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Abstract

Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue 

microstructure and structural connectivity in the living human brain. Nonetheless, the angular 

sampling requirement for DTI leads to long scan times and poses a critical barrier to performing 

high-quality DTI in routine clinical practice and large-scale research studies. In this work we 

present a new processing framework for DTI entitled DeepDTI that minimizes the data 

requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise 

fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven 

supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b = 0) image and six 

DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted 

and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 

image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). 

The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual 

learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs 

to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI 

leverages the redundancy in local and non-local spatial information and across diffusion-encoding 

directions and image contrasts in the data. The performance of DeepDTI was systematically 
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quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and 

tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI 

metrics from DeepDTI that are comparable to those obtained with two b = 0 images and 21 DWIs 

for the primary eigenvector derived from DTI and two b = 0 images and 26–30 DWIs for various 

scalar metrics derived from DTI, achieving 3.3–4.6 × acceleration, and twice as good as those of a 

state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can 

be accurately identified from the tractography of DeepDTI results. The mean distance between the 

core of the major white-matter tracts identified from DeepDTI results and those from the ground-

truth results using 18 b = 0 images and 90 DWIs measures around 1–1.5 mm. DeepDTI leverages 

domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-

based tractography, major white-matter tracts identification and tract-specific analysis more 

feasible for a wider range of neuroscientific and clinical studies.

Keywords

Diffusion tensor imaging; Diffusion tractography; Tract-specific analysis; Deep learning; Residual 
learning; Convolutional neural network; Data redundancy; Denoising

1. Introduction

Noninvasive mapping of tissue microstructure and structural connectivity in the living 

human brain by diffusion magnetic resonance imaging (MRI) offers a unique window into 

the neural basis of human cognition, behavior and mental health. Diffusion MRI sensitizes 

the MR signal to the Brownian motion of water (Hahn, 1950; Carr and Purcell, 1954; Torrey, 

1956; Stejskal and Tanner, 1965) and is unsurpassed in its ability to infer white-matter tissue 

properties noninvasively at the micron level, which is far below the spatial resolution of the 

MR image. It is the most sensitive and reliable diagnòstic imaging modality for early 

detection of cerebral ischemia (Moseley et al., 1990a, 1990b). Beyond clinical applications, 

the biophysical modeling of diffusion MRI data enables the mapping of axonal orientation 

(Basser et al., 1994; Behrens et al., 2003; Tournier et al., 2004; Wedeen et al., 2005; Yeh et 

al., 2010; Tian et al., 2019), density (Zhang et al., 2012), dispersion (Zhang et al., 2012), 

diameter (Assaf and Basser, 2005; Assaf et al., 2008; Huang et al., 2020; Fan et al., 2019), 

myelination (Fujiyoshi et al., 2016) and g-ratio (Yu et al., 2019). Diffusion MRI coupled 

with tractography is currently the only method for in vivo mapping of human white-matter 

fascicles (Mori et al., 1999; Conturo et al., 1999; Tian et al., 2018; Cartmell et al., 2019).

Diffusion tensor MRI (DTI) is the most widely used diffusion MRI method for extracting 

white-matter tissue properties and identifying the major white-matter tracts in vivo. The 

metrics from DTI have great specificity in mapping the microstructural changes caused by 

normal aging (Salat et al., 2005), neurodegeneration (Nir et al., 2013) and a number of 

neurological (Roosendaal et al., 2009; Zheng et al., 2014) and psychiatric (Kubicki et al., 

2005; Cullen et al., 2010) disorders. DTI-based tractography provides crucial information 

regarding white-matter tract infiltration and displacement due to brain tumors and is 

routinely used for presurgical planning of tumor resection. DTI-based tractography has also 

been used to locate thalamic nuclei by measuring the relative location relative to the white-
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matter tracts that run in close proximity but do not intersect the target for functional 

neurosurgery (Anthofer et al., 2014; Sammartino et al., 2016). Recent advances have further 

integrated DTI-based tractography and microstructural imaging to enable the quantification 

of voxel-wise white-matter tissue properties along the length of white-matter tracts with high 

sensitivity for capturing the along-tract variations in tissue properties within individuals and 

across groups (Smith et al., 2006; Colby et al., 2012; Yeatman et al., 2012, 2018). Tract-

specific analysis of DTI-mapped tissue properties has proven to be a valuable tool for 

elucidating changes in white-matter microstructure across the lifespan (Yeatman et al., 2014) 

and white-matter plasticity in response to experience (Huber et al., 2018) and neurosurgical 

intervention (Pineda-Pardo et al., 2019).

Nonetheless, this simple yet elegant method is fundamentally limited in the need to perform 

directional encoding many times in order to sample the diffusive motion of water within 

white-matter tracts of arbitrary orientation in the brain, leading to long acquisition times that 

pose a critical barrier to performing high-quality DTI in routine clinical practice and large-

scale research studies. Despite only six unique unknown elements in the diffusion tensor 

model, it has been shown that at least 30 measurements (5–10 s per measurement) along 

uniformly distributed directions are needed to achieve statistically rotational invariance, such 

that the precision of the estimated DTI metrics are independent of the orientation of the 

underlying tracts (Jones, 2004; Jones et al., 2013). The presence of thermal noise and 

spatially and temporally varying artifacts induced by subject motion and cardiac pulsation in 

the diffusion measurements adds to the demand for more data to enable robust tensor model 

fitting and high accuracy in estimating DTI metrics. For very noisy diffusion measurements 

such as those from high spatial resolution imaging data (McNab et al., 2013; Setsompop et 

al., 2018; Liao et al., 2019, 2020), the required number of measurements can be far more 

than 30.

The angular sampling requirement represents the bottleneck to further reduce the acquisition 

time of a DTI scan. Since the invention of DTI in the mid-1990s, numerous imaging 

advances, including faster and stronger gradient systems for shortened imaging readout and 

diffusion encoding, highly-parallelized phased-array radiofrequency receiver for reduced 

data sampling requirement of each imaging plane and simultaneous acquisition of multiple 

imaging planes, have emerged to dramatically reduce the acquisition time of a diffusion-

weighted measurement of the whole human brain from about 10 minutes to just a few 

seconds. The angular sampling efficiency for DTI, however, has remained largely 

unaddressed because of the unevolved processing techniques. The diffusion tensor model 

fitting has always been performed per voxel using a least-squares fit or more advanced 

methods since the invention of DTI (Basser et al., 1994; Chang et al., 2005; Kingsley, 2006; 

Koay et al., 2006), which neglects the spatial redundancy of information in neighboring 

voxels and between non-local spatial regions, as well as the redundancy across diffusion-

encoding directions and image contrasts. On the other hand, previous studies have 

successfully utilized the data redundancy in image space (Hu et al., 2019), diffusion space 

(Bilgic et al., 2012; Menzel et al., 2011) and the joint image-diffusion space (Hu et al., 2020; 

Shi et al., 2015; Wu et al., 2019) for improving diffusion MR image formation and utilized 

the data redundancy in the joint image-diffusion space for accelerating high angular 

resolution diffusion MRI (Cheng et al., 2015; Pesce et al., 2017, 2018; Chen et al., 2018) via 
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techniques such as compressed sensing and convex optimization. Nonetheless, it is unclear 

how to fully utilize the data redundancy in the joint image-diffusion space for reducing the 

data requirement to obtain high-fidelity diffusion tensors.

Advances in high-performance computing hardware and deep learning offer a powerful tool 

set for exploiting the data redundancy for DTI processing techniques. The seminal work of 

Golkov et al. introduced the deep learning concept to diffusion MRI and established the q-

space deep learning (q-DL) framework, which has greatly benefited the subsequent work in 

this field. The q-DL method proposed to synthesize an increased number of q-space samples 

from a small number of acquired q-space samples without imposing any diffusion models 

using a multilayer perceptron (Golkov et al., 2015, 2016). The large number of synthesized 

q-space samples could then be used to fit any preferred diffusion model for improved results. 

q-DL and other subsequent studies have also demonstrated the promise of deep learning in 

using a small amount of diffusion data to predict high-quality scalar diffusion metrics from 

DTI (Li et al., 2018, 2019; Gong et al., 2018; Aliotta et al., 2019) and more advanced 

diffusion analysis methods, such as diffusion kurtosis imaging (Golkov et al., 2016; Gong et 

al., 2018), diffusion spectrum imaging (Gibbons et al., 2018) and neurite orientation 

dispersion and density imaging (Golkov et al., 2016; Gibbons et al., 2018) obtained from a 

large amount of diffusion data, as well as mapping voxel-wise axonal orientations (Lin et al., 

2019) and long-range fascicles (Poulin et al., 2017). In these works, artificial neural 

networks were trained to directly predict output diffusion metrics from the input diffusion-

weighted images (DWIs). These works used multilayer perceptrons (Golkov et al., 2015, 

2016; Aliotta et al., 2019; Poulin et al., 2017), two-dimensional convolutional neural 

networks (CNNs) (Li et al., 2018, 2019; Gong et al., 2018; Gibbons et al., 2018), shallow 

three-dimensional CNNs (Li et al., 2019; Lin et al., 2019) and recurrent neural networks (Li 

et al., 2018). q-DL also proposed to use multi-contrast data as inputs to a neural network.

Extending these lines of research, we present a robust framework for DTI processing called 

“DeepDTI” that extracts both high-fidelity scalar and orientational DTI metrics using only 

six diffusion-weighted measurements required by conventional voxel-wise methods to fit the 

six unique unknowns in a diffusion tensor, achieved with data-driven supervised deep 

learning. DeepDTI uses a deep 3-dimensional CNN to map the input DWIs sampled along 

six optimized diffusion-encoding directions to the residuals between the input and output 

high-quality DWIs, which enables residual learning to boost the performance of CNN and 

tensor fitting on the resultant high-quality DWIs to generate any scalar and orientational DTI 

metrics. We systematically quantify the similarity of the voxel-wise, tractography and tract-

specific analysis results of DeepDTI compared to those from over-sampled DTI scans 

(ground truth) and show that the results of DeepDTI are comparable to those of fully-

sampled DTI scans acquired in routine practice and outperform those of the state-of-the-art 

denoising algorithm. We anticipate the immediate benefits of DTI scan time reduction to 

enable a broader range of clinical and research applications of DTI and DTI-based structural 

connectome mapping and tract-specific analysis.
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2. Methods

2.1. DeepDTI pipeline

We carefully formulate the inputs and outputs of the DeepDTI pipeline based on in-depth 

knowledge of the underlying diffusion MRI physics. Instead of learning the DTI metrics 

directly as in previous works, the DeepDTI pipeline learns the residuals between the input 

and output non-diffusion-weighted (b = 0) image and DWIs. Residual learning is widely 

recognized as a powerful strategy to boost the performance of CNNs and accelerate the 

training process for tasks such as object recognition (He et al., 2016), image super-resolution 

(Kim et al., 2016; Pham et al., 2019) and denoising (Zhang et al., 2017). The resultant high-

quality DWIs can be used for tensor model fitting to generate any orientational and scalar 

DTI metrics and directly used by existing software packages, such as DTI-based 

tractography software for surgical planning, for streamlined acquisition and processing.

Specifically, the inputs to the DeepDTI pipeline are: a single b = 0 image volume, six DWI 

volumes sampled along optimized diffusion-encoding directions (Fig. 1a), and anatomical 

(T1-weighted and T2-weighted) image volumes (total of nine input channels). Anatomical 

images are included as inputs as they are routinely acquired and help delineate boundaries 

between anatomical structures while preventing blurring in the results (Golkov et al., 2016).

The six optimized diffusion-encoding directions were selected to minimize the condition 

number of the diffusion tensor transformation matrix (A) (i.e., 1.3228) while are as uniform 

as possible (Skare et al., 2000). The chosen diffusion-encoding scheme improves not only 

the robustness to experimental noise but also rotational invariance of measurement precision 

(Skare et al., 2000). The diffusion tensor transformation matrix A defines the linear mapping 

between the diffusion tensor elements (D) and the apparent diffusion coefficients (ADC) 

estimates (C) derived from the diffusion-weighted signals (details in Supplementary 

Information):

C = AD, (1)

where C = [c1 c2 c3 c4 c5 c6]T with ci = −ln(Si/S0)/b (i = 1, 2, 3, 4, 5, 6), S0 is the non-

diffusion-weighted signal intensity, Si is the diffusion-weighted signal intensity and b is the 

b-value. The diffusion tensor transformation matrix A = [α1 α2 α3 α4 α5 α6 ]T with 

αiT = [gix2 giy2 giz2 2gixgiy 2gixgiz 2giygiz] (i = 1, 2, 3, 4, 5, 6) solely depends on the diffusion-

encoding directions (gix, giy, giz)T (i = 1, 2, 3, 4, 5, 6). D = [Dxx Dyy Dzz Dxy Dxz Dyz ]T 

consists six unique elements of a diffusion tensor, which mathematically requires at least six 

independent ADC measurements (or DWIs) along noncollinear directions to solve using 

conventional voxel-wise tensor fitting methods (e.g., D = A−1C using linear squares fit).

The use of six optimized diffusion-encoding directions that minimize the condition number 

of the diffusion tensor transformation matrix A is a key design aspect of the DeepDTI 

pipeline and has several advantages. First, the diffusion-weighted signal intensities are 

simply another representation of the diffusion tensor elements in the image space (i.e., S = 

S0e−b·AD, the two spaces are related by logarithmic operation) and therefore the end-to-end 

training in the image space optimizes the diffusion tensor elements directly for improved 
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performance. In the meanwhile, the diffusion tensor fitting of the resultant images is robust 

to any imperfection introduced by the CNN.

Second, it simplifies the acquisition and processing of the training data. For using the trained 

CNN to reduce the scan time, only one b = 0 image and six DWI volumes sampled along 

optimized directions need to be acquired for each subject. To obtain the training data to 

optimize CNN parameters, the use of six optimized diffusion-encoding directions allows the 

input DWIs sampled along optimized directions to be transformed from the DWIs sampled 

along rotational variations of the six optimized diffusion-encoding directions, which can be 

extracted from a routinely acquired single-shell multi-directional diffusion dataset without 

amplifying experimental noise and artifacts. Because the transformed input images have the 

same image contrast as the ground-truth images but with different observed noise 

characteristics and artifacts, many sets of input DWIs can be selected from a single-shell 

multi-directional diffusion MRI dataset of a single subject (e.g., ~130 sets out of 90 uniform 

directions), which is particularly useful for augmenting the training data when the number of 

subjects for training is limited. It is also easier to acquire and process new training data 

using standard single-shell protocol already available on scanners and pre-processing 

software packages such as the FMRIB Software Library software (Smith et al., 2004; 

Jenkinson et al., 2012; Andersson and Sotiropoulos, 2016) (FSL, https://fsl.fmrib.ox.ac.uk) 

or use legacy single-shell data as training data.

Specifically, for each brain voxel, the transformed diffusion-weighted signal intensities Strans 

along the six optimized diffusion-encoding directions is calculated as:

Strans = S0, rote−b ⋅ AoptDrot = S0, rote−b ⋅ AoptArot−1Crot, (2)

where Aopt is the diffusion tensor transformation matrix associated with the six optimized 

directions, Drot is the diffusion tensor derived from the DWIs along an rotational variant of 

the six optimized directions (= Arot
−1Crot), Arot is the diffusion tensor transformation matrix 

associated with the rotational variant of the six optimized directions, and Crot is a vector of 

the measured diffusivity. Because the tensor transformation matrix of the optimized 

directions has a low condition number of 1.3228, the transformation does not amplify noise 

and artifacts in the measured diffusivities Crot and therefore minimizes the difference 

between Strans and the ground truth for residual learning. In practice, even though the six 

optimized diffusion-encoding directions are prescribed for acquiring the training data, the 

acquired b-values and diffusion-encoding directions have to be corrected to account for 

subject motion and hardware imperfection (e.g., gradient non-linearity) (Bammer et al., 

2003; Leemans and Jones, 2009; Sotiropoulos et al., 2013; Guo et al., 2018). The input 

images still need to be obtained from the transformation of acquired images.

The outputs of the DeepDTI pipeline are: the average of all b = 0 image volumes to yield a 

high-quality b = 0 image and six ground-truth DWI volumes sampled along optimized 

diffusion-encoding directions (total of seven output channels). The ground-truth DWIs are 

generated by fitting the tensor model to all available b = 0 and DWIs and inverting the 
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diffusion tensor transformation to generate a set of DWIs sampled along the six optimized 

diffusion-encoding directions as:

Sgt = S0, gte−b ⋅ AoptDgt, (3)

where Sgt is a vector of six ground-truth signal intensities, S0,gt is the ground-truth non-

diffusion-weighted signal obtained by averaging all b = 0 images, and Dgt is the ground-

truth diffusion tensor derived from a large number of images. Because the input and output 

ground-truth b = 0 image and DWIs have identical contrast, the residuals between the input 

and output images are sparse and consist of high-frequency noise and artifacts, thereby 

facilitating the CNN to learn a reduced amount of information.

A 10-layer three-dimensional CNN (Simonyan and Zisserman, 2014) was adopted to learn 

the mapping from the input image volumes to the residuals between the input and output b = 

0 image and DWI volumes (Fig. 1c). The network architecture of the CNN is very simple, 

comprised of stacked convolutional filters paired with batch normalization functions and 

non-linear activation functions (rectified linear unit). The plain network coupled with 

residual learning has been shown to be effective for image de-noising (Zhang et al., 2017) 

and super-resolution (Kim et al., 2016; Chaudhari et al., 2018).

2.2. Human Connectome Project data

Pre-processed diffusion, T1-weighted and T2-weighted MRI data of 70 unrelated subjects 

(40 for training, 10 for validation, 20 for evaluation) from the Human Connectome Project 

(HCP) WU-Minn-Ox Consortium public database (https://www.humanconnectome.org) 

were used for this study. The acquisition methods were described in detail previously 

(Sotiropoulos et al., 2013; Glasser et al., 2013; Ugurbil et al., 2013). Parameter values and 

processing steps relevant to this study are briefly listed below.

Whole-brain diffusion MRI data were acquired at 1.25 mm isotropic resolution with fourb-

values (0, 1, 2, 3 ms/μm2) and two phase-encoding directions (left–right and right–left). The 

b = 0 image volumes were interspersed between every 15 DWI volumes. For each non-zero 

b-value, 90 uniformly distributed diffusion-encoding directions were acquired in increments 

such that the acquired diffusion-encoding directions of prematurely aborted scans were still 

uniformly distributed on a sphere (Caruyer et al., 2013). The image volumes were corrected 

for susceptibility and eddy current induced distortions and co-registered using the FSL 

software. The image volumes acquired with opposite phase-encoding directions were 

combined into a single image volume, resulting in 18 b = 0 image volumes and 90 DWI 

volumes for each non-zero b-value. Only the b = 0 image volumes and DWI volumes at b = 

1 ms/μm2 of each subject were used in this study.

The T1-weighted and T2-weighted MRI data were acquired at 0.7 mm isotropic resolution. 

The two acquired repetitions of the T1-weighted and T2-weighted images were averaged. 

The T1-weighted, T2-weighted and diffusion MRI data of every subject were co-registered.
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2.3. Image processing

The diffusion data were corrected for spatially varying intensity biases using the averaged b 

= 0 images with the unified segmentation routine implementation in the Statistical 

Parametric Mapping software (SPM, https://www.fil.ion.ucl.ac.uk/spm) with a full-width at 

half-maximum of 60 mm and a sampling distance of 2 mm.

For comparison, diffusion data were denoised using the state-of-the-art block-matching and 

4D filtering (BM4D) denoising algorithm (Dabov et al., 2007; Maggioni et al., 2012) 

(https://www.cs.tut.fi/~foi/GCF-BM3D), an extension of the BM3D algorithm for 

volumetric data. Briefly, the BM4D method groups similar 3-dimensional blocks into 4-

dimensional data arrays to enhance the data sparsity and then performs collaborative 

filtering to achieve superior denoising performance. The BM4D denoising was performed 

assuming Rician noise with an unknown noise standard deviation and was set to estimate the 

noise standard deviation and perform collaborative Wiener filtering with “modified profile” 

option.

The T1-weighted and T2-weighted images were down-sampled to the diffusion image space 

at 1.25 mm isotropic resolution using cubic spline interpolation. The provided volumetric 

brain segmentation results (i.e., aparc + aseg.mgz) from the T1-weighted data of the 

FreeSurfer software (Fischl et al., 1999; Dale et al., 1999; Fischl, 2012) (https://

surfer.nmr.mgh.harvard.edu) were down-sampled to the diffusion image space at 1.25 mm 

isotropie resolution using nearest neighbor interpolation. Binary masks of brain tissue that 

excluded the cerebrospinal fluid (CSF) were obtained using FreeSurfer’s “mri_binarize” 

function with “–gm” and “–all-wm” options.

2.4. Data formatting

To obtain the ground-truth DTI metrics for each subject, diffusion tensor fitting was 

performed on all the diffusion data (18 b = 0 images and 90 DWI volumes) using ordinary 

linear squares fitting using FSL’s “dtifit” function with the provided gradient non-linearity 

correction file to derive the diffusion tensor, primary eigenvector (V1), fractional anisotropy 

(FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).

The ground-truth b = 0 image volumes were computed by averaging all 18 b = 0 image 

volumes. The ground-truth DWIs along the six optimized diffusion-encoding directions were 

then calculated from the ground-truth diffusion tensor following Equation (3) using in-house 

code written in MATLAB software (MathWorks, Natick, Massachusetts).

To obtain the input data of DeepDTI for each subject, DWI volumes along rotational variants 

of the six optimized diffusion-encoding directions (Fig. 1) were selected from the 90 DWI 

volumes acquired along uniformly distributed directions as follows. Specifically, the six 

optimized directions were rotated in a random fashion to six new directions, and the set of 

the six nearest directions were selected if the mean absolute angle compared to the rotated 

directions was lower than 5° and the condition number of the corresponding diffusion tensor 

transformation matrix was lower than 2. Out of 90 uniformly distributed directions, ~130 

such rotational variants of the six optimized directions could be selected. Due to the limited 

graphical processing unit (GPU) memory, five sets of images comprising six DWIs along a 
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rotational variant of the optimized directions and the b = 0 image acquired immediately 

preceding the chosen DWIs were randomly selected for each of the 50 subjects for training 

and validation. Consequently, a total of 250 sets of input images (5 sets per subject for 50 

subjects) were selected for training and validation, with each set consisting of six DWIs and 

one b = 0 image. When the number of subjects for training and validation is limited, more 

input image sets can be used to augment the training data. One such image set was randomly 

selected for each of the 20 evaluation subjects to serve as an evaluation dataset.

For each selected image set comprising one b = 0 and six DWIs, diffusion tensor fitting was 

performed using ordinary linear squares fitting using in-house MATLAB code with the 

provided gradient non-linearity correction file to derive the diffusion tensor, V1, FA, MD, 

AD and RD. The input DWIs to DeepDTI were then calculated from the fitted diffusion 

tensor following Equation (2) using in-house MATLAB code.

2.5. Network implementation

The CNN of DeepDTI was implemented using the Keras application programming interface 

(API) (https://keras.io) with a Tensorflow back-end (https://www.tensorflow.org). The mean-

square-error (L2) loss compared to the ground-truth images was used to optimize the CNN 

parameters using the Adam optimizer (Kingma and Ba, 2014) with default parameters 

(except for the learning rate). Only the mean-square-error within the brain mask was used. 

Currently, the research into more goal-oriented loss functions for diffusion MRI is still not 

reliably established and therefore L2 loss of image intensity was used in this study. The 

slightly more goal-oriented loss functions such as the distance functions on the manifold of 

all possible diffusion tensors (Pennec et al., 2006), or even more goal-oriented ones such as 

those for the direct prediction of tractography, tissue segmentation, and diagnosis could 

potentially further improve the CNN results.

To account for subject-to-subject variations in image intensity, the intensities of the input 

and ground-truth images of DeepDTI were standardized by subtracting the mean image 

intensity and dividing by the standard deviation of image intensities across all voxels within 

the brain mask from the input images. Input and ground-truth images were brain masked.

The training was performed on 40 subjects and validated on another 10 subjects using a 

V100 GPU (NVIDIA, Santa Clara, CA). The learning rate was set empirically, and the 

number of epochs for each learning rate was selected based on tracking the validation error. 

The learning rate was first set to 0.0005 for the first 36 epochs, after which the network 

approached convergence and the validation error did not further decrease. The learning rate 

was then set to 0.00001 for the last 12 epochi to fine tune the network parameters (~70 hours 

in total). Only the latesl model with the lowest validation error was saved during the training 

Blocks of 64 × 64 × 64 voxel size were used for training (8 blocks from each subject) due to 

limited GPU memory. The learned network parameters were applied to the whole brain 

volume of each of the evaluation subjects.

2.6. Quantitative comparison

Peak SNR (PSNR) and structural similarity index (SSIM) (Wang et al., 2004) were used to 

quantify the similarity between the raw input images, DeepDTI-processed images and 
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BM4D-denoised images compared to the ground-truth images. The across-subject mean and 

standard deviation of the mean absolute difference (MAD) of different DTI metrics, 

including FA, V1, MD, AD, RD within the brain (excluding the cerebrospinal fluid) of 20 

evaluation subjects were computed to evaluate the performance of different methods 

compared to the ground-truth results and the results from 7 to 96 images (1 leading b = 0 

image volume interleaved for every 15 DWI volumes) extracted from the full dataset. Any 

first N diffusion-encoding directions of the HCP diffusion data are still uniformly distributed 

for valid diffusion tensor fitting.

2.7. Tract-specific anafysis

Tract-specific analysis was performed on the ground-truth data, raw data, DeepDTI-

processed data and BM4D-denoised data using the automated fiber quantification (AFQ) 

software (https://github.com/yeatmanlab/AFQ). Briefly, diffusion tensor fitting and 

deterministic tractography were performed to reconstruct the trajectories of white-matter 

fascicles across the whole brain. Twenty major white-matter tracts from both left and right 

hemisphere were identified by grouping fascicles passing through two pre-defined way-point 

regions-of-interest. For each tract, the tract core was created by taking the mean of the 

central portion of all fascicles traversing both way-point regions-of-interest, with each tract 

core represented as 100 equally spaced nodes. For each tract, a tract profile of each scalar 

metric was calculated as a weighted sum of each fascicle’s value at a given node, 

interpolated from nearby voxels in the FA, MD, AD and RD maps.

The mean distances between the tract cores generated from the ground-truth data and those 

generated from the raw data, DeepDTI-processed data and BM4D-denoised data were 

calculated to gauge the accuracy of the tractography. For each of the 100 nodes on a tract 

core for comparison, its distance to the ground-truth tract core was defined as the shortest 

Euclidean distance from it to any node on the ground-truth tract core (represented as 10,000 

equally spaced nodes). The average of the distances from all 100 nodes on a tract core for 

comparison was defined as the mean distance between this tract core and the ground-truth 

tract core.

3. Results

Fig. 2 demonstrates that the output b = 0 image and DWI sampled along one of the six 

optimized directions from DeepDTI show significantly improved image quality and higher 

SNR compared to the input images (input and output images along other diffusion-encoding 

directions available in Supplementary Fig. S1). The improvement is more significant for the 

DWI, which is much noisier than the b = 0 image. The residual maps between the DeepDTI 

output images and ground-truth images do not contain anatomical structure or biases 

reflecting the underlying anatomy (Fig. 2e, j). The DeepDTI output images are visually 

similar to the ground-truth images, and quantitatively have a high PSNR of 34.6 dB and high 

SSIM of 0.98 (Fig. 2c) for the b = 0 image and a high PSNR of 31.9 dB and high SSIM of 

0.97 for the DWI (Fig. 2h). For the 20 evaluation subjects, the group-level mean (± the 

group-level standard deviation) of the PSNR is 2.8 dB higher (34.1 ± 1.7 dB vs. 31.3 ± 2.2 

dB), and of the SSIM is 0.02 higher (0.98 ± 0.001 vs. 0.96 ± 0.02) for the b = 0 images. The 
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group-level mean (± the group-level standard deviation) of the PSNR is 5.7 dB higher (30.8 

± 0.9 dB vs. 25.1 ± 0.7 dB), and of the SSIM is 0.11 higher (0.97 ± 0.005 vs. 0.86 ± 0.02) 

for the DWIs.

Fig. 3 demonstrates the denoising efficacy of DeepDTI. The DWIs from the ground-truth 

and DeepDTI results were generated from the diffusion tensor. The residual maps between 

the DeepDTI-processed images and the acquired raw b = 0 images and DWIs do not contain 

anatomical structure or biases reflecting the underlying anatomy (Fig. 3, rows b, d, column 

iii) and are more visually similar to the residual maps from the ground-truth data (Fig. 3, 

rows b, d, column ii) compared to the residual maps from the BM4D-denoised results (Fig. 

3, rows b, d, column iv).

In Fig. 4, we show the ability of DeepDTI to recover detailed anatomical information from 

the noisy inputs in FA maps, which are color-encoded by the primary eigenvector V1 

(individual maps available in Fig. 5). The FA map from DeepDTI significantly improves 

upon the map derived from the raw data and is far less noisy. It is visually similar and only 

slightly blurred compared to the ground-truth map, but sharper than the map derived from 

BM4D denoising. The DeepDTI maps display in exquisite detail the gray matter bridges that 

span the internal capsule, giving rise to the characteristic stripes seen in the striatum, which 

are contaminated by noise in the map derived from raw data and blurred out in the map 

derived from the BM4D-denoised data (Fig. 4 yellow boxes). DeepDTI also visualizes sub-

cortical white-matter fascicles coherently fanning into the cortex and the orthogonality 

between the primary fiber orientations in the cerebral cortex and the cortical surface, which 

are only roughly preserved in the map from raw data (Fig. 4 blue boxes).

The difference of five common DTI metrics, including V1, FA, MD, AD, RD between the 

results derived from different methods and ground-truth data is displayed for a representative 

subject (Fig. 5, Supplementary Fig. S2) and quantified for 20 evaluation subjects (Fig. 6). 

The group mean (± the group-level standard deviation) of the MAD of V1, FA, MD, AD, 

RD within the brain (excluding the cerebrospinal fluid) derived from the DeepDTI outputs 

are 14.83° ± 1.51°, 0.036 ± 0.0038, 0.038 ± 0.0087 μm2/ms, 0.055 ± 0.0097 μm2/ms, and 

0.041 ± 0.0081 μm2/ms, respectively, which are in general about half of those from the raw 

data (27.21° ± 1.54°, 0.11 ± 0.014, 0.064 ± 0.012 μm2/ms, 0.13 ± 0.015 μm2/ms, and 0.077 

± 0.014 μm2/ms) and two thirds of those from the BM4D-denoised data (21.39° ± 1.90°, 

0.059 ± 0.012, 0.051 ± 0.013 μm2/ms, 0.081 ± 0.014 μm2/ms, and 0.056 ± 0.013 μm2/ms). 

The MAD of DeepDTI results for the five commonly DTI metrics of V1, FA, MD, AD and 

RD are equivalent to the MAD of the results from 2 b = 0 images and 21, 27, 30, 26, and 26 

DWIs, respectively, acquired along uniformly distributed directions, achieving 3.3–4.6 × 

acceleration of scan time (Fig. 6). The acceleration is nearly twice that provided by BM4D, 

which are equivalent to the MAD of results from one b = 0 image and 10, 13, 15, 14, and 15 

DWIs acquired along uniformly distributed directions. The acceleration factor for the 

primary eigenvector V1 is lower than for the scalar metrics, indicating that orientational 

metrics involving the estimation of two unique elements are more sensitive to noise and 

angular under-sampling compared to scalar metrics, which involve the estimation of a single 

element, since the estimation error of each element of orientational metrics accumulates. 

This is consistent with prior studies which have shown that a higher number of unique 
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sampling directions are required for robust estimation of orientational measures such as V1 

compared to scalar measures such as FA (Jones, 2004).

In addition to the voxel-wise performance, DeepDTI also improves tractography and tract-

specific analysis. The identified tracts from DeepDTI and BM4D are more similar to the 

ground truth compared to the raw data (Fig. 7 rows b, c, results of other tracts available in 

Supplementary Fig. S3). In the representative subject shown in Fig. 7, the arcuate fasciculus 

could not be delineated from the raw data (Fig. 7, row b, column ii), and only a few fascicles 

of arcuate fasciculus could be delineated from the BM4D results (Fig. 7, row b, column iv, 

cyan). DeepDTI identifies the most fascicles of the arcuate fasciculus (Fig. 7, row b, column 

iii, cyan), similar to those from the ground-truth data. For the 20 evaluation subjects, most of 

the tracts could be accurately identified from the raw data, DeepDTI-processed data and 

BM4D-denoised data (Fig. 8a). To exemplify the discriminatory ability of DeepDTI, the rate 

of identifying the cingulum (cingulate portion) is 12.5% higher with DeepDTI than the raw 

data (100% versus 87.5%) and 5% higher than with BM4D (100% versus 95%).

The mean distance between the tract core from DeepDTI and ground truth is more similar 

than for the raw data and BM4D-denoised data and measures around 1 mm for the thalamic 

radiation, corticospinal tract, cingulum (cingulate and hippocampal portions), forceps major, 

uncinate fasciculus and arcuate fasciculus and around 1.5 mm for the forceps minor, inferior 

fronto-occipital fasciculus, inferior longitudinal fasciculus, and superior longitudinal 

fasciculus (Fig. 8b). In the representative subject shown in Fig. 7, the tract profile for FA of 

the corticospinal tract from DeepDTI is more similar to the ground truth compared to other 

methods and captures the along-tract variation of FA (Fig. 7 row d). For the 20 evaluation 

subjects, the MAD of the FA tract profiles derived from DeepDTI results is in general half of 

that derived from the raw data and two thirds to three fourths of that derived from BM4D-

denoised data, except for forceps minor (Fig. 8c, MD, AD and RD results available in 

Supplementary Fig. S4).

4. Discussion

In this study, we have developed a data-driven supervised deep learning approach called 

DeepDTI for reducing the angular sampling requirement of DTI to six diffusion-encoding 

directions. Our method maps one b = 0 image and six DWI volumes acquired along 

optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image 

volumes as inputs, to their residuals with the output high-quality image volumes using a very 

deep three-dimensional CNN. The performance of DeepDTI was systematically evaluated in 

terms of the quality of output images, DTI metrics, DTI-based tractography results and tract-

specific analysis results, as well as compared to the performance of using different amounts 

of data and the state-of-the-art BM4D denoising algorithm. The output images of DeepDTI 

were similar to the ground-truth images obtained from 18 b = 0 images and 90 DWIs, with 

high PSNR of 34.1 dB and SSIM of 0.98 for the b = 0 images and PSNR of 30.8 dB and 

SSIM of 0.97 for DWIs at the group level. The whole-brain MADs between DTI metrics 

from DeepDTI and ground truth were 14.83°, 0.036, 0.038 μm2/ms, 0.055 μm2/ms and 0.041 

μm2/ms for the DTI metrics of V1, FA, MD, AD and RD, respectively, at the group level, 

which were about half of the MADs obtained from the raw data and two thirds of the MADs 
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obtained from BM4D denoising. The accuracy of the DeepDTI-derived DTI metrics were 

comparable to those obtained with two b = 0 vol and 21 DWI volumes sampled along 

uniformly distributed directions for DTI V1, and comparable to those estimated from two b 

= 0 images and 26–30 DWI volumes for DTI FA, MD, AD and RD, achieving 3.3–4.6 × 

acceleration and outperforming the BM4D denoising algorithm by at least a factor of two. 

Tractography based on the DeepDTI results accurately identified the twenty major white-

matter tracts, with small mean distances of 1–1.5 mm between the core of the white-matter 

tracts identified from DeepDTI compared to the ground-truth results.

An important design element of the DeepDTI framework is the unique formulation of the 

inputs and outputs of the CNN to be the DWIs along optimized diffusion-encoding 

directions that leverages domain knowledge of the underlying diffusion MRI physics. The 

inability to recover orientational information from diffusion MRI data is an essential 

limitation of existing machine learning approaches for diffusion MRI. Unlike previous 

studies that mapped input DWIs directly to metrics derived from a diffusion model, 

DeepDTI maps the input DWIs to their residuals compared to the ground-truth DWIs. The 

advantage is that the resultant high-quality DWIs can be used to fit diffusion tensors to 

generate any scalar metrics and orientational metrics for tractography and are also highly 

compatible with other advanced analysis methods such as AFQ or DTI-based tractography 

software for neurosurgical planning. More importantly, residual learning boosts the 

performance of CNNs and accelerates the training process (He et al., 2016; Kim et al., 2016; 

Pham et al., 2019; Zhang et al., 2017). While we only used a simple 10-layer plain network 

(Kim et al., 2016; Zhang et al., 2017; Chaudhari et al., 2018) for the mapping between the 

inputs and outputs, the formulation of DeepDTI allows more sophisticated CNNs (e.g., even 

deeper CNNs, U-Net (Ronneberger et al., 2015; Falk et al., 2019), generative adversarial 

networks (Goodfellow et al., 2014)) to be adopted for further improving the results.

There are several reasons for using the theoretical minimum of one b = 0 image and six 

DWIs required by conventional voxel-wise tensor fitting methods as input in DeepDTI, 

acknowledging that a more sophisticated CNN could potentially obtain good DTI results 

from a smaller number of image volumes, e.g., one b = 0 image and three DWI volumes 

sampled along orthogonal diffusion-encoding directions. Most importantly, residual learning 

adopted in DeepDTI requires the number of input and output images to be identical. Since at 

least one b = 0 image and six DWIs are required to fit the tensor model on the output 

images, the matched number of b = 0 image and DWIs are used as the input. More than one 

b = 0 image and six DWIs can be used as input and output, e.g., one b = 0 image and 30 

DWIs along uniformly distributed directions, which might require a larger number of CNN 

parameters to handle the larger number of channels and consequently more GPU memory 

during training. Second, using fewer than one b = 0 image and six DWIs to obtain a high-

quality diffusion tensor (which is of note mathematically impossible using conventional 

voxel-wise tensor fitting, as detailed in the Supplementary Information), would further 

reduce the interpretability of the CNN-generated results and might consequently impede the 

wide adoption of the CNN-based DeepDTI method by users including MRI physicists, 

psychologists, neuroscientists and clinicians at the present time. Fortunately, numerous 

efforts have been made to characterize neural networks (Mascharka et al., 2018; Montavon 

et al., 2018; Lipton, 2018; Mardani et al., 2019; Zhang et al., 2018). These invaluable studies 
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that increase the interpretability of neural networks will improve our understanding of neural 

networks and facilitate the wider acceptance of the further reduction of the number of 

required images used in DeepDTI using more advanced neural networks. Furthermore, the 

acceleration from six DWIs to fewer than six DWIs does not offer a practical time-savings in 

terms of the acquisition, given that each image volume can be acquired in as little time as ~5 

s using modern parallel imaging and slice acceleration methods. Therefore, in considering 

the tradeoffs between wider acceptance of CNN-based methods and further acceleration of 

the acquisition, six DWIs sampled along optimized diffusion-encoding directions were 

considered in our view to be a good balance.

DeepDTI establishes a versatile framework for DTI processing that can be adapted for 

different purposes by changing the input and output images. Our current approach 

emphasizes reducing the angular sampling requirement of DTI to six diffusion-encoding 

directions. Therefore, the input and output DWIs have the same spatial resolution but are 

obtained using different numbers of DWIs. The end results achieve a combination of angular 

super-resolution and denoising. For very low-SNR data, such as those with sub-millimeter 

isotropic resolution, input images can be derived from DWIs acquired along 30 uniformly 

and fully sampled diffusion-encoding directions to provide the CNN with sufficient 

directional diffusion contrast to infer the tensor metrics. In this case, DeepDTI performs 

pure denoising and can achieve a similar acceleration factor given sufficiently high-quality 

training targets. In applications where high spatial resolution (millimeter or sub-millimeter 

isotropic) is desired, such as the in vivo mapping of cerebral cortical microstructure (McNab 

et al., 2013; Kleinnijenhuis et al., 2015; Fukutomi et al., 2018; Calamante et al., 2018; Tian 

et al., 2017) and the structural connections in the basal ganglia, the input images can be 

derived from DWIs acquired along 30 uniformly and fully sampled diffusion-encoding 

directions but with lower spatial resolution than the target images to achieve combined 

spatial super-resolution and denoising. The specific CNN adopted by DeepDTI is well suited 

for both spatial super-resolution and denoising, which is often referred to as VDSR (very 

deep super-resolution) network in the context of super-resolution (Kim et al., 2016; 

Chaudhari et al., 2018) and DnCNN (denoising CNN) in the context of denoising (Zhang et 

al., 2017). If the input images are acquired along under-sampled diffusion-encoding 

directions with spatial resolution lower than the target images, DeepDTI achieves angular 

super-resolution, spatial super-resolution and denoising simultaneously. Moreover, the 

DeepDTI pipeline could also be used for mapping high-SNR DWIs obtained by averaging 

multiple repetitions from single-repetition data without imposing any diffusion models. The 

input and output DWIs would be expected to incorporate higher b-values, which are needed 

for mapping crossing fibers and more advanced microstructural metrics. The resultant high-

quality DWIs could be used for fitting any preferred advanced diffusion models and model-

free metrics as proposed by the q-DL method (Golkov et al., 2015, 2016).

DeepDTI offers a compelling demonstration of the value of deep learning approaches in 

mining hidden information embedded in imaging data. The success of DeepDTI proves that 

there is sufficient information in the data from six diffusion-encoding directions to derive 

high-fidelity DTI metrics that are long believed to require far more data. The requirement for 

more than necessary data is mainly because the redundant information in the diffusion data 

has not traditionally been fully exploited. For diffusion MRI, the unique challenge is that the 
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data redundancy traverses a six-dimensional joint image-diffusion space (Callaghan et al., 

1988), which is non-trivial to model for microstructural imaging. Previous works partially 

exploited this data redundancy using techniques such as compressed sensing and low-rank 

convex optimization (Hu et al., 2020; Shi et al., 2015; Wu et al., 2019; Cheng et al., 2015; 

Pesce et al., 2017, 2018; Chen et al., 2018). As demonstrated in this work, well-constructed 

CNNs are better suited to make use of the redundancy in the imaging data and derive more 

accurate results with fewer input images. Specifically, the use of 3 × 3 × 3 × N (the number 

of input channels) kernels ensures that information across the six-dimensional image-

diffusion space can be jointly utilized. The deep CNN has 10 layers and therefore a 21 × 

1.25 mm (the voxel size) receptive field, which is sufficiently large to include similar 

information contained in non-local voxels. In the input layers, the kernels also use images 

with other contrasts (Golkov et al., 2016), e.g., T1-weighted and T2-weighted images, which 

is challenging, if not impossible, to be explicitly incorporated into a diffusion model.

The power of deep learning lies in its ability to generalize the inference of any number of 

diffusion MRI measures beyond the tensor model, given the known limitations of DTI, 

including the inability to resolve complex fiber configurations such as crossing fibers and 

not accounting for non-Gaussian diffusion behavior. While we have only focused on the 

simplest tensor model for applications that are constrained to the Gaussian diffusion regime 

(i.e., b-value lower than 1,500 s/mm2) because of practical factors such as the limited 

gradient strength of the MRI scanner, partially utilizing the capability of CNNs, future work 

is encouraged to leverage this principle to explore further reducing the number of input 

DWIs to fewer than six DWIs used in this work (e.g., three DWIs along orthogonal 

directions), the data requirement for more advanced crossing fiber mapping methods (e.g., 

BEDPOSTX (Behrens et al., 2003; Jbabdi et al., 2012), constrained spherical deconvolution 

(Tournier et al., 2004, 2007; Jeurissen et al., 2014)), microstructural imaging (e.g., axon 

diameter index mapping (Huang et al., 2020; Fan et al., 2019)) and advanced diffusion-

encoding methods (e.g., q-space trajectory imaging (Westin et al., 2016) and double 

diffusion encoding (Yang et al., 2018)). More importantly, well-designed CNNs can be used 

for directly mapping the acquired DWIs to model-free metrics beyond historical models 

such as DTI, as well as other relevant outcomes of interest such as the segmentation of 

pathology, diagnosis and prognostication, without imposing any diffusion models, following 

the model-free argument proposed by the q-DL method (Golkov et al., 2015, 2016). The 

more goal-oriented mapping potentially further reduces the amount of required DWI data. In 

general, our work encourages the wider adoption of CNNs as complementary tools to 

comprehensively understand and extract the hidden information that may be embedded in 

the data from other forms of imaging, such as functional MRI, for accelerating the 

acquisition and improving the quality of the results.

Most importantly, DeepDTI enables greater accessibility to DTI for mapping the white-

matter tissue properties and tracts in the in vivo whole human brain. DeepDTI only requires 

one b = 0 image and six DWI volumes of the brain, with the acquisition time of each 

measurement as short as ~4 s with parallel imaging and simultaneous multislice imaging 

techniques. The reduction of the entire DTI acquisition to 30–60 s potentially makes high-

fidelity DTI a routine modality, along with anatomical MRI, for most MRI scans in both 

clinical and research settings, which promises to improve scan throughput and enable 
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routine use in previously inaccessible populations, such as motion-prone patients and young 

children. As a stand-alone post-processing step, DeepDTI only takes in reconstructed images 

from the MRI scanner as inputs, without any need to intervene in the current imaging flow. 

Therefore, it can be easily incorporated into or deployed as an add-on of existing software 

packages, such as DTI-based tractography software for surgical planning, for streamlined 

acquisition and processing. We anticipate the immediate benefits of more accessible high-

quality DTI and DTI-based tractography enabled by deep learning for a wide range of 

clinical and research neuroimaging studies.

4.1. Summary

This study presents a data-driven supervised deep learning-based method called DeepDTI to 

enable high-fidelity DTI using only one b = 0 image and six DWI volumes. In distinction to 

prior studies, DeepDTI maps the input image volumes to their residuals compared to the 

ground-truth output image volumes using a very deep 10-layer three-dimensional CNN. The 

rotationally-invariant and robust estimation of DTI metrics from DeepDTI are comparable to 

those obtained with two b = 0 images and 21 DWIs for estimation of the primary eigenvector 

V1 and two b = 0 images and 26–30 DWIs for the scalar DTI metrics of FA, MD, AD and 

RD, achieving 3.3–4.6 × acceleration. DeepDTI outperforms the state-of-the-art BM4D 

denoising algorithm at the group level by at least a factor of two. DeepDTI enables fast 

mapping of the whole-brain structural connectome, identification of the major white-matter 

tracts and tract-specific analysis, which would otherwise not be possible with a sparse 

acquisition consisting of just one b = 0 image and six DWIs. The mean distance between the 

core of the major white-matter tracts identified from DeepDTI and those obtained from the 

ground-truth results using 18 b = 0 images and 90 DWIs measures around 1–1.5 mm. The 

efficacy of DeepDTI lies in the use of the six optimized diffusion-encoding directions and a 

very deep 3-dimensional CNN combined with residual learning. DeepDTI promises to 

benefit a wide range of clinical and neuroscientific studies that require fast and high-quality 

DTI and DTI-based tractography.

Data availability

The image data including the diffusion, T1-weighted and T2-weighted anatomical data from 

70 subjects are provided by the Human Connectome Project WU-Minn-Ox Consortium and 

are available via public database (https://www.humanconnectome.org).

Code availability

The source codes of DeepDTI implemented using MATLAB and Keras application 

programming interface are available from the corresponding author upon email request.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Diffusion physics-informed and convolutional neural network-based DeepDTI pipeline.
The input is a single b = 0 image and six diffusion-weighted image (DWI) volumes sampled 

along optimized diffusion-encoding directions (a) as well as anatomical (T1-weighted and 

T2-weighted) image volumes. The output is the high-quality b = 0 image volume and six 

DWI volumes sampled along optimized diffusion-encoding directions transformed from the 

diffusion tensor fitted using all available b = 0 images and DWIs (b). A deep 3-dimensional 

convolutional neural network (CNN) comprised of stacked convolutional filters paired with 

ReLU activation functions (n = 10, k = 190, d = 3, c = 9, p = 7) is adopted to map the input 

image volumes to the residuals between the input and output image volumes (c).
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Fig. 2. Comparison of the input and output images of DeepDTI.
Non-diffusion-weighted (b = 0) images (a–e) and diffusion-weighted images (DWIs) (f–j) 

sampled along one of the six optimized diffusion-encoding directions (i.e., [0.91, 0.416, 0]) 

from the ground-truth data (a, f), the input data of DeepDTI (b, g), the output data of 

DeepDTI (c, h), the residuals between the ground-truth images and DeepDTI input images 

(d, i) and the residuals between the ground-truth images and the DeepDTI output images (e, 

j) from a representative subject. The peak signal-to-noise ratio (PSNR) and the structural 

similarity index (SSIM) are used to quantify image similarity compared to the ground truth.
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Fig. 3. Comparison of denoising efficacy of different data/methods.
Non-diffusion-weighted (b = 0) images (row a) and diffusion-weighted images (DWIs) (row 

c) sampled along one of the acquired diffusion-encoding directions (approximately left–

right) from the raw data (column i), generated from the ground-truth diffusion tensor 

(column ii), generated from the tensor fitted on the DeepDTI output images (column iii), and 

from the BM4D-denoised data (column iv), and their residuals compared to the raw images 

(rows b, d) from a representative subject.
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Fig. 4. DeepDTI recovers detailed anatomical Information.
Fractional anisotropy maps color encoded by the primary eigenvector (red: left–right; green: 

anterior–posterior; blue: superior–inferior) derived from the diffusion tensors fitted using all 

18 b = 0 images and 90 diffusion-weighted images (DWIs) (ground truth, a), raw data 

consisting of 1 b = 0 image and 6 DWIs sampled along an arbitrary rotational variant of the 

optimized set of diffusion-encoding directions from the full dataset (b), the same 1 b = 0 

image and 6 DWIs processed by DeepDTI (c) and denoised by BM4D (d) from a 

representative subject. Two regions of interest in the deep white matter (yellow boxes) and 

sub-cortical white matter (blue boxes) are displayed in enlarged views with the primary 

eigenvectors rendered as color-encoded sticks superimposed on the fractional anisotropy 

maps.
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Fig. 5. Primary eigenvector and fractional anisotropy derived from DeepDTI compared to other 
data/methods.
Maps of color-encoded primary eigenvector (red: left–right; green: anterior–posterior; blue: 

superior–inferior) (row a) and fractional anisotropy (row c) derived from the diffusion 

tensors fitted using all 18 b = 0 images and 90 diffusion-weighted images (DWIs) (ground 

truth, column i), raw data consisting of 1 b = 0 image and 6 DWIs sampled along an 

arbitrary rotational variant of the optimized set of diffusion-encoding directions from the full 

dataset (column ii), the same 1b = 0 image and 6 DWIs processed by DeepDTI (column iii) 

and denoised by BM4D (column iv), and their residual maps (rows b, d) compared to the 

ground-truth maps. The mean absolute difference (MAD) of each map compared to the 
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ground truth within the brain (excluding the cerebrospinal fluid) is displayed at the bottom 

of the residual map.
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Fig. 6. Quantification of the accuracy of estimated DTI metrics.
The blue curves and the blue shaded regions represent the group mean and standard 

deviation of the mean absolute difference (MAD) of different DTI metrics obtained from 7–

96 image volumes (1 leading b = 0 image volume interleaved for every 15 diffusion-

weighted images (DWIs); DWIs were sampled along uniformly distributed diffusion-

encoding directions) extracted from the full dataset compared to the ground-truth values 

obtained from 108 image volumes (18 b = 0 image and 90 DWI volumes) across 20 

evaluation subjects. The colored dots at the center of the error bars and the colored error bars 

represent the group mean and standard deviation of the MAD of different DTI metrics 

obtained from the raw data consisting of 1 b = 0 image volume and 6 DWI volumes sampled 

along an arbitrary rotational variant of the optimized set of diffusion-encoding directions 

from the full dataset (red), the same 1 b = 0 image and 6 DWI volumes processed by 

DeepDTI (yellow) and denoised by BM4D (green) compared to the ground truth across 20 

evaluation subjects. The numbers above the curves indicate the number of image volumes 

that would be needed to derive the DTI metrics with equivalent MAD to those derived from 

1 b = 0 image and 6 DWI volumes processed by different methods. The MADs within the 

brain tissue (excluding the cerebrospinal fluid) are reported here.
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Fig. 7. DeepDTI accurately identifies major white-matter tracts.
Whole-brain DTI-based tractography results (row a), 20 representative major white-matter 

tracts identified using the Automated Fiber Quantification (AFQ) software (row b), the 

skeleton of a selected tract, the corticospinal tract (row c), and the tract profiles of fractional 

anisotropy (FA) values along the corticospinal tract (row d) derived from the ground-truth 

data (column i), raw data consisting of 1 b = 0 image and 6 diffusion-weighted images 

(DWIs) sampled along an arbitrary rotational variant of the optimized set of diffusion-

encoding directions from the full dataset (column ii), the same raw data processed by 

DeepDTI (column iii) and denoised by BM4D (column iv). Results are shown for the right 

hemisphere of a representative subject. In row (c), the skeleton of each tract bundle is 

represented as a 5 mm radius tube color-coded based on the FA value at each point along the 

tract with the dotted lines representing the way-point regions-of-interest that define the tract 

core. In row (d), the tract profiles depict the FA values extracted from the tract core of the 

corticospinal tract.
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Fig. 8. Quantification of the accuracy of DTI-based tractography and tract-specific analysis.
The across-subject mean and standard deviation of the Identification rate of the 20 major 

white-matter tracts determined using the Automated Fiber Quantification (AFQ) software 

(tracts from the left and right hemisphere are combined except for the forceps major and 

forceps minor) (a) for the raw data consisting of 1 b = 0 image and 6 diffusion-weighed 

images sampled along an arbitrary rotational variant of the optimized set of diffusion-

encoding directions from the full dataset (blue), the same raw data processed by DeepDTI 

(red) and denoised by BM4D (yellow) of 20 evaluation subjects. In (b), the mean distance 

between the tract cores is compared to the ground truth, and in (c), the mean absolute 

difference of the tract profiles of the fractional anisotropy values are compared to the 

ground-truth values.
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