signaling
complexes to the various endomembrane compartments via
fusion with the endosomal system (Figure 1). Throughout
this process, endosomes are characterized by interactions with
proteins involved in trafficking and sorting that facilitate the
maturation of the nascent endosome. These proteins include
members of the Rab GTPase family (e.g., Rab5, Rab7, and
Rab11), APPL1, EEA1, and WDFY2 (Stenmark, 2009; Pálfy
et al., 2012; Goldenring, 2015). Beyond merely providing a
molecular signature to the endosomes that they occupy; these
proteins are also involved in the spatiotemporal regulation of
signaling proteins (including Akt) and lipids (including PI3P
and PI34P2) that may originate at the endosomal level. As
such, numerous studies have investigated the mechanisms of
Akt signaling throughout the endosomal compartments that are
traversed by signaling receptors after ligand binding.

Differences in the subcellular localization of the Akt isoforms
have been documented, suggesting that Akt may be activated in
a compartment-specific fashion. In general, activated Akt1 and
Akt3 occupy similar compartments within the cell, including
the plasma and nuclear membranes (Liu et al., 2018). Akt2,
on the other hand, is consistently found in the cytoplasm,
intracellular membranes, where it interacts with early endosomes,
as demonstrated by colocalization with the early endosomal
markers Rab5, APPL1, EEA1, and WDFY2 (Mitsuuchi et al.,
1999; Walz et al., 2010; Li Chew et al., 2015; Liu et al.,
2018). However, as noted above, some studies have also
reported that Akt2 is selectively recruited to the plasma
membrane upon insulin stimulation (Sasaoka et al., 2004;
Gonzalez and McGraw, 2009a).

APPL1 demarks a subpopulation of early endosome through
which some signaling receptors such as EGFR transit before
eventually undergoing traffic to classical EEA1- and PI3P-positive
early endosomes (Zoncu et al., 2009; Figure 1). Importantly,
depletion of APPL1 attenuates Akt activation at this site (Schenck
et al., 2008; Reis et al., 2015). APPL1 may contribute to sustained
Akt activation in endosomes by facilitating interaction with the
actin cytoskeleton, through the actin-binding protein MYO6
(Masters et al., 2017). Loss of MYO6 results in the shuttling of
APPL1- and/or Rab5-positive endosomes from actin ruffles in
the cell periphery to the perinuclear space, and impaired Akt
activation in response to EGF stimulation. In addition, transition
of cargo from PI3P-negative, APPL1-positive early endosomes to
APPL1-negative, PI3P-positive early endosomes is regulated by
Beclin-1, and as such signaling to Akt is controlled by Beclin-1,

perhaps as a result of gating the duration of signaling from APPL1
early endosomes (Rohatgi et al., 2015). Thus, APPL1 might
contribute to early endosomal Akt signaling by bringing inactive
Akt into contact with early endosomes and delaying the transit of
endosomes harboring active Akt through the endocytic pathway.

Subsequent to transit through APPL1 endosomes, some RTKs
such as EGFR traffic to so-called classical early endosomes,
demarked by EEA1, which associates with these compartments
through PI3P binding by its FYVE domain (Murray et al.,
2016; Figure 1). Both EEA1 and APPL1 are individually
associated with Rab5-positive early endosomes, but they are
typically found as distinct subpopulations (Masters et al.,
2017), yet Akt can be detected in EEA1 endosomes in some
circumstances (Nazarewicz et al., 2011). The Class II PI3K
PI3KC2γ colocalizes with Rab5 positive endosomes (Braccini
et al., 2015) suggesting a mechanism for localized production
of PI34P2 at Rab5-positive early endosomes, which could
lead to Akt activation therein. Indeed, loss of PI3KC2γ

results in impaired Akt activation on endosomes. The inositol-
3-phosphatase INPP4B is enriched in Rab5 positive early
endosomes and loss of INPP4B results in enhanced Akt2
activation in this subpopulation of endosomes (Li Chew et al.,
2015). This observation supports the model of localized PI34P2
production at early endosomes that is under the compartment-
specific tight control of lipid phosphatases. Consistent with this
model, Rab5 potentiates the activity of inositol-4-phosphatases,
and loss of this endosomal phosphatase leads to enhanced PI34P2
levels (Shin et al., 2005).

In addition to early endosome subpopulations defined by the
presence of APPL1 or EEA1, an additional, early endosomal
population that lacks these markers but contains WDFY2 are
essential for endocytosis of some receptor cargo (Hayakawa et al.,
2006). WDFY2, through its FYVE domain, binds PI3P with high
affinity and can interact with and co-localizes with Akt2, but
not Akt1. Loss of WDFY2 results in loss of Akt2 protein levels
and phosphorylation, which suggested a model in which initial
activation of Akt2 at the plasma membrane leads to the protection
of Akt2 protein from degradation by subsequently binding to
WDFY2 endosomes (Walz et al., 2010).

Some RTKs transit from early endosomes to late endosomes
en route to degradation in the lysosome (Sorkin and Goh,
2009; Goh and Sorkin, 2013; Critchley et al., 2018; Figure 1).
The transition from early to late endosome to lysosome
is characterized by the loss of Rab5 and recruitment of
Rab7 (Rink et al., 2005); this switch in identity is also
accompanied by changes in the phosphoinositide populations
on the endosome. Early endosomes are abundant in PI3P,
which is produced by the class III PI3K and Rab5 effector
VPS34 (Jaber et al., 2016). PI3P is involved in the homotypic
fusion of early endosomes, the recruitment of Rab7 GEFs,
and components of the ESCRT complex. Collectively, the
actions of many proteins facilitate the sorting and shuttling
of the endosome along the endocytic pathway (Wallroth
and Haucke, 2018), as well as degradation of material by
incorporation of specific cargo such as RTKs into intralumenal
vesicles destined for the lysosome (Piper and Katzmann, 2007;
Bissig and Gruenberg, 2013).
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The late endosome/lysosome has the potential to regulate Akt
activation in two broad ways: (i) control of lysosomal sorting
that impacts the rate of RTK degradation could modulate signals
emanating from late endosomal receptors, thus affecting Akt
signal duration, or (ii) the unique phosphoinositide profile of
late endosomes/lysosomes may facilitate Akt activation separate
from the plasma membrane or early endocytic compartments.
Many instances of the former have been presented (Lemmon
and Schlessinger, 2010; Goh and Sorkin, 2013). For example,
alterations in EGFR membrane traffic that lead to accelerated
lysosomal degradation result in shorter duration of receptor
signaling, including that leading to Akt activation (Sigismund
et al., 2008). The regulation of RTK degradation is sophisticated,
as in some circumstances perturbation of lysosomal degradation
by depletion of Rab7 surprisingly enhanced EGFR/HER2
proteasomal degradation and attenuated EGF-stimulated Akt
phosphorylation (S473) (Wang et al., 2012). In this view, RTKs
signals can remain active and highly relevant to sustain Akt
activation at the late endosomes, resulting in enhanced pro-
survival Akt signaling in cancer cells.

As previously mentioned, mTORC2 localizes to a subset of
early (Rab5+) and late (Rab7+) endosomes in a PI3K-dependent
manner (Ebner et al., 2017b). The PI3P-binding protein, Phafin-
2, was identified as a positive regulator of EGFR degradation
in response to EGF, by promoting EGFR shuttling through the
endocytic/lysosomal degradation pathway (Pedersen et al., 2012).
Induction of autophagy in cells triggers the lysosomal interaction
between Phafin-2 and Akt, which leads to sustained Akt
activation to control autophagy (Matsuda-Lennikov et al., 2014).
Lysosomal mTORC2 leads to Akt activation in this compartment,
thus suppressing chaperone-mediated autophagy (CMA) (Arias
et al., 2015). Although it is unclear why the function of Akt
activation on macro- or chaperone-mediated pathways differs,
these studies suggest that late endosomes/lysosomes are sites
of Akt activation.

Localized Akt Activation in Distinct
Compartments vs. Redistribution of
Activated Akt
Given the requirement for PIP3 and PI34P2 for activation of
Akt (as described above), a model of Akt activation initially
emerged, which stipulated that Akt activation occurs at the
plasma membrane or in endosomes enriched with PI34P2.
Once activated in these specific compartments, this model
proposes that Akt may adopt a “locked-active” conformation that
permits redistribution of the active kinase to the nucleus (Meier
et al., 1997) or other cellular compartments. This model was
largely inferred by the vast number of Akt substrates and their
diverse subcellular distributions. Additionally, the high rate of
PIP3 turnover followed by sustained whole-cell Akt activation
observed in early studies supported a model where transient PIP3
synthesis at the cell surface activated Akt for redistribution to the
rest of the cell (Antal and Newton, 2013). Supporting this model,
a FRET-based biosensor of Akt activity demonstrated that Akt
activation in the plasma membrane preceded that in the cytosol,
suggesting a redistribution of Akt once activated (Kunkel et al.,

2005). Using a different FRET-based approach, Akt was found to
form a complex with PDK1 prior to activation, such that upon
ligand activation, the conformational change in Akt that occurs
upon membrane binding allows phosphorylation of Akt, followed
by dissociation from the membrane and redistribution of active
Akt to distal sites (Calleja et al., 2007).

Several studies that revealed that Akt activation by RTKs
occurs primarily at the cell surface and does not outright require
receptor endocytosis per se (Brankatschk et al., 2012; Sousa et al.,
2012; Garay et al., 2015) are broadly consistent with a model
in which Akt is activated at the plasma membrane and then
redistributes to other locales. However, directly studying active
Akt redistribution is technically challenging, and only a small
number of studies have directly examined this “locked-active”
Akt redistribution model. In endothelial cells, internalization of
the complement membrane attack complex (MAC) is mediated
by CME and Rab5, leading to recruitment of activated Akt
to MAC-containing endosomes. In these cells, inhibition of
CME by clathrin siRNA had no effect on Akt phosphorylation,
suggesting that in this case, Akt is activated at the membrane,
independently of clathrin, from where it is then redistributed
(Jane-wit et al., 2015).

The redistribution of “locked-active” Akt may occur via
microtubules. Active Akt can associate with microtubules
through interaction with the microtubule binding protein
dynactin p150 (Jo et al., 2014). Inhibiting microtubule
polymerization with nocodazole did not inhibit initial Akt
activation by IGF1 stimulation; however, nocodazole treatment
attenuated Akt signaling after the initial IGF1 stimulus. This
suggests that microtubule polymerization possibly acts as a
mechanism for redistributing active Akt to other parts of the cell
to sustain Akt signaling.

Compared to the well-established mechanisms for Akt
activation at the plasma membrane and in a subset of endosomes,
much remains to be understood about the mechanisms that
gate Akt activation that results in localized Akt activity in other
membrane compartments. An important recent study found that
while PI34P2 or PIP3 binding to the Akt PH-domain allosterically
activates this kinase, the activity of Akt rapidly returns to basal
upon dissociation from PIP3 or PI34P2 (Ebner et al., 2017a). This
study thus challenges the “locked-active” Akt model in which the
kinase is capable of redistribution from the plasma membrane to
other compartments. Instead, the findings of this study suggest
that Akt activity is restricted to specific membrane compartments
in which it is initially activated, as dissociation of Akt from
lipid binding would render Akt inactive. This model suggests
instead that Akt is only activated in compartments enriched with
compatible lipid ligands, such as PI34P2 and PIP3.

While the evidence that Akt requires ongoing association
with membranes to sustain activity is thus strong, it is less well
understood how certain compartments in which Akt has been
reported, such as the late endosome or lysosome, could support
Akt activation, due to the paucity of information of enrichment
or production of PIP3 or PI34P2 in these compartments. Further
studies have implied that Akt can be activated at other distinct
subcellular locales, including the nucleus (Wang and Brattain,
2006; Santi and Lee, 2010), mitochondria (Santi and Lee, 2010),
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and the endoplasmic reticulum (Betz et al., 2013), again begging
the question of how PIP3 or PI34P2 can be produced or
enriched in these compartments to support Akt activation.
Indeed the Class II PI3K PIK3C2β is recruited to the lysosome
to produce PI34P2, but this did not appear to regulate Akt
and instead suppressed mTORC1 signaling (Marat et al., 2017).
It is possible that additional mechanisms such as chaperones
could support redistribution of Akt among compartments once
activated. Future studies that can glean further insight into the
mechanisms of localized Akt activation in specific compartments,
and/or in possible modes of redistribution of active Akt will be
very informative.

COMPARTMENT-SPECIFIC Akt
FUNCTIONS AND OUTCOMES

Given the sheer number of Akt substrates that have been
described in the literature, it is no surprise that Akt
exhibits specific effects in different subcellular locales.
A detailed analysis of the effects of Akt on each substrate,
in each subcellular compartment is beyond the scope of
this review, which can instead be found in several recent
reviews (Manning and Cantley, 2007; Manning and Toker,
2017). Instead, the following section highlights some key
regulatory functions of Akt in distinct organelles and how
dysregulated Akt activity in these locations can contribute to
disease. A particular emphasis is placed on how localized Akt
activity coordinates the activity of key signaling nodes in the
regulation of cellular energy metabolism for regulation of cell
growth and apoptosis.

Plasma Membrane Akt May Support
Formation of Invadopodia for Cancer
Cell Metastasis
Invadopodia are actin-rich, plasma membrane-associated
structures that play a crucial role in remodeling of the
extracellular matrix (ECM) for cell migration and invasion.
The formation of invadopodia is particularly relevant in
cancer metastasis, whereby degradation of the ECM by
invadopodia-associated matrix metalloproteases (MMPs)
facilitates dissemination of cancer cells to other compartments
(Hoshino et al., 2013; Eddy et al., 2017; Figure 2). Invadopodia
formation occurs in stages and is often triggered by RTK
signaling; stimulation with EGF, VEGF, PDGF, and other RTK
ligands can promote the initiation of invadopodia (Hoshino et al.,
2013). Following RTK activation, invadopodia initiation requires
recruitment of the regulators of actin polymerization, N-WASP,
Arp2/3, cofilin, to the actin-cortactin complex (Hoshino et al.,
2013; Eddy et al., 2017). This facilitates actin polymerization,
which is then anchored to the plasma membrane by interaction
with the PI34P2-binding scaffold protein Tks5 (Murphy and
Courtneidge, 2011). From here, the invadopodia mature via
additional Cdc42 (or other Rho-family GTPases)-mediated
actin polymerization and recruitment of Membrane Type-1
Matrix Metalloproteinase (MT1-MMP), which leads to rapid

FIGURE 2 | Akt controls the formation of invadopodia at the plasma
membrane. The activation of specific RTKs leads to the formation of
invadopodia, which requires class IA PI3K and Akt. Shown is the control of
various proteins that control actin polymerization and dynamics (cortactin,
cofilin, N-WASP, Arp2/3, and Cdc42) that are localized to and/or required for
Akt-dependent invadopodia formation at the plasma membrane. Also shown
are the PI34P2-binding protein Tks5, which links actin filaments to the plasma
membrane in invadopodia, and MT-MMP1, which is delivered to invadopodia
by vesicle carriers and serves to degrade extracellular matrix. Since
invadopodia are formed at the plasma membrane, it follows that these
structures are likely dependent on plasma membrane Akt pools.

degradation of the underlying ECM (Hoshino et al., 2013;
Castro-Castro et al., 2016; Eddy et al., 2017).

Phosphoinositides play a critical role in the regulation of
invadopodia formation and activity, at least in part due to the
regulation of Akt activation (Figure 2). The balance between
formation of PIP3 and PI34P2 by Class I PI3Ks and phosphatases
appears to modulate the metastatic potential of many cancer
cell lines (Fukumoto et al., 2017; Malek et al., 2017). In
MDA-MB-231 breast cancer cells, knockdown of the Class IA
PI3K p110α catalytic subunit or chemical inhibition of class
I PI3K attenuates invadopodia formation and Akt activation,
while activating mutations of PIK3CA (which encodes p110α)
promote invadopodia formation and Akt activation (Yamaguchi
et al., 2011). The control of invadopodia formation requires
Akt downstream of Class I PI3K activity, as knockdown of
either PDK1 or Akt recapitulated the effects of p110α deletion
(Yamaguchi et al., 2011). Interestingly, expression of a chimeric
Akt that is constitutively active but lacks targeting specific
to invadopodia (myristoylated Akt) attenuated invadopodia
formation, suggesting that localized Akt at the site of invadopodia
initiation and not general Akt activation on cellular membranes
is required for invadopodia formation (Yamaguchi et al., 2011).
Also in MDA-MB-231 breast cancer cells, knockdown of
SHIP2 and PTEN differentially impacted invadopodia formation
(Fukumoto et al., 2017). This yet again links PI3K/Akt signaling
to invadopodia formation. Similarly, loss of PTEN or the 4-
phosphatase INPP4B results in accumulation of PI34P2 at the
plasma membrane in MCF10a breast cancer cells and loss of
both PTEN and INPP4B substantially enhanced Akt activity
and invadopodia formation (Malek et al., 2017). While a role
for a plasma membrane-specific pool of Akt in the control of
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invadopodia formation and dynamics remain to be thoroughly
investigated, given that invadopodia are protrusions of the
plasma membrane, it is perhaps expected that these structures are
controlled by plasma membrane pools of Akt.

Akt Control of GSK3 at Early Endosomes
GSK3 is a ubiquitously expressed serine/threonine kinase that
was first identified as a regulator of glycogen synthase activity.
Similar to Akt, GSK3 acts on over 100 known substrates with
unique tissue and subcellular distributions, and as such, it
plays an important role in regulating a diverse array of cellular
processes. One of the overarching themes of GSK3-mediated
regulation is the concept that upon phosphorylation by GSK3,
many substrates are inactivated or targeted for degradation
(Chiara and Rasola, 2013; Beurel et al., 2015; Manning and Toker,
2017; Bautista et al., 2018). GSK3 is negatively regulated by
phosphorylation at S21 and S9, found within a conserved motif
in GSK3α and GSK3β, respectively.

Akt is one of a number of regulatory kinases that can
phosphorylate GSK3 in response to stimuli, and there is evidence
to suggest that this event occurs at the level of early endosomes,
which provides regulatory feedback cues to components of the
endocytic pathway (Figure 3). GSK3 phosphorylation occurs
in a unique subset of endosomes that are APPL1 positive and
TSC2 negative, and this requires APPL1 and PI3K activity
(Schenck et al., 2008; Reis et al., 2015). The phosphorylation
of GSK3 by Akt is mediated by the Akt2 isoform at early
endosomes (Braccini et al., 2015). Notably, inhibition of CME,
which prevents PI34P2 delivery to early endosomes, attenuates
GSK3β phosphorylation but not that of FoxO or S6K, suggesting

FIGURE 3 | The reciprocal regulation of Akt activation, endocytosis, and
APPL1 endosomes. Shown is an active RTK within a clathrin nanodomain
(some of which lead to production of clathrin-coated vesicles for receptor
internalization), with associated active class 1A PI3K (e.g., linked via
phosphorylated Gab1 to EGFR, as in Garay et al., 2015). Also enriched within
clathrin nanodomains are the phosphatases SHIP2 and PTEN, which control
clathrin nanodomain dynamics and may thus control PI3K-Akt signaling, and
Akt itself. Following internalization, some RTKs and associated signals are
delivered to APPL1 endosomes, which also harbor active Akt that serves to
phosphorylate (and inactivate) GSK3ß, a phenomenon which relieves the
inhibition of GSK3ß on dynamin-1, which in turn regulates formation of clathrin
structures and endocytosis at the cell surface. Hence, the activation of Akt at
the plasma membrane and within APPL1 endosomes both requires clathrin
structures at the cell surface and promotes formation of clathrin structures for
internalization, establishing a positive feedback loop to amplify PI3K-Akt signal
propagation downstream of certain RTKs.

that early endosomes are a critical site for GSK3β regulation
but perhaps not that of other Akt substrates (Liu et al., 2018).
Accordingly, disrupting CME-derived membrane traffic results
in accumulation of phosphorylated Akt in APPL1 endosomes
and enhanced GSK3 phosphorylation, which leads to reduced
dynamin-1 phosphorylation that promotes clathrin assembly
(Reis et al., 2015). As such, endosomal Akt-GSK3 signaling
may function as part of a positive feedback loop with clathrin-
dependent Akt activation (Garay et al., 2015; Schmid, 2017) to
potentiate Akt signaling.

Akt Regulation of TSC2 and Other
Processes at Lysosomes
Several lines of evidence suggest that Akt has compartment-
specific functions that involve localization to the lysosome. As the
site of mTORC1 activation, the lysosome is at the confluence of
pathways that integrate nutrient and growth factor signaling for
the control of cell growth. Activation of mTORC1 at the lysosome
is accomplished through the combined effects of two separate,
yet equally important pathways that converge upon mTORC1 to
facilitate its full activation. In the first pathway, Rag GTPases are
stimulated in the presence of amino acids and form a heterodimer
that facilitates recruitment of mTORC1 to the lysosomal surface
through interaction with Raptor (Demetriades et al., 2014; Lim
and Zoncu, 2016; Sabatini, 2017; Saxton and Sabatini, 2017;
Wolfson and Sabatini, 2017). From here, mTORC1 is activated
by PI3K-Akt signaling which impacts the activation of Rheb, a
second class of GTPase (Tee et al., 2003; Long et al., 2005). In the

FIGURE 4 | Activation, recruitment and function of Akt at the late
endosome/lysosome. Sustained signaling by RTKs and membrane traffic at
the late endosome/lysosome are required for sustained activation of Akt
downstream of some RTKs. While the complete mechanism of Akt activation
specifically at the lysosome remains to be elucidated, evidence for the
localized activation of Akt at lysosomes is provided by the localization of
mTORC2 therein. Akt may also be recruited to the lysosome following
activation in another compartment. The PI3P binding protein Phafin2 and the
serine/threonine kinase Vrk2 serve to recruit Akt to the lysosome, required for
control of Akt-dependent lysosomal acidification and autophagy induction. In
addition, given the localization of TSC2 (part of TSC complex) to the late
endosome/lysosome, the phosphorylation of TSC2 by Akt may also occur in
this compartment. Akt phosphorylation of TSC2 causes dissociation from the
lysosome, which relieves the inhibition on mTORC1, allowing activation of
mTORC1, which in turn impacts many cellular functions, of which some
selected examples are shown.
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absence of mitogenic signaling, Rheb activity is suppressed by the
GAP activity of the TSC complex, which is comprised of TSC1,
TSC2, and TBC1D17. Mitogenic signaling impairs TSC-mediated
suppression of Rheb, thus leading to activation of mTORC1
(Inoki et al., 2002, 2003; Tee et al., 2003; Long et al., 2005).

Specifically, the activation of Akt by many RTKs elicits
phosphorylation of TSC2, resulting in its inactivation and
dissociation from the lysosome (Menon et al., 2014), thus
allowing Rheb-dependent mTORC1 activation (Figure 4). The
highly contextualized nature of mTORC1 activation at the
lysosome by growth factor signaling through Akt and nutrient
availability ensures that mTORC1 is only activated when the
cellular microenvironment favors growth. Given the localization
of TSC2 to the lysosome, Akt recruitment to or activation at the
lysosome would seem to be required for phosphorylation of TSC2
and thus activation of mTORC1.

This compartment-specific role of Akt activation is consistent
with the activation of Akt at the lysosome proposed to
contribute to the regulation of CMA (Arias et al., 2015;
Hirata et al., 2018; Figure 4). Indeed, lysosomal Akt
promotes autophagy through interactions with lysosomal
proteins such as Phafin2 and the serine/threonine kinase
VRK2 (Matsuda-Lennikov et al., 2014; Hirata et al., 2018).
Lysosomal Akt and VRK2 promote lysosomal acidification
and silencing VRK2 by siRNA attenuates lysosomal Akt
activation (Hirata et al., 2018). While many factors such as
ubiquitinylation also control Akt turnover, such as by the
proteasome or by caspases (Liao and Hung, 2010), these
studies highlight that Akt also thus exerts control over global
protein stability, likely as a result of lysosome-specific functions.
Hence, multiple lines of evidence indicate lysosomal-specific
functions of Akt.

Nuclear Akt Promotes Cancer Growth
and Chemotherapeutic Resistance
Upon stimulation of some RTKs, active Akt is detected in the
nucleus (Wang and Brattain, 2006; Santi and Lee, 2010), and
this can be delayed ∼30 min subsequent to initial Akt activation
detected at the plasma membrane (Meier et al., 1997). Active
nuclear Akt in the nucleus is protected from nuclear export
and degradation by interaction with B23/NPM in the nucleus,
a phenomenon which has a net effect of promoting cell cycle
progression (Lee et al., 2008). Akt activity in the nucleus has been
best described in the context of regulating nuclear/cytoplasmic
localization of the Forkhead Box O Family (FoxO) members, a set
of highly conserved transcription factors that control apoptosis,
cell division, and metabolism (Manning and Toker, 2017). Akt
regulates FoxO localization by directly phosphorylating three
conserved regions on the FoxO proteins, which results in their
association with 14-3-3 and retention in the cytoplasm (Brunet
et al., 1999). As a result of FoxO cytoplasmic retention, nuclear
Akt activity attenuates expression of the FoxO gene expression
program, including genes involved in promoting apoptosis (FasL,
Bim) and cyclin-dependent kinase inhibitors (p27) (Brunet et al.,
1999; Trotman et al., 2006; Zhang et al., 2011). Thus, the net effect
of active Akt in the nucleus is suppression of FoxO-mediated

expression of genes that promote apoptosis and inhibit growth,
and thus enhanced cell cycle progression and cell survival.

This role of nuclear Akt has important implications for cancer
treatment. Akt activating mutations (in genes such as PIK3CA,
PIK3CB, PIK3R1, PTEN, AKT, TSC1/2, and mTOR) are common
in many tumors and are viewed as attractive therapeutic targets
(Okkenhaug et al., 2016; Janku et al., 2018). However, prolonged
Akt inhibition in cancer cell lines leads to FoxO-mediated
upregulation of the RTK oncogenes Her3, IGF-1R, and the
insulin receptor, possibly through relief of the negative feedback
associated with RTK signaling (Chandarlapaty et al., 2011). In
lung cancer xenografts, Akt inhibition alone fails to prevent
tumor growth, and this is correlated with enhanced RTK activity.
Interestingly, the sensitivity to Akt inhibitors is improved with
adjuvant administration of EGFR/ErbB2 inhibitors, suggesting
that targeting different components of the EGFR/PI3K/Akt
signaling axis can overcome the compensatory RTK activity that
accompanies inhibition of Akt alone (Chandarlapaty et al., 2011).

Akt is also active in the nucleus in response to various forms
of DNA damage (Szymonowicz et al., 2018). Doxorubicin and
other chemotherapeutic agents as well as ionizing radiation exert
their cytotoxic effects, in part, by inducing DNA damage and
subsequent cell cycle arrest and apoptosis (O’Connor, 2015).
These effects are countered by repair pathways that respond to
DNA damage, including activation of Akt by DNA-dependent
protein kinases (DNA-PKs), which collectively activate various
DNA repair pathways (Feng et al., 2004; Park et al., 2009; Liu
et al., 2014; Toulany et al., 2017; Szymonowicz et al., 2018).
Further studies that contribute to the understanding of how the

FIGURE 5 | Mitochondrial Akt controls apoptosis and metabolism. Akt is
recruited to the mitochondria upon activation of specific RTKs, in a manner
that requires mitochondrial membrane potential (+19). Mitochondrial Akt
phosphorylates a number of substrates within this compartment, including
GSK3ß and hexokinase II (HKII). Akt phosphorylation of HKII leads to
enhanced activity, retention of HKII at the mitochondria and suppression of
cytochrome c release (which would otherwise lead to apoptosis). Akt may also
phosphorylate the mitochondrial ATPase. A wide range of mitochondrial
substrates are controlled by mitochondrial Akt following hypoxia, including
pyruvate dehydrogenase kinase I (PyrDK1). While activation of some RTKs
may also lead to Akt localization within mitochondria, this mechanism requires
further examination. OM, outer membrane; IMS, intermembrane space; IM,
inner membrane.
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nuclear functions of Akt activated by DNA damage may interface
with Akt activated by RTK signaling will be valuable, given that
active nuclear Akt is a central driver of cancer signaling and
chemotherapeutic resistance and represents an attractive target
for cancer therapy (Adini et al., 2003; Hui et al., 2008).

Mitochondrial Akt Coordinates Energy
Metabolism and Apoptosis
Nutrients and growth factors trigger Akt mobilization to the
mitochondria where it plays a central role in regulating cellular
energy metabolism and apoptosis (Santi and Lee, 2010; Betz et al.,
2013; Figure 5). This role of Akt is particularly important in
cancer cell signaling, where dysregulated mitochondrial energy
metabolism and apoptosis have been implicated in promoting
tumor growth (Wallace, 2012). Mitochondrial signaling is
required for the localized activation or redistribution of Akt
to mitochondria, as disruption of mitochondrial membrane
potential attenuates IGF1-stimulated Akt activation in the
mitochondria (Bijur and Jope, 2003). Furthermore, disruption of
mTORC2 signaling by Rictor deletion attenuates Akt activation
at mitochondrial-associated ER membranes (Betz et al., 2013).

Accumulation of active Akt in the mitochondria following
growth factor stimulation leads to the phosphorylation of
a number of substrates responsible for energy metabolism,
including hexokinase-2 (HK2), ATP-synthase, and GSKβ3
(Gottlob et al., 2001; Bijur and Jope, 2003; Beurel and Jope, 2006;
Miyamoto et al., 2008; Roberts et al., 2013; Chae et al., 2016;
Figure 5). Further, hypoxia induced activation of mitochondrial
Akt, which in turn led to phosphorylation of a wide range
of mitochondrial substrates including pyruvate dehydrogenase
kinase I (Chae et al., 2016). It remains to be determined to
what extent the hypoxia-induced Akt program is recapitulated
by RTK activation of Akt. Moreover, while translocation of Akt
to mitochondria upon insulin and IGF1 stimulation has been
reported (Bijur and Jope, 2003), how Akt activated outside of
the mitochondria may translocate into mitochondria is unclear,
as are possible mechanisms by which RTK-derived signals may
trigger activation of Akt within the mitochondria. The net
effect of these individual phosphorylation events elicited by Akt
at the mitochondria is a shift in cellular metabolism toward
glycolytic pathways (Roberts et al., 2013; Chae et al., 2016),
reduction in oxidative damage and suppression of apoptosis
(Chae et al., 2016). The effects of mitochondrial Akt on HK2
are central to the coupling of energy metabolism and apoptosis;
as the first committed step in glycolysis, HK2 phosphorylates
glucose to glucose-6-phosphate (G6P). G6P negatively regulates
HK2, resulting in its dissociation from the mitochondria.
However, HK2 is stabilized on the mitochondria by Akt
phosphorylation at T473 (Roberts et al., 2013), thus potentiating
glycolytic metabolism.

Akt-mediated phosphorylation of HK2 also attenuates
apoptosis by preventing cytochrome c release from the
mitochondria (Gottlob et al., 2001; Miyamoto et al., 2008). The
anti-apoptotic effects of Akt/HK2 on promoting mitochondrial
integrity represents a separate arm of the intrinsic apoptosis
pathway, as dissociation of Akt/HK2 from the mitochondrial

membrane is sufficient to induce apoptosis in the absence of
Bax/Bak (Majewski et al., 2004). Mitochondrial Akt also inhibits
apoptosis by blocking mitochondrial caspase-3 activation,
an effect specific to mitochondrial Akt, as overexpression of
a constitutively active, mitochondrial-targeted Akt blocked
caspase activation in the presence of PI3K inhibitors (Su
et al., 2012). Thus, the concerted effects of active Akt at the
mitochondria promotes glycolysis and inhibits the intrinsic
apoptosis pathway, such that in cancer, these features promote
cell growth and survival.

CONCLUSION AND PERSPECTIVES

The many and diverse substrates of Akt require tight control
and regulation of this important kinase. This regulation
is afforded in part by the intricate orchestration of Akt
activation and function in space and time in many different
endomembrane compartments, including the plasma membrane,
endosomal compartments, mitochondria and the nucleus. This
compartmentalization of Akt functions provides an important
mechanism to allow context-specific outcomes of Akt activation.
While this is an attractive model, several important aspects of this
spatial compartmentalization of Akt activation and function are
still poorly understood.

There is indirect evidence of Akt activation on some
internal membranes, such as from perturbations of late
endosome/lysosomal traffic that disrupt Akt activation, and the
possible activation of Akt on or in mitochondria. However,
there is little direct evidence of PIP3 and PI34P2 production
on some of these internal membrane compartments that are
proposed to support Akt activation. For the case of lysosomes, the
localization of mTORC2 to this compartment is indeed consistent
with localized activation of Akt, yet the strict requirement of Akt
activation on PIP3 or PI34P2 indicate that our understanding
of Akt activation at the lysosome and other internal organelles
remains incomplete. Interestingly, while PI3KC2 is present at the
lysosome, this lysosome-localized lipid kinase did not appear to
contribute to Akt activation (Marat et al., 2017). Resolving how
PIP3 and/or PI34P2 can be produced in any cellular compartment
other than the plasma membrane and early endosomes as part
of canonical Akt activation will be very informative. Indeed,
the development and use of novel lipid biosensors as recently
reported for PI34P2 (Goulden et al., 2018; Liu et al., 2018) or
resolving other aspects of the mechanism of activation of Akt
specific to various compartments will be very informative.

Several lines of evidence suggest that endocytic portals, likely
to be clathrin-coated structures and vesicles, are important points
of spatial convergence of many aspects of PI3K-Akt signaling.
Plasma membrane clathrin structures are sites of signaling that
lead to PI3K activation (Delos Santos et al., 2015, 2017; Garay
et al., 2015), and Akt itself is enriched in these structures
(Rosselli-Murai et al., 2018). In addition to these signals that
positively regulate PI3K-Akt activation, clathrin structures are
also enriched in lipid phosphatases including PTEN (Rosselli-
Murai et al., 2018) and SHIP2 (Nakatsu et al., 2010), thus
making clathrin nanodomains an important platform for spatial
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coordination of both positive and negative regulation of
PI3K activation. Notably, the accumulation of PI34P2 on
internal membranes leading to activation of Akt2 required
both SHIP2 and internalization (perhaps of PIP3) from the
plasma membrane (Liu et al., 2018). This model proposes
that early endosome PI34P2 is thus derived from plasma
membrane PIP3. While this is an interesting model, this is
difficult to reconcile with the well-established recruitment of
many lipid phosphatases within clathrin-coated structures and
vesicles, and the very rapid turnover of plasma membrane
phosphoinositides in vesicles upon scission from the plasma
membrane (Krauß and Haucke, 2007; Zoncu et al., 2009; He
et al., 2017). Hence, plasma membrane clathrin nanodomains
and endocytic vesicles may indeed be spatial bottlenecks
that both allow PI3K-Akt activation in coordination with
negative regulation of this signaling axis to prevent aberrant
signaling. However, much remains to be determined about
how PI3K-Akt signals are coordinated in plasma membrane
clathrin nanodomain platforms and endocytic vesicles
derived therefrom.

In addition, many of the functions of Akt that are
thought to be compartment-specific are inferred, largely from
the localization of Akt to specific compartments that each
harbor unique substrate pools. The development of methods
to specifically perturb or alter Akt in a compartment specific
manner (Maiuri et al., 2010) will be instrumental in resolving how

compartment-specific activation or redistribution of Akt impacts
cell physiology. With the important roles that Akt plays in the
context of normal human health and development, as well as the
mounting evidence for a critical role of disruption of Akt function
in diseases such as cancer and type II diabetes, understanding the
molecular mechanisms that underlie the compartment-specific
activation and functions of Akt over the coming years will have
substantial impact.
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