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The coronary atherosclerotic heart disease is a common cardiovascular disease with high morbidity, disability, and societal
burden. Early, precise, and comprehensive diagnosis of the coronary atherosclerotic heart disease is of great significance. The
rise of artificial intelligence technologies, represented by machine learning and deep learning, provides new methods to address
the above issues. In recent years, artificial intelligence has achieved an extraordinary progress in multiple aspects of coronary
atherosclerotic heart disease diagnosis, including the construction of intelligent diagnostic models based on artificial
intelligence algorithms, applications of artificial intelligence algorithms in coronary angiography, coronary CT angiography,
intravascular imaging, cardiac magnetic resonance, and functional parameters. This paper presents a comprehensive review of
the technical background and current state of research on the application of artificial intelligence in the diagnosis of the

coronary atherosclerotic heart disease and analyzes recent challenges and perspectives in this field.

1. Introduction

Coronary atherosclerotic heart disease (CAD) refers to a
heart disease characterized by abnormal lipid metabolism,
the accumulation of lipids and other substances in the blood
in the coronary arteries, and the formation of atheromatous
plaques. It can cause luminal narrowing or occlusion, lead-
ing to myocardial ischemia, oxygen deficiency, or necrosis,
manifesting as chest pain, chest tightness, or myocardial
infarction and other symptoms. Referred to as coronary
heart disease (CHD), it is the most common type of athero-
sclerosis leading to organ lesions and a common disease that
seriously endangers human health. Globally, in 2017, 126.5
million people lived with coronary heart disease, and 10.6
million new coronary heart disease cases occurred, resulting
in 8.9 million deaths [1]. According to “Report on Cardio-
vascular Health and Diseases in China 2019: an Updated
Summary,” the number of current CHD patients in China
is about 11 million, and its incidence is rising significantly,

corresponding to the fact that the mortality rate of also
shows an obvious increasing trend, and in recent years, the
mortality rate of coronary heart disease in rural areas has
increased more significantly [2]. The accompanying prob-
lem is that the social health burden caused by coronary heart
disease is also increasing. In the United States, CHD-related
medical costs are expected to increase by 41%, from $126.2
billion in 2010 to $177.5 billion in 2040 [3]. CHD has
become a serious public health problem worldwide.

Early detection, early diagnosis, and thus early interven-
tion treatment are effective solutions to this problem. With
the development of various auxiliary diagnostic techniques
of coronary heart disease, it shows a diverse, precise, and
individualized trend. In addition to the traditional gold stan-
dard (coronary angiography (CAG)) for CHD diagnosis [4],
imaging techniques such as coronary CT angiography
(CCTA) [5, 6], cardiac magnetic resonance, intravascular
ultrasound (IVUS), and intravascular optical coherence
imaging (IVOCT) [7] have been widely used for CHD
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diagnosis. With the further understanding of CHD, the
luminal functional changes caused by coronary heart disease
are becoming more appreciated by clinicians. Coronary
functional parameters have been used as substantial medical
evidence for guiding coronary revascularization strategies.
Represented by fractional flow reserve (FFR) [8], it has been
recommended by several international guidelines [9]. The
imaging and functional tests described above have allowed
the visualization of coronary stenosis, plaque burden, and
myocardial ischemia quantitatively or qualitatively, which
may not only diagnose coronary heart disease but also fur-
ther guide the treatment strategies. However, patients diag-
nosed by the above methods often already have ischemic
symptoms or severe coronary artery lesions. It is difficult
to achieve early diagnosis. Besides, current diagnostic
methods all have various limitations. For example, CAG,
FFR, and intravascular imaging tests are all invasive proce-
dures which have some risks and will obviously increase
the financial burden on patients, making it difficult to truly
generalize the above diagnostic methods, whereas relatively
noninvasive CCTA is highly dependent on high-quality
imaging results. Therefore, the existing techniques for
CHD diagnosis still need to be further improved with the
aim of diagnosing coronary heart disease early, noninva-
sively, and economically.

The advent of artificial intelligence (AI) has provided
new ideas for improving CHD diagnostic techniques and
has pioneered new areas of research. In recent years, the
popularity of computer information systems and digital
medical devices has caused the information capacity of hos-
pital databases to expand continuously. These valuable med-
ical information resources are very helpful in disease
diagnosis and medical research. How to effectively utilize
these data for intelligent diagnosis has become the focus of
the attention of medical and informational researchers.
The medical electronic data can be effectively integrated
through AI algorithms, including the analysis and process-
ing of the visualized imaging data, according to which the
intelligent diagnostic model of coronary heart disease can
be constructed, or the current imaging diagnostic methods
can be improved. In addition, AI algorithms also have been
applied to improve functional diagnosis of coronary heart
disease, whereby convergence of imaging and functional
diagnosis can be achieved. Overall, the current research of
AT algorithms in the field of CHD diagnosis has been ini-
tially fruitful. In this paper, we will provide a review of recent
applied studies of Al algorithms in CHD diagnosis and ana-
lyze the current challenges and perspectives in this field.

Due to the application of the existing AI algorithm in the
research of CHD diagnosis has made some achievements,
whether it is to construct intelligent diagnosis model or to
improve imaging or functional methods, therefore, others
have reviewed the related content [10-12]. Some reviewed
the application of AI in the imaging diagnosis of coronary
heart disease, while others reviewed the research progress
of Al in the functional diagnosis of CHD. However, accord-
ing to the author’s investigation, there is no relevant review
and the above content. On the basis of those reviews, this
paper summarizes the Al research of intelligent diagnosis
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model, imaging, and functional diagnosis methods (see
Figure 1).

The reminder of this paper is organized as follows: Sec-
tion 2 briefly describes the AI algorithm, mainly about
machine learning (ML) and deep learning (DL). Section 3
introduces the application of Al in the field of coronary
heart disease diagnosis. Section 4 analyzes the existing prob-
lems in this field and makes some prospects for the future
development.

2. Al

Artificial intelligence is a branch of computer science that
aims to develop theory, methods, and application systems
for modeling and expanding human brain intelligence. Arti-
ficial intelligence has unique advantages for the integration
and processing of big data and has been widely applied in
medical research. It can be expected that Al technology will
play a more important role in the realization of precision
medicine.

According to the different learning mechanisms, the
learning methods of AI can be divided into machine learning
and deep learning (see Figure 2). They have been widely
used in medical research, which are introduced as follows.

2.1. ML. Machine learning is an important research area of
AlJ, which refers to a range of techniques that solve complex
big data problems by studying interactions. In the medical
field, machine learning focuses on building automated clini-
cal decision systems to help physicians make more accurate
predictions compared to classical statistics [13]. More pre-
cisely, the distinction between ML and traditional statistics
is not a methodological distinction, but a difference in pur-
pose. The main focus of classical statistics is on inferring
sample or population parameters, whereas machine learning
focuses on algorithmically representing data structure and
making predictions or classifications. Therefore, classical
statistical and ML algorithms do not have clear boundaries
but are often used to answer different questions.

Machine learning can be divided into supervised learn-
ing, unsupervised learning and reinforcement learning.
Supervised learning obtains an optimal model by training
labeled samples, then uses this model to map all the inputs
to the corresponding outputs, and makes a simple judgment
on the outputs to achieve classification. The sample data of
unsupervised learning is not labeled, so it is usually neces-
sary to cluster the data and select features by clustering.
Reinforcement learning can be seen as a combination of
supervised learning and unsupervised learning [14]. Specific
machine learning algorithms include support vector
machine (SVM), random forest (RF), decision tree (DT),
genetic algorithm (GA), and Bayesian network (BN). These
machine learning algorithms have been widely used in med-
ical research and achieved good results.

2.2. DL. Deep learning is a new field in which AI algorithms
have developed and burgeoned in recent years, which can be
seen as an extension of machine learning. Deep learning
establishes a mapping relationship from the underlying
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FIGURE 1: Current status of AI applied in CHD diagnosis.

Machine
learning

Deep learning

FIGURE 2: Relationship of AI,ML, and DL.

signal to the high-level semantics by building a hierarchical
model structure that mimics the neural reflex circuits of
the human brain, extracting features from the bottom to
the top level of the input data step by step. This hierarchical
model structure is called a neural network. Similar to ML
algorithm, DL can also be divided into supervised learning,
unsupervised learning, and reinforcement learning. Taking
the convolutional neural network (CNN) algorithm as a rep-
resentative, lots of medical studies have used the CNN algo-
rithm [15], especially in the field of medical image
processing. CNN algorithm shows clear advantages com-
pared with machine learning algorithms. The image analysis

process of machine learning involves several complicated
steps, such as preprocessing of images, image segmentation,
and selection of segments of interest, as well as statistical and
machine learning algorithm classification. CNN algorithms
can effectively simplify the process of image analysis and
thus can help to save effort and improve work efficiency.
There has been a significant increase in recent years in the
application of CNN algorithms for quantitative analysis of
medical imaging, such as the application of CNN algorithms
to improve the detection rate of lung nodules [16], as well as
the automated identification and classification of breast
lesions [17, 18].

3. Application of Al in Diagnosis of CHD

As the most common cardiovascular disease, the diagnosis
of coronary heart disease is highly dependent on visualized
imaging data. The processing of imaging data is exactly the
advantage of Al Therefore, the interest of Al in the diagno-
sis of coronary heart disease is increasing year by year, and
has achieved remarkable results.

Related research is mainly focused on intelligent diag-
nostic model and improvement of current imaging and
functional diagnostic methods of coronary heart disease.
The former is helpful in achieving an early diagnosis; the lat-
ter one makes relevant examination methods more conve-
nient, precise, and diversified. The progress of machine
learning algorithm and deep learning algorithm applied in
CHD diagnosis will be described as follows.



3.1. Construction of an Intelligent Diagnostic Model for CHD
Based on Medical Data. Data mining refers to the process of
mining out useful information from complex data sets. It is
possible to mine the data and discover the intrinsic associa-
tions of a large amount of data in a data set through AI algo-
rithms. This mining for intrinsic connections does not exist
with a clear hypothetical premise and can be regarded as an
extension of traditional statistical methods. Traditional car-
diovascular risk factors are helpful in the diagnosis of coro-
nary heart disease. However, the diagnostic accuracy of
these models constructed by statistical methods are limited
accordingly. Compared with traditional statistical methods,
Al methods are less demanding on the premise of data,
not only can improve diagnostic accuracy, but also can dis-
cover some potential risk factors associated with the onset
of coronary heart disease through data mining. So it has
been applied to construct an intelligent aided diagnostic
model of coronary heart disease in recent years.

3.1.1. Intelligent Diagnosis Model of CHD Based on ML.
Machine learning algorithm has been used to construct the
intelligent diagnosis model of coronary heart disease. RF
algorithm, DT algorithm, ensemble algorithm, and SVM
algorithm are commonly used to build the model. They have
good performance, ease of use and low computational bur-
den, and are suitable for almost all CHD data sets. Kathleen
et al. [19] developed an advanced integrated machine learn-
ing algorithm to apply adaptive Boosting algorithm to con-
struct CHD intelligent diagnostic model. The developed
integrated learning algorithm classification and diagnostic
model was applied to 4 different diagnostic data sets. The
results showed that 4 data corresponded to a model diagnos-
tic accuracy of 80.14%, 89.12%, 77.78%, and 96.72%, respec-
tively. Hassannataj et al. [20] constructed diagnostic models
of coronary heart disease by four algorithms, respectively, in
which a diagnostic accuracy of 90.50% was obtained by the
diagnostic model constructed by RF algorithm. These stud-
ies reflect that the applications of machine learning algo-
rithms have the potential to diagnose coronary heart
disease through medical data from electronic medical record
systems, which can help CHD diagnosis achieve earlier and
more economical goals.

3.1.2. Intelligent Diagnosis Model of CHD Based on DL.
Although machine learning can mine and automatically
learn the important feature information in the data set, so
as to diagnose diseases efficiently, it is still unable to mine
the temporal information of the data. Deep learning algo-
rithms effectively compensates for the above deficiency.
And compared with machine learning algorithms, deep
learning algorithms can further improve diagnostic accu-
racy. Beunza et al. [21] compared the intrinsic validity and
accuracy of neural network algorithms and several machine
learning algorithms in diagnosing coronary heart disease.
This study applied two software tools: R-Studio and Rapid
Miner. When applying R-Studio software for analysis, the
highest AUC was obtained for the diagnostic model con-
structed based on the neural network algorithm
(AUC=0.71). Compared with machine learning algorithm,
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the main disadvantage of neural network is that it takes
more than 10 minutes to calculate. Recently, studies have
proposed the application of the recurrent neural networks
algorithm (RNN) to construct diagnostic models. In related
tasks of temporal learning, CNN algorithms can only cap-
ture local feature information and need to assume that one
piece of data is strictly in nature. Compared with that,
RNN, such as long short-term memory neural network algo-
rithm (LSTM), can capture useful information with different
“Gates” and round the information without discarding so
that the data with temporal information can be better proc-
essed [22]. Tan et al. [23] stack based convolutional LSTM
algorithm to analyze ECG data from an open database of
PhysioNet and constructed a CHD diagnostic model. It
had a high diagnostic accuracy of 99.85%. In terms of run-
ning time, it took approximately 51 seconds to run a single
epoch The above studies are sufficient to demonstrate that
deep learning algorithms have good application prospects
in the diagnostic field of coronary heart disease. Table 1
shows the details.

3.2. AI Applied to CCTA. Coronary CT angiography has
been widely used to evaluate patients with low to intermedi-
ate risk stable coronary heart disease because of its high sen-
sitivity, specificity, and negative predictive value. Compared
with coronary angiography, CCTA has the advantage of
being able to diagnose coronary heart disease noninvasively
and more economical. It is foreseeable that the clinical need
for CCTA will expand even further in the future. However,
CCTA is still not a substitute for coronary angiography in
terms of positive predictive value in coronary heart disease.
However, CCTA has high requirements for image quality.
Low quality image data may cause deviation of results. Seri-
ous calcification and arrhythmia may also lead to image arti-
facts and affect the interpretation of results. At present,
CCTA cannot replace coronary angiography in the positive
predictive value of CHD. Al algorithm can improve the
accuracy of CCTA in the diagnosis of coronary heart disease.
The degree of coronary artery stenosis can be measured
through automatic segmentation of CCTA images, and the
potential information hidden in CCTA images can be
mined, such as the type of plaque and coronary hemody-
namic parameters.

3.2.1. ML Applied to CCTA. Machine learning algorithms
have been applied to image segmentation and automated
measurement of CCTA images. Localizing the affected lesion
segment and performing image segmentation are often seen
as a preprocessing to detect coronary artery luminal stenosis.
The detection of the severity of coronary artery stenosis is
the most fundamental application of machine learning algo-
rithm analysis on CCTA images. Current studies are rela-
tively mature. Besides, identifying noncalcified plaques in
CCTA images by machine learning algorithms and making
classifications are also gradually carried out.

The detection of coronary stenosis by CCTA usually
requires the reconstruction of a three-dimensional coronary
tree. Automated extraction of the coronary tree by conven-
tional CCTA may create bias and requires manual
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TasBLE 1: Al applications in intelligent diagnosis model.
Method Variable Data Measure Value Calculate time or cost Paper
303; 80.14%
294; 89.12%
ML 29 200; Accuracy 77 78% — [19]
123 96.72%
55 303 Accuracy 90.50% — [20]
DL 16 4240 AUC 0.71 More than 10 minutes [21]
ECG signals 38120 Accuracy 99.85% Approximately 51 seconds to run a single epoch [23]

correction for use in clinical analysis. Machine learning algo-
rithms can automatically identify biases resulting from
reconstructing three-dimensional coronary trees, thus
avoiding tedious manual modification. Cao et al. [24] per-
formed refinements on the extracted reconstructed coronary
tree automatically and iteratively based on DT, through 18
data sets to determine the optimal values of parameters
involved in the model revision method and using 122 data
sets for evaluation. It was shown that the proposed DT algo-
rithm improved the accuracy of reconstructing the coronary
tree compared with conventional coronary tree extraction
methods. Machine learning algorithms can also automati-
cally identify coronary obstructive lesions. Kang et al. [25].
applied SVM algorithms to detect lesions with coronary ste-
nosis more than 25%. The sensitivity and specificity reached
93% and 95%, respectively. In addition, the detection of non-
calcified plaques in CCTA has been a challenging issue due
to the low density values of noncalcified plaques, which are
usually similar to nearby blood and muscle tissues and diffi-
cult to identify. Machine learning algorithms can be helpful
to identify noncalcified plaques in CCTA. Muhammad et al.
[26] calculated the radial contour of noncalcified plaques by
averaging image intensities in concentric rings around the
vessel centerline. Then, it applied SVM algorithms to iden-
tify coronary lesion segments. Plaque localization accuracy
was calculated using the dice similarity coefficient (DSC)
and achieved an average DSC of 83.2%. Therefore, machine
learning method can be used to process CCTA image pro-
cessing and improve the accuracy of diagnosis of coronary
heart disease and has good application value.

3.2.2. DL Applied to CCTA. The advantage of deep learning
algorithms over machine learning is that it further simplifies
the steps of image analysis and improves the automation of
image analysis. Zreik et al. [27] achieved the integration of
classifying coronary plaque types and detecting the severity
of coronary stenosis by multitasking a recursive CNN algo-
rithm. The proposed method achieved an accuracy of 0.77.
Deep learning algorithms can also be used to analyze coro-
nary blood flow and calculate coronary functional parame-
ters. Fractional flow reserve calculation based on CCTA
images is a representative study. Kumamaru et al. [28]
designed a fully automated three-dimensional deep learning
model to input CCTA image data and automatically analyze
calculated fractional flow reserve without manual input. The
model consists of a series of DL algorithms: a condition gen-
erating adversarial network algorithm, a three-dimensional

convolutional trapezoidal network algorithm, and two inde-
pendent neural network integrated virtual adversarial train-
ing algorithms. The Monte Carlo Cross-Validation showed
that the deep learning algorithm achieve an AUC of 0.78.

In the application of reconstruction of coronary artery
trees, deep learning algorithms improve the automation of
reconstruction of coronary artery trees in addition to their
accuracy [29]. But whether machine learning algorithms or
deep learning algorithms, the process of reconstructing cor-
onary trees is complex which increases the difficulty of
image processing and the burden of computational analysis.
Therefore, some scholars have proposed the reconstruction
of coronary tree with left ventricular myocardial replace-
ment by deep learning algorithm for the diagnosis of
patients with functional coronary stenosis. Zreik et al. [30]
used multiscale CNN algorithm to segment left ventricular
myocardium. Subsequently, the algorithm encoded it using
an unsupervised convolutional autoencoder and then classi-
fied it using SVM algorithm based on extracted features. The
results were evaluated by 50 times 10-fold cross-validation
and showed the combined algorithm model obtained an
AUC of 0.74+0.02. A retrospective study conducted by
Hamersvelt et al. [31], in which the CNN algorithm was
used, analyzed left ventricular myocardial images in 136
patients who underwent CCTA within 1 year prior to inter-
ventional fractional flow reserve. Aiming at the diagnosis of
patients with significant functional stenosis, the result
showed that the proposed method improved a diagnostic
performance (AUC=0.76) compared to the classification
based on coronary stenosis alone (AUC = 0.68).

To summarize, Table 2 lists representative ML and DL
application examples in CCTA.

3.3. AI Applied to CAG. Coronary angiography is the gold
standard of clinical diagnosis of coronary heart disease,
which can directly show the location, severity, characteris-
tics, and collateral circulation status of coronary obstructive
lesions. Current clinical efforts to interpret coronary angiog-
raphic findings primarily involve the experience of the oper-
ator with visual inspection or quantitative coronary
angiography (QCA). Visual inspection is the more com-
monly used clinical interpretation method, which requires
the operator to have certain experience in image interpreta-
tion, and it is more subjective. QCA allows for computer-
based analysis of contrast images and quantification of ste-
nosis, length, and minimum lumen diameter, with relatively
objective results. The limitation lies in the lack of accuracy in
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TaBLE 2: Al applications in CCTA.
Method Tasks Data Measure Value Caleulate time Paper
or cost
Modifications to the reconstructed coronary tree 122 A\./erage 93+4 Wl.thm 2 [24]
quality score minutes
ML Identification of the degree of coronary stenosis 42 AUC 0.94 Le:zcglr?g ! [25]
Characterization of coronary plaques 32 DSC 83.2% — [26]
Coronary plaque characterization and detection of coronary stenosis 163 Accuracy 77% — [27]
Calculation of coronary functional parameters 1052 AUC 0.78 A few seconds  [28]
DL Segmentation of left ventrlculal.r myocardium and calculation of 126 AUC 0.74+0.02 . [30]
coronary functional parameters
Segmentation of left ventricular myocardium and calculation of 126 AUC 0.76 . 31]

coronary functional parameters

the case of diffuse lesions and vascular distortion [32]. Al
algorithms can assist in the analysis of coronary angiogra-
phic findings, both objectivity and automation are consid-
ered. However, current coronary angiography cannot
clarify whether a coronary artery stenosis is a functional ste-
nosis. But coronary angiographic images may contain poten-
tial information for diagnosing functional stenosis. Al
algorithms can extract this potential information and make
a diagnosis of functional stenosis.

3.3.1. ML Applied to CAG. Coronary angiography can only
provide coronary anatomically relevant parameters, and it
is difficult to integrate coronary anatomic and functional
parameters. A major reason for the incomplete matching
between the severity of coronary stenosis and myocardial
ischemia lies in the fact that myocardial ischemia is deter-
mined by multiple factors. And the accuracy of fractional
flow reserve, a functional parameter, is less than 70% when
diagnosed based solely on the degree of stenosis revealed
by coronary angiography [33]. Machine learning algorithms
can mine additional information in contrast images to
improve the accuracy of diagnosing fractional flow reserve.
Cho et al. [34] used the XG Boost algorithm for feature
extraction from the angiographic results of 1501 patients
with coronary artery lesions. Scattering search selected 12
high-level features and constructed a classification model
using these 12 features for fractional flow reserve. The results
showed that the sensitivity, specificity, and accuracy of the
model were 84%, 80%, and 82% (AUC = 0.87). The accuracy
of external verification was 85% (AUC=0.87), which
improved the classification accuracy compared with a classi-
fication model based on the severity of coronary stenosis
alone.

3.3.2. DL Applied to CAG. Automated segmentation of the
coronary arteries is currently difficult to achieve with either
2D or 3D quantitative coronary angiography. Although
computer-aided tools such as edge detection are used, man-
ual correction is still necessary for accurate segmentation of
coronary artery. Deep learning algorithm effectively solves
the training problem of quantitative coronary angiography.
Yang et al. [35] proposed a robust method for large vessel

segmentation using deep learning model of full CNN algo-
rithm. On examining the contrast images of 3302 diseased
vessels from 2042 patients, the deep learning network accu-
rately identified and segmented the major vessels in coro-
nary angiography. The results showed that the average F1
score of the algorithm reached 0.917 and 93.7% of the
images had F1 scores more than 0.8. The narrowest region
of the stenosis can be clearly visualized with a high degree
of continuity. This method validated the robustness and pre-
dictability of external data sets with different image features.
By applying deep learning algorithm segmentation, QCA
analysis can be further automated, thus facilitating the appli-
cation of QCA based interpretation image technology.

3.4. Application of Al in Intravascular Imaging. Intravascular
imaging techniques (including IVUS and IVOCT) have been
proved to have advantages in assessing plaque progression
or regression, identifying vulnerable plaque, assessing plaque
burden, and guiding interventional therapy. The clinical uses
of IVUS and IVOCT have further advanced the understand-
ing of the pathophysiology of coronary heart disease among
clinical workers. These two technologies have their own
advantages and disadvantages. As IVUS enables precise
description of plaque structure, it lacks spatial resolution,
while IVOCT enables high-resolution measurement of the
fibrous cap but has limited ability to penetrate the arterial
wall. AI algorithm can automatically segment and process
the plaque images obtained by IVUS and IVOCT, so as to
obtain the plaque information accurately, quickly, and
objectively and make up for their respective defects to a cer-
tain extent.

3.4.1. ML Applied to IVUS. IVUS is a medical imaging tech-
nique that combines ultrasound technology and catheter
technology. It can be used to examine the inner walls of
blood vessels by using a special catheter with an ultrasound
probe attached to the end. The high sensitivity of IVUS in
detecting atherosclerosis, identifying plaque types, and
quantifying atheroma burden have been widely recognized
by clinical workers.

IVUS can be used to identify the coronary artery lumen
and adventitia. However, the presence of high noise,
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artifacts, and anatomical structures (e.g., bifurcations, calcifi-
cations, and fibrotic plaques) often impedes proper segmen-
tation of the vessel wall. Machine learning can improve
segmentation efficiency. Lucas et al. [36] used SVM algo-
rithm to automatically detect luminal, media, adventitia,
and perivascular tissues. Different image structures were
detected by RF algorithm, and the classification is modified
according to the detected structures. The resulting classifica-
tion maps were then fed into a segmentation method based
on deformable contours to detect the lumen intima and
media adventitia interfaces. The Jaccard measure of the pro-
posed automatic segmentation method is 0.88 + 0.08.

IVUS is also helpful for the detection of vulnerable pla-
ques. However, the progression of plaques cannot be ana-
lyzed. Machine learning algorithms can achieve the
prediction of the progression of vulnerable plaques, which
is significant for the prognosis evaluation of patients. Wang
et al. [37] established a fluid structure interaction model
based on the IVUS coronary plaque data of 9 patients. Pla-
que vulnerability index was used to measure plaque vulner-
ability. Generalized linear mixed regression model, SVM,
and RF algorithm were used to predict plaque vulnerability.
The results showed that RF algorithm had the highest pre-
diction accuracy (91.47%), and it is 5.91% higher than the
generalized linear mixed regression model.

3.4.2. DL Applied to IVUS. Deep learning algorithms further
improve the efficiency of image segmentation based on
machine learning algorithms. CNN has achieved significant
improvements in automatic patch segmentation. Jun et al.
[38] used four AI algorithm classifiers (including FNN,
KNN, RF, and CNN algorithms) to classify IVUS images.
The results show that CNN algorithm obtains the best
AUC (AUC=0.911). Yang et al. [39] proposed a deep struc-
ture based on complete convolution network algorithm,
called the DPU-Net, which is used for automatic segmenta-
tion of lumen and outer membrane of IVUS image. Its seg-
mentation performance is better than other existing
methods.

Deep learning algorithm also helps to integrate the coro-
nary plaque parameters provided by IVUS with the func-
tional parameters, which will be of great significance for
interventional physicians to make treatment decisions. The
examination methods to obtain coronary plaque parameters
or functional parameters in current clinical practice are both
complex and time-consuming, and therefore guidance of
treatment decisions is usually made based on only one of
these examinations. The availability of simultaneous access
to both parameters would be more instructive for the devel-
opment of treatment options. Lee et al. [40] randomly
divided 1328 patients with non-left main coronary artery
lesions into training set and test set according to the ratio
of 4:1. The IVUS image was segmented automatically by
the CNN algorithm. 99 IVUS features and 6 clinical vari-
ables (age, gender, body surface area, vascular type, involved
segments, and lesions of proximal left anterior descending
branch) were used for training and 5-fold cross-validation.
Non-overlapping test samples were used to evaluate the
diagnostic performance of binary classifiers (L2 penalty

logistic regression, ANN, RF, AdaBoost algorithm, CatBoost
algorithm, and SVM) for detecting ischemic lesions. The
results showed that when the lesions in the test set were clas-
sified as lesions with FFR < 0.80 and FFR > 0.80, the overall
diagnostic accuracy of predicting FFR < 0.80 was 82%.

3.4.3. ML Applied to IVOCT. IVOCT is similar to IVUS, but
optical pulse and optical technology are used for the visual-
ization of coronary artery. The resolution is higher than
IVUS, which can detect vulnerable plaque, stent intimal
hyperplasia and stent wall sticking, etc,, while the penetra-
tion is less than IVUS. At present, the analysis of IVOCT
image is still limited to the manual process of clinicians. It
is often difficult to get different evaluation results due to
the subjective differences observed by different doctors.
Machine learning algorithm can be used to analyze IVOCT
images to make up for this problem. The automatic classifi-
cation of calcified plaque, fibrosis plaque, and lipid pool can
be realized by using machine learning algorithm to segment
IVOCT images. Kolluru et al. [41] developed a machine
learning algorithm to classify the voxel plaque types in
IVOCT images automatically. To train and test the classifier,
300 images were used, and each voxel was labeled fibrosis,
lipid rich, calcification, or other. The algorithm automati-
cally extracted the light attenuation, light intensity, and tex-
ture features of each voxel to build a multiclass DT
algorithm classifier. The cross-validated results showed that
96% + 0.01%, 90% + 0.02%, and 90% + 0.01% classification
accuracies were achieved for fibrotic, lipid rich, and calcified
plaques, respectively.

3.44. DL Applied to IVOCT. Deep learning algorithm
improves the automation of patch segmentation and realizes
the automatic segmentation of patches [42]. Lee et al. [43]
developed a full-automatic semantic segmentation model
of plaque in IVOCT image based on CNN algorithm. It real-
ized the high sensitivity and high specificity classification of
lipid and calcified plaque (sensitivity and specificity are
87.4%/89.5% and 85.1%/94.2%, respectively). Xu et al. use
four deep CNN algorithms: AlexNet algorithm, GoogleNet
algorithm, VGG-16 algorithm, and VGG-19 algorithm to
extract the depth characteristics of atheroma. These features
are evaluated by a data set containing 360 IVOCT images.
Data enhancement is applied to each classification scheme
training set. Linear SVM algorithm classifies normal IVOCT
image and IVOCT image and fibroatheroma. The results
show that the depth of the fibroatheroma can be extracted
in the classification of the fibroatheroma with high accu-
racy [44].

In Table 3, we summarized the applications of Al in
intravascular imaging.

3.5. AI Applied to Cardiac MRI. Magnetic resonance imaging
was first used in the detection of nervous system diseases
such as cerebral infarction and cerebral ischemia. With the
improvement of the performance of MRI equipment and
the progress of hardware and software technology, it has
gradually been used to examine cardiovascular diseases.
The MRI can be used to show the structure, function,
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TaBLE 3: Al applications in intravascular imaging.

Application Method Tasks Data  Measure Value Calculate time or cost Paper
Lumen image segmentation 435 Jaccard 0.88 +0.08 — [36]
ML measure
Prediction of progression to vulnerable 748 Accuracy 91.47% - [37]
plaque
. . 3,584 CUDA cores and
IVUS Plaque image segmentation 12325  AUC 0.911 12GB of GPU memory [38]
DL Lumen image segmentation 435 rI: Z:::fe 0.869 Run in 0.03 seconds [39]
Extractlon. of coronary Rlaque parameters 1328 AUC 0.84-0.87 . [40]
and prediction of functional parameters
96% + 0.01%
ML Plaque image segmentation and 300 Accurac 90%‘: +0 02%‘: Under 4 seconds when run [41]
composition classification Y 90% N 0'01% on a standard 12-core CPU
IVOCT Fully automated semantic segmentation of Sensitivity/ 87.4%]
P 89.5%; 0.27 seconds of each image [43]
plaques specificity 8
DL 85.1%/94.2%

Feature extraction and classification of
fibroatheromas

360  Accuracy

76.39% — [44]

perfusion, activity, and extent of myocardial infarction in
patients with coronary heart disease. The research of Al
algorithm applied to cardiac MRI is also increased gradually.
The related research mainly focused on the application of Al
algorithm to the image processing of cardiac MRI, including
reducing image acquisition and reconstruction times,
increasing spatiotemporal resolution, and the analysis of
myocardial blood perfusion However, because cardiac mag-
netic resonance is more used in the diagnosis and analysis of
cardiomyopathy than in the diagnosis or evaluation of coro-
nary heart disease in practical clinical application, the
research of artificial intelligence algorithm in the diagnosis
of coronary heart disease by magnetic resonance is also less
carried out.

3.5.1. ML Applied to Cardiac MRI. The acquisition of MRI
images usually requires the subjects to keep quiet for a
period of time. The body movement or breathing movement
of the patient may produce image artifacts such as ghosting,
blurring, and smearing, thus reducing the image quality and
its diagnostic value. Machine learning algorithm can auto-
matically identify the motion artifacts of MRI images, thus
eliminating the artifact interference and improving the accu-
racy of diagnosis. Motion is simulated by Cartesian sampling
and shows how the effect of motion manifests in ghosts and
blurry images. In addition, with radial acquisition, image
structures can be made clearer and show robustness to small
motion inconsistencies. Benedikt et al. [45] supervised learn-
ing methods based on stochastic decision forest algorithm
detect motion artifacts in the reconstruction of MRI.
According to the motion trajectory, three common spatial
sampling modes are used: Descartes, radial, and spiral. The
results show that the ML algorithm can learn the character-
istics of motion artifact very well and improve the recogni-
tion rate of motion artifact. The classification accuracy for

texture features increased from 77.1% for the lowest level
of artefacts to 91.8% for the highest level.

3.5.2. DL Applied to Cardiac MRI. In the image postproces-
sing of cardiac MRI, deep learning algorithm shows the
advantages of simplification, high automation, and hidden
information extraction. The automatic segmentation and
rearrangement of myocardial tissue by CNN algorithm for
the automatic identification of infarcted myocardial tissue
by features such as image texture is of great significance
for patients with myocardial infarction. Baessler et al. [46]
applied deep learning algorithm to analyze the texture of
cardiac MRI, which selected the features of the texture based
on the reproducibility and correlation analysis to distinguish
the myocardial infarction tissue from the normal tissue. The
AUC displayed under the multiple logic regression analysis
was 0.92, which indicated that the deep learning algorithm
can better distinguish the myocardial tissue and the infarc-
tion tissue.

3.6. Application of Al in Functional Diagnosis of CHD. Func-
tional diagnosis of coronary heart disease has become the
most important basis for guiding revascularization strategies
on the basis of coronary imaging. It plays a key role in the
characterization of critical lesions, the identification of target
lesions in multivessel disease, and single vessel diffuse dis-
ease. At present, functional parameters of coronary heart
disease commonly used in clinical practice include FFR, cor-
onary CT angiography derived fractional flow reserve (CT-
FFR), quantitative flow ratio (QFR), intravascular ultra-
sound derived fractional flow reserve (UFR), and optical
coherence imaging derived fractional flow reserve (OFR),
among which FFR is the gold standard of coronary artery
functional parameters. CT-FFR, QFR, UFR, and OFR are
derived from coronary imaging evaluation, which take into
account the dual information of anatomy and function.
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These parameters are in the rising phase of clinical research
and application.

FFR is the most classic functional evaluation parameter. It
represents the ratio of the maximum blood flow of the myo-
cardium in the distal area of the coronary artery stenosis to
the maximum blood flow of the myocardium in the area of
the coronary artery without stenosis. The value can be approx-
imately the ratio of the mean pressure (PD) in the distal area of
the lesion to the mean pressure (PA) in the proximal area
(FFR=Pd/PA). A prospective study showed that when FFR
<0.80, it indicates that the stenosis needs revascularization,
while FFR > 0.80 delayed intervention benefits more [47].
FAME and FAME-II studies confirmed that FFR-guided per-
cutaneous coronary intervention patients had better prognosis
than coronary angiography [47, 48].

CT-FFR is a noninvasive functional parameter based on
coronary CT angiography, which has the advantages of non-
invasive and rapid diagnosis. DISCOVER-FLOW and
DeFACTO studies have confirmed that CT-FFR can accu-
rately diagnose and exclude coronary artery functional ste-
nosis [49, 50]. The core principle of CT-FFR is
computational fluid dynamics (CFD). Coronary arteries in
maximal hyperemia were simulated by CCTA images in
the resting state, and three-dimensional coronary trees were
reconstructed. Coronary flow was simulated as Newtonian
fluid by Navier Stokes equation. CT-FFR was finally calcu-
lated by computer integrated simulated coronary arteries
with blood flow parameters.

QEFR is another noninvasive functional parameter based
on the three-dimensional reconstruction image of coronary
angiography and the principle of hydrodynamics. The prin-
ciple is that at the end of diastole of the cardiac cycle, the
angiographic images with the difference of two angles
greater than 25° and the velocity of 15 frames per second
are collected, and the three-dimensional reconstruction of
the coronary artery is carried out. If the automatically recon-
structed lumen contour does not conform to the real lumen
boundary, it is necessary to manually sketch and proofread
and select the starting and ending points of blood vessels.
The system automatically selects the contrast flow image
and calculates the contrast flow time, velocity, and average
volume flow by TIMI frame counting method. The virtual
pressure withdrawal curve of quantitative blood flow frac-
tion was reconstructed, and the relevant parameters of the
lesion site were calculated to obtain QFR [51].

CT-FFR and QFR are essentially functional parameters
obtained by applying Al algorithm to image postprocessing
(CCTA and CAG). The potential hemodynamic features in
CCTA or coronary angiography images can be mined by
using Al algorithm, and the functional parameters can be
obtained. However, the accuracy of CT-FFR and QFR still
needs to be further improved. Research shows that optimiz-
ing Al algorithm and extracting more image features can
help to improve the accuracy of CT-FFR and QFR [49]. In
addition, intelligent analysis of intracoronary imaging
(IVUS and IVOCT) to obtain FFR has become the focus of
research.

In addition to the above parameters, the microvascular
resistance (IMR) is used to evaluate the function of coronary

microcirculation. The coronary flow reserve (CFR) is used to
evaluate the function of the whole coronary circulation,
including epicardial vessels and microcirculation. There are
few researches on the application of Al algorithm in IMR
and CFR, which is related to the relatively fewer clinical
application of both.

3.6.1. ML Applied to Functional Diagnosis of CHD. The
application of machine learning algorithm in functional
diagnosis of CHD mainly focuses on CT-FFR. The original
method to obtain CT-FFR is to use computational fluid
dynamics to postprocess CCTA results and then calculate
CT-FFR. CT-FFR based on computational fluid dynamics
calculation has been proved to have good correlation with
FFR of invasive measurement and improve the diagnostic
efficiency of CCTA [49, 50, 52-54]. Its major limitation is
that it puts forward higher requirements for the perfor-
mance of the computer and needs to take into account the
problem of computing time. Machine learning algorithm
can effectively simplify the image postprocessing program
of CCTA. Coenen et al. [55] enrolled 351 patients who
received both CCTA and FFR from five heart centers in
Europe, Asia, and the United States and measured the FFR
of 525 coronary arteries. In this study, machine learning
algorithm and computational fluid dynamics were used to
post process CCTA images, and CT-FFR was calculated.
FFR was used as the gold standard to evaluate their diagnos-
tic efficiency. The results show that CT-FFR based on
machine learning algorithm can correctly classify stenotic
lesions and its efficiency is equivalent to that of CT-FFR
based on computational fluid dynamics. The former also
effectively simplifies the calculation program.

CT-FFR based on machine learning algorithm can also
help to predict major adverse cardiac events (MACE). Doe-
beritz et al. [56] retrospectively analyzed the data of 82
patients who received CCTA and coronary angiography at
the same time and followed up the incidence of MACE. In
this study, ML algorithm was used to quantify semiauto-
matic plaques of lesions causing MACE and the lesions in
the control group. The predictive value of combined plaque
markers and CT-FFR for MACE was evaluated. The results
showed that the plaque markers extracted by CCTA and
CT-FFR based on machine learning algorithm had higher
predictive value for MACE compared with the stenosis clas-
sification determined only by CCTA.

Therefore, the application of machine learning algorithm
in CT-FFR not only improves the diagnosis efficiency, effec-
tively simplifies the calculation program, and saves the cal-
culation time, but also has higher value for the prediction
of MACE.

3.6.2. DL Applied to Functional Diagnosis of CHD. Deep
learning algorithm has more advantages in image segmenta-
tion compared with machine learning algorithm, and it has
been widely used in noninvasive functional diagnosis. In
recent years, DL algorithms have been applied to the
research of CT-FFR, QFR, UFR, and OFR.

CT-FFR based on deep learning algorithm can also sim-
plify the calculation procedure, reduce the calculation time,
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and help to evaluate the prognosis of patients [57, 58]. Based
on deep learning algorithm (multilayer neural network algo-
rithm), Kishi et al. [59] extracted the anatomic features of
coronary arteries reconstructed by CCTA and constructed
a computed model of CT-FFR that conformed to the rules
of computational fluid dynamics. The operator was able to
automatically analyze and calculate FFR from the model by
only entering information such as vessel diameter and
branch vessel length in the coronary tree reconstructed by
CCTA. Compared with the original CT-FFR calculation,
the calculation speed of the model is increased by about 80
times, and the calculation time is reduced to 2.4 seconds.
In order to improve the accuracy of CT-FFR, the plaque fea-
tures and hemodynamic features in CCTA images can be
extracted by using deep learning algorithm, and CT-FFR
can be calculated comprehensively. Doeperitz et al. [60] ana-
lyzed 84 patients who measured FFR after CCTA examina-
tion. The plaque and hemodynamic features in CCTA
images were extracted by deep learning algorithm, and CT-
FFR was calculated. Compared with CT-FFR, which only
extracts hemodynamic characteristics, this method shows
higher accuracy.

Although CT-FFR based on deep learning algorithm
shows many advantages, there are still some limitations:
(1) The computer-simulated coronary artery cannot fully
simulate the real coronary artery, and there are differences
in the elasticity of different patients. Whether the model
reconstructed by deep learning algorithm can reflect the
elasticity of coronary artery is still to be explored. (2) Cur-
rently, CT-FFR-related clinical research does not include
patients who have had myocardial infarction or have
received revascularization. (3) Compared with FFR, the
results of CT-FFR generally underestimated the degree of
lesions. In the future, further research on CT-FFR can be
carried out in view of these limitations.

Different from CT-FFR, QFR is calculated by using deep
learning algorithm on the basis of coronary angiography. Its
accuracy is higher, and it can directly guide the treatment
strategy of coronary heart disease after coronary angiogra-
phy. At present, several multicenter and prospective clinical
studies related to QFR have been carried out. The completed
research on FALVOR study, FALVOR II China, FALVOR II
Europe Japan, and WIFI II have fully proved the effective-
ness of QFR and its good correlation with FFR [33, 51, 61,
62]. The ongoing FALVOR III China study is expected to
answer the correlation between QFR and the clinical prog-
nosis of patients [63]. Compared with traditional FFR,
QFR is a noninvasive functional index which is more conve-
nient and economical to obtain and can directly guide the
intervention strategy after coronary angiography in the cath-
eter room. It is expected to be the mainstream approach for
evaluating the functional stenosis of the catheter.

FFR based on intravascular imaging results is a break-
through in the application of deep learning algorithm in
the diagnosis of coronary artery function. The representative
research results include UFR and OFR based on deep learn-
ing algorithm. The original UFR and OFR are calculated
based on computational fluid dynamics algorithm [64, 65].
The replacement of the computational fluid dynamics algo-

Computational and Mathematical Methods in Medicine

rithm with deep learning algorithms effectively improves
the utilization of imaging data. It extracts more image fea-
tures to calculate FFR and reduces computational time. Yu
et al. conducted a study to analyze the correlation between
UFR and FFR based on deep learning algorithm. The UFR
and FFR of 167 coronary artery lesions in 94 patients were
compared. The results showed that the accuracy, sensitivity,
specificity, positive predictive value, negative predictive
value, positive likelihood ratio, and negative likelihood ratio
of UFR diagnosis FFR <0.80 were 92%, 91%, 96%, 96%,
91%, 25.0, and 0.10, respectively. It is proved that UFR based
on deep learning has a strong correlation and consistency
with FFR. Furthermore, UFR based on deep learning has fast
computing time and good analysis reproducibility [66]. In
the aspect of OFR research, scholars such as Tu and others
analyzed the correlation between OFR and FFR based on
deep learning algorithm. The results show that OFR based
on deep learning algorithm has reached 90.5% of accuracy
[67]. Based on the image of intravascular imaging, FFR
obtained by deep learning algorithm cannot only integrate
the parameters of coronary plaque and functional parame-
ters, but also help to predict the occurrence of adverse events
in patients, which is of great clinical significance.

4. Challenges and Prospects

Traditional methods of coronary heart disease diagnosis can
be divided into two aspects: imaging diagnosis and func-
tional diagnosis. Imaging diagnosis methods mainly include
CCTA, CAG, and intracavitary imaging (IVUS, IVOCT).
Functional diagnosis methods mainly refer to FFR, IMR,
and CFR. In clinical practice, traditional diagnosis methods
can only obtain single diagnosis information. For example,
coronary angiography can only obtain the information of
coronary artery anatomy, but not the information of plaque
and hemodynamic changes. IVUS or IVOCT can analyze
coronary plaque, but it cannot obtain hemodynamic param-
eters of the vessels and cannot evaluate the severity of myo-
cardial ischemia correctly. How to obtain the anatomical or
functional information through one method and guide the
treatment strategy of coronary heart disease more accurately
is an important research direction for improving the diagno-
sis method of CHD.

In this paper, we describe the progress of machine learn-
ing and deep learning algorithms for CHD diagnosis (see a
summary in Table 4), including the construction of intelli-
gent diagnostic models for coronary heart disease and the
applications of Al in the imaging and functional diagnostic
methods. In addition, the simultaneous acquisition of coro-
nary imaging and functional information using Al technol-
ogy is also a research hotspot. Diagnostic methods such as
CT-FFR, QFR, UFR, and OFR have emerged.

The intelligent diagnosis models of coronary heart dis-
ease cannot completely replace the traditional method to
confirm the diagnosis of CHD at this time. It can only be
used for early screening of CHD or noninvasively assisted
diagnosis. Its accuracy still needs to be further improved.
The main reason for this is that currently established clinical
databases for coronary heart disease are not uniform
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TaBLE 4: A summary of Al applications in CHD.

Fields Paper Algorithm Measure Value Calculate time or cost
Kathleen et al.  Adaptive boosting o
[19] algorithm Accuracy 96.72% —
Hassannataj
Intelligent diagnosis et al. [20] ) RF Accuracy 90.50% —
model B ¢ al
eur}zal ]e a CNN AUC 0.71 More than 10 minutes
Tan et al. [23] LSTM Accuracy 99.85%  Approximately 51 s to run a single epoch
Cao et al. [24] DT Average quality 93+4 Within 2 minutes
score
Kang et al. [25] SVM AUC 0.94 Less than 1 second
Muhammad
0, J—
et al. [26] SVM DSC 83.2%
CCTA Zreik et al. [27] CNN Accuracy 77% —
Kumal[l;;liu etal. DL AUC 0.78 A few seconds
Zreik et al. [30] CNN SVM AUC 0.74 £ 0.02 —
Hamersvelt et al. CNN AUC 0.76 .
(31]
CAG Cho et al. [34] XG boost AUC 0.87 —
Yang et al. [35] CNN F1 0.917 36236 seconds of training time
Lucas et al. [36] SVM RF Jaccard 0.88 +0.08 _
measure
Wang et al. [37] RF Accuracy 91.47% —
IVUS Jun et al. [38] CNN AUC 0911 3,584 CUDA cores and 12GB of GPU
memory
Yang et al. [39] DPU-net Jaccard 0.869 Run in 0.03 seconds
measure
Lee et al. [40] CNN AUC 0.84-0.87 —
Kolluru et al. Under 4 seconds when run on a standard
96% + 0.01%
[41] DT Accuracy ° ° 12-core CPU
VocT Lee et al. [43] CNN SenSI.t 1v1.ty/ 85.1%/94.2% 0.27 seconds of each image
specificity
Xu et al. [44] CNN Accuracy 76.39% —
Bene?jll;t] etal. Decision forest Accuracy 91.8% —
MRI Baessler et al
aessler et al.
[46] DL AUC 0.92 —
Coenen et al.
[55] ML - - -
Doebe[glg et al. ML o - -
Functional diagnosis : .
of CHD Kishi et al. [59] DL . . 59.4+16.0 minutes of average analysis
time
Doeperitz et al. DL Accuracy 929% .
(60]
Yu et al. [66] DL Accuracy 90.5% Median analysis time is 102 seconds
standards and of mixed quality. The constructed models The selection of Al algorithm is another important fac-

have limited diagnostic efficacy and lack sufficient validation ~ tor to determine the effectiveness of intelligent diagnosis
with big data. Therefore, the construction of a standardized = method. The existing research has proved that the deep
and large sample coronary heart disease medical database  learning algorithm may have more advantages in the accu-
will be an important direction of future research, which will ~ racy and speed of calculation especially in the processing
help to construct a higher quality diagnostic model. of medical image. Therefore, further optimization of deep
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learning algorithms, such as CNN, AlexNet, and RNN, will
also be an important research direction to improve the level
of intelligent diagnosis of coronary heart disease, which
deserves attention.

In terms of coronary functional diagnosis, some original
works have been carried out in China such as the develop-
ment of tools such as QFR, UFR, and OFR. They have grad-
ually been promoted and applied in clinical applications.
Most of the current studies were limited to the correlation
between the abovementioned derived FFR and classic FFR.
Further validation of its correlation with clinical prognostic
outcomes is needed. At the same time, studies using Al to
directly determine myocardial perfusion function have also
been conducted. Betancur et al. [68] trained and analyzed
raw quantitative perfusion polar maps from myocardial sin-
gle photon emission computed tomography (SPECT) by
deep learning algorithms and constructed a coronary heart
disease prediction model. The results show that the accuracy
of the model based on deep learning in predicting coronary
heart disease is higher than that of the current clinical
method. It shows another research direction to use Al tech-
nology to mine myocardial perfusion information in SPECT
and coronary CT angiography to determine the severity of
myocardial ischemia directly.

Although AT algorithms show many advantages in CHD
diagnosis, the current problems and challenges remain.
Firstly, the construction of a CHD diagnostic model relies
on the establishment of data sets, the quality of which can
directly affect the accuracy of the diagnostic model. Sec-
ondly, Al algorithms suffer from insufficient interpretability,
akin to a “black box.” It can discover but fail to account for
an intrinsic link between data sets that is often involved in
pathophysiological disease mechanisms that currently can-
not be directly explained by AI algorithms. The efficacy of
Al algorithms needs further enhancement, as well as stability
and interpretability. How to unify research that is currently
refuted and form industry standards with relevant guidelines
will also be a focus of future work.

In summary, the application of AI algorithms in the
intelligent diagnosis of coronary heart disease has many
advantages, contributing to the realization of an early, non-
invasive, precise, and economical diagnosis of coronary
heart disease. In the future, with the establishment of medi-
cal big data centers and continuous optimization of Al algo-
rithms, the intelligent assisted diagnosis method of coronary
heart disease will surely be more stable and accurate, with
promising applications.
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