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Abstract  

Angiotensin-converting enzyme-2 (ACE2) receptor has been identified as the key 

adhesion molecule for the transmission of the SARS-CoV-2. However, there is no 

evidence that human genetic variation in ACE2 is singularly responsible for COVID-19 

susceptibility. Therefore, we performed a multi-level characterization of genes that 

interact with ACE2 (ACE2-gene network) for their over-represented biological properties 

in the context of COVID-19.  

The phenome-wide association of 51 genes including ACE2 with 4,756 traits categorized 

into 26 phenotype categories, showed enrichment of immunological, respiratory, 

environmental, skeletal, dermatological, and metabolic domains (p<4e-4). Transcriptomic 

regulation of ACE2-gene network was enriched for tissue-specificity in kidney, small 

intestine, and colon (p<4.7e-4). Leveraging the drug-gene interaction database we 

identified 47 drugs, including dexamethasone and spironolactone, among others. 

Considering genetic variants within ± 10 kb of ACE2-network genes we characterized 

functional consequences (among others) using miRNA binding-site targets. MiRNAs 

affected by ACE2-network variants revealed statistical over-representation of 

inflammation, aging, diabetes, and heart conditions. With respect to variants mapped to 

the ACE2-network, we observed COVID-19 related associations in RORA, SLC12A6 and 

SLC6A19 genes.  

Overall, functional characterization of ACE2-gene network highlights several potential 

mechanisms in COVID-19 susceptibility. The data can also be accessed at 

https://gpwhiz.github.io/ACE2Netlas/ 
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 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://gpwhiz.github.io/ACE2Netlas/
https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 3 
 

1 Introduction 2 

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent 

responsible for recent global spread of COVID-19 (coronavirus disease 2019) [1,2]. 4 

Millions of people have been infected with the virus, which caused global lockdowns and 

heavily restricted interpersonal contact. These measures were taken to reduce viral 6 

spread through respiratory droplet exchange between persons.  

SARS-CoV-2 is capable of entering the host cells via ACE2 (angiotensin converting 8 

enzyme 2) [3]. ACE2 is found on many different cell types, which normally helps regulate 

blood pressure and inflammation through cleavage of angiotensin II (ANG II) [4]. The virus 10 

occupies cell-surface of ACE2 leading to accumulation of angiotensin (ANGII), 

inflammation, and cell death [3]. In the lungs, SARS-CoV-2 mediated ANGII accumulation 12 

leads to alveolar cell death and a reduction in oxygen uptake [5]. 

Although ACE2 is the cellular entry point, there is little evidence that genetic variation in 14 

ACE2 is singularly responsible for COVID-19 susceptibility. Indeed, ACE2 failed to 

associate with COVID-19 informative phenotype definitions from large genome-wide 16 

studies [6–8] . However, due to the functional role of ACE2 in SARS-CoV-2 infection, we 

hypothesize that genes interacting with ACE2 activity are enriched for molecular 18 

pathways relevant for COVID-19 susceptibility. Accordingly, we employed a top-down 

approach to analyze tissue-specific transcriptomic regulation, drug-gene interactions, and 20 

variant prioritization using genetic variants within the ACE2 gene-gene connectome and 

protein-protein interaction networks. With this approach we identified several biological 22 

processes and functional effects of ACE2-gene network relevant for the vast symptoms 

observed following SARS-CoV-2 infection.  24 

 

2 Results 26 

A study overview is presented in Supplementary file1 Figure S1. 
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2.1 The ACE2 gene connectome 28 

A total of 60 ACE2-interacting genes were identified from different network databases 

(Supplementary file2 Table S1; Figure 1).  30 

2.2 Tissue-specific transcriptomic regulation 

Using differential expression data of 54 tissues (GTEx-v8), the genes in the ACE2-gene 32 

network were enriched for upregulated expression in small intestine (p=1.07x10-16), colon 

(p =7.60x10-13), kidney (p=1.93x10-8), and liver (p=4.63x10-4) (Figure 2; Supplementary 34 

file2 Table S2). No tissue-specific enrichment was observed for down-regulated 

expression. 36 

2.3 Gene-Drug Interaction and Over-represented Biological Functions 

Out of 61 genes, 29 had information about their drug-gene interaction in the drug-gene 38 

interaction database (DGIdb)[9] . This assessment resulted in 238 unique drug-gene 

observations (Supplementary file2 Table S3). Some of the notable drugs observed via this 40 

approach were spironolactone, dexamethasone, metformin, and hydrocortisone. To 

understand the role of these drugs in affecting biological processes, we performed drug-42 

set enrichment analysis. DSEA [10] found gene-ontology mapping for 47 drugs and tested 

against REACTOME gene ontology database. Although the results did not survive 44 

Bonferroni correction, the strongest enrichments were observed for platelet sensitization 

by low-density lipoprotein cholesterol (p=0.003), IL-7 signaling (p=0.004), 46 

glycerophospholipid biosynthesis (p=0.005), and viral messenger RNA synthesis 

(p=0.011) (Figure 3; Supplementary file2 Table S4).  48 

2.4 Over-representation of phenotypic domains within ACE2 gene network 

A phenome-wide association study (PheWAS) was performed for 51 genes leveraging 50 

data from the GWASAtlas [11]. The GWASAtlas categorized traits into 26 phenotype 

domains (Supplementary file1 Figures S2-S52; Supplementary file2 Table S5). Each 52 

domain was tested for enrichment of significant traits versus non-significant traits 

(Supplementary file2 Table S6). Six domains were significant: ‘Immunological’ 54 

(p=7.62x10-25), ‘Respiratory’ (p=1.30x10-8), ‘Skeletal’ (2.94x10-8), ‘Dermatological’ 

(p=7.91x10-8), ‘Environmental’ (p=2.21x10-7), and ‘Metabolic’ (4.33x10-4) (Supplementary 56 
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file2 Table S7). SLC44A4 had the highest number of associated traits across the 

significant domains (ntotal= 173) followed by APOA1 had highest number of traits 58 

associations, mostly metabolic (ntotal= 100; metabolic = 71) (Figure 4). SLC44A4, APOA1, 

and RORA showed associations across all six enriched domains.  60 

2.5 Characterization of SNPs 

We extracted all 957,222 SNPs in the ACE2-network and annotated for allele frequency 62 

(Supplementary file3), nearby genes and coordinates (Supplementary file4), Combined 

Annotation Dependent Depletion (CADD) [12] and DeepSEA [13] scores. There were 64 

98,529 SNPs with CADD score >10, which corresponds to the top 10% pathogenic 

variants across the human genome (Supplementary file5). To identify their regulatory 66 

consequences, variants were annotated with DeepSEA which provides functional 

probability of the SNPs in serving as gene expression, disease and chromatin regulating 68 

variants. There were 12,095 SNPs within the ACE2-gene network which had >50% 

functional probability (DeepSEA functional score > 0.5) (Supplementary file6).  The 70 

miRNAs altered by the SNPs were analyzed for over-represented miRNA-family, biological 

functions, and diseases considering false discovery rate multiple testing correction (FDR 72 

p<0.05). There were 4 miRNA clusters that were enriched, miR-302b, miR-181d 

(p=0.0079), miR-17, and 106a (p= 0.00298). We found 65 biological functions that were 74 

significant and the top five significant biological processes were cell death (p=1.5x10-20), 

inflammation (p=2.57x10-20), cell cycle (p=2.09x10-18), apoptosis (p=4.15x10-18), and 76 

immune response (p=3.17x10-17) (Figure 5). We observed a total of 152 significant 

diseases of which the most significant were diabetes mellitus type 2 (p=1.55x10-22), 78 

hepatitis c virus infection (p=5.56x10-21), atherosclerosis (p=3.08x10-19), heart failure 

(p=4.22x10-19), and Alzheimer’s disease (p=1.35x10-17) (Supplementary file2 Table S8). 80 

2.6 Neanderthal LA introgression within ACE2 network SNPs  

Due to the Neanderthal introgression observed in 3p21 locus as risk to COVID-19 [14], 82 

we compared mean probability of Neanderthal LA between the ACE2-network SNP set 

(mean=0.032) and 1,000 randomly selected SNP sets with comparable genomic features 84 

(range of Neanderthal LA means = 0.027-0.036). The ACE2-network SNPs did not show 
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evidence of Neanderthal LA introgression significantly different from those expected by 86 

chance (p=0.663) (Supplementary file1 Figure 55). 

2.7 Annotation of network SNPs using the COVID-19 GWAS 88 

We tested ACE2-network SNPs with respect to six COVID-19-related phenotypes (Freeze 

3) released by the COVID-19 Host Genetics Initiative [15]. To identify independent 90 

variants, the variants were pruned for linkage disequilibrium (LD<0.1 within 250kb 

genomic size) and clumped for p-value <0.01. Variants surviving multiple testing were 92 

annotated for eQTLs, and mQTLs. Three genes – RORA, SLC12A6, and SLC6A19 – 

showed associations with multiple COVID-19 phenotypes (Supplementary file2 Tables 94 

S9-S14; Supplementary file6 Figures S56-S61). RORA SNPs were associated with  

COVID-19 positive status (rs17303202, p=2.35E-5), laboratory-confirmed positive 96 

COVID-19 status (rs4774377, p=8.25E-5),  hospitalized COVID-19 (rs17303202, p=2.76E-

05), and COVID-19 with very severe respiratory symptoms (rs341419, p=8.13E-4). The 98 

SNPs in RORA gene are also associated with gene expression of RORA gene 

(rs12912196; p=3.9E-5) and trans-mQTL (cg00930615 in ANXA2). SLC12A6 associations 100 

were observed with respect to COVID-19 (rs145719616, p=1.19E-4), hospitalized COVID-

19 (rs192235418, p=4.42E-4), COVID-19 with very severe respiratory (rs2705343, 102 

p=1.86E-3), and. SLC6A19 SNPs were associated with severe COVID-19 phenotype 

definitions, i.e. COVID-19 with very severe respiratory confirmed (rs76067074, p=2.65E-104 

3) and hospitalized COVID-19(rs76067074, p=2.52E-4).  

3 Discussion 106 

ACE2 is expressed in several tissues and plays a key role in host-entry of SARS-CoV-2 

[16]. However, the genomic profile of ACE2 is limited in explaining the vast symptomology 108 

observed for COVID-19. Understanding ACE2 associated molecular networks presents 

several functional insights between genetic targets based on gene expression, topology, 110 

and protein and signaling relationships [17]. Due to the well-characterized role of ACE2 in 

SARS-CoV-2 infection, we generated novel information regarding the molecular and 112 

phenotypic characteristics of ACE gene network in the context of their potential 
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involvement in COVID-19 susceptibility. Our PheWAS-based analysis showed that genetic 114 

variation within ACE2 gene network is associated with immunity, respiratory, and 

metabolic traits. This is in line with known epidemiology of COVID-19 and its comorbidities 116 

[18,19]. 

The expression of ACE2-network genes was enriched for regulatory mechanisms related 118 

to small intestine, colon, kidney, and liver. It is hypothesized that furin, a serine protease 

present in lungs but also highly expressed in small intestine, presents S-spike for 120 

attachment of the ACE2 receptor [20]. Patients with kidney disease have higher risk for 

COVID-19 severe symptoms [21]. Additionally, the inflammation and cytokine storm from 122 

COVID-19 is observed to damage kidney tissues [22]. Lastly, modest increase in liver 

enzymes has been associated with COVID-19, and returning to baseline during the 124 

recovery phase [23].  

Understanding the genes that interact with ACE2 receptor has potential to understand 126 

drug-targets and molecular processes that might play a role in susceptibility and 

treatment response of COVID-19. The drug-gene interaction analysis within ACE2 128 

network identified dexamethasone, reported to lower mortality in COVID-19 cases 

requiring mechanical ventilation [24]. Drugs ‒ spironolactone and hydrocortisone target 130 

the androgen system. The androgen receptor has been associated with severe 

symptomology of COVID-19 [25]. Spironolactone is a diuretic and alleviates respiratory 132 

symptoms by reducing fluid from the lungs [26]. The use of spironolactone is currently 

being tested for acute respiratory distress syndrome in COVID-19 patients [27]. 134 

Hydrocortisone is currently under clinical trials for treating COVID-19 related hypoxia 

symptoms [28]. Among the other compounds identified, metformin, a known drug for 136 

treating diabetes, can also affect respiratory outcomes [29]. A recent study reported 

protective effects of metformin in women with diabetes and obesity who were admitted 138 

with COVID-19 diagnosis [30]. Lastly, melatonin has been hypothesized to improve 

general immunity and lower oxidative stress generated from SARS-CoV-2 infection  [31].  140 
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The miRNA target sites altered by ACE2-network SNPs identified miR-302b and miR-181d 

as over-represented miRNA clusters. The downregulated expression of miR-302b has 142 

been observed to reduce survival rates in chronic obstructive pulmonary disease (COPD) 

patients [32]. A meta-analysis showed that COPD diagnosis increased susceptibility to 144 

COVID-19 [33]. The miRNA-181 cluster has been associated with  regulation of TNF-alpha 

[34], T-cell aging [35] and emphysema [36]. miRNA-17 and 106 belong to same miRNA 146 

family, miRNA-17 is upregulated in bronchoalveolar stem cells to lower SARS-CoV 

replication [37]. An in silico study of miRNA targets for SARS-CoV-2 genomic sequence 148 

found miRNA-17 as one of the targets with experimental evidence of its upregulation in 

H7N9 Influenza virus infection [38]. The top over-represented diseases in miRNA-ACE2-150 

network-SNPs were diabetes, hepatitis C viral infection, heart failure and Alzheimer’s 

disease. COVID-19 in individuals with diabetes has been reported to require 152 

hospitalization than non-diabetic individuals [39]. Furthermore, SARS-CoV-2 infection 

contributes in the development of ketosis in diabetic individuals resulting in longer length 154 

of hospitalization stay [40]. Triglyceride and glucose index was associated with severity of 

COVID-19 [41]. While there are limited studies about hepatitis C  in COVID-19 patients 156 

[42], heart failure was reported by multiple studies as being associated with COVID-19 

severity [43,44]. Alzheimer’s disease is another condition associated with COVID-19 158 

susceptibility [45], including APOE4 carrier status with increased risk of severe COVID-

19 [46].  160 

In contrast to specific enrichment of Neanderthal LA in a COVID-19 risk locus on 

chromosome 3 [47], there is no evidence of increased Neanderthal LA in the ACE2 162 

network investigated here. This suggests that, although some loci conferring risk for 

COVID-19 severity, such as the one identified on chromosome 3, may have originated 164 

from Neanderthal admixture events, this mechanism did not shape the genetic 

architecture of the ACE2 network responsible for entry of SARS-CoV-2 into host cellular 166 

machinery. 

Lastly, among ACE2-network-SNPs, potential COVID-19 risk alleles were observed in 168 

RORA gene with respect to multiple COVID-19 phenotypes. RORA protein product is 
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involved in immune response, cancer and metabolism [48]. RORA plays a role in the 170 

activation of T helper cells during lung inflammation by regulating tumor necrosis factor 

and interleukins [49,50] , and its protein product showed multiple regulatory functions in 172 

human epithelial cell cultures inoculated with SARS-CoV-1 [51]. The hypothesis-free 

approach of genome-wide association of hospitalized COVID-19 vs the population 174 

highlighted SLC6A20 with genome-wide significance on chromosome 3 locus. The 

SLC12 (SLC12A6) class is responsible for inorganic ions such as sodium and chloride 176 

while the SLC6 class (SLC6A19, identified via network approach and SLC6A20, identified 

via genome-wide approach) are responsible for transport of amino acids such as 178 

glutamate and glycine which are important neurotransmitter activity [52]. SLC6A19 

(among other SLC-class genes) serves similar function to SLC6A20, both are expressed 180 

in the intestinal tissue and contingent upon ACE2 expression [53]. Multiple studies report 

more than 10% of the COVID-19 confirmed patients exhibit gastrointestinal symptoms[54–182 

56]  

Although we provided a wide range of information highlighting the molecular and 184 

phenotypic characteristics of ACE2 gene network and their putative implications with 

COVID-19 risk, the findings reported have to be considered exploratory. We used 186 

appropriate computational methods and statistical approaches to generate reliable 

evidence useful to open new directions in COVID-19 research. We also highlighted when 188 

the results reported did not survive stringent multiple testing correction. This limitation is 

particularly relevant with respect to the ACE2 network genetic associations. Due to the 190 

limited statistical power of the genome-wide data available to date, none of the risk alleles 

identified as functionally relevant survive genome-wide testing correction. Further 192 

analyses will be needed to validate our current findings.  

4 Conclusion 194 

ACE2 is one of the few molecular targets recognized to play a key role in the COVID-19 

pathogenesis. We conducted a comprehensive analysis leveraging multiple resources 196 

(e.g., drug-gene interactions, tissue-specific transcriptomic profile, and phenome-wide 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 10 
 

and genome-wide datasets) to expand our understanding of the genomic characteristics 198 

of the host ACE2 gene network. Overall, our findings highlight the potential mechanisms 

linking ACE2 systems biology to COVID-19 susceptibility. 200 

5 Methods 
5.1 Gene network collection 202 

Information regarding ACE2 gene network was mined from GeneMANIA [57], Stringdb 

[58], APID [59], GeneNetwork [60], Biogrid[61] and FunctionalNet [62]. Immediate genes 204 

connections that were available in each databank with their default settings result in 61 

unique genes (60 genes plus ACE2) (Supplementary file1 Figure 1; Supplementary file2 206 

Table S1). The genomic coordinates for the genes were annotated using biomart [63], 

ensemble GRCh37/hg19. The analysis and visualization were performed in R 3.6. 208 

5.2 2.2 Tissue-specific transcriptomic regulation 

The tissue specificity was tested for 60 ACE2-interacting genes in FUMA [64]. The input 210 

genes were tested for pre-calculated tissue-specific differentially expressed genes from 

the GTEx v8 [65]. We also considered the t-statistic sign for up and down-regulated genes 212 

against protein coding genes as background. Enrichments were performed using 

hypergeometric tests and significant enrichments were defined according to Bonferroni 214 

corrected p-value ≤ 0.05. 

5.3 Phenome-wide analysis of ACE2 gene network 216 

A phenome-wide association study (PheWAS) was performed for 51 of 60 genes that 

were present in GWASAtlas [11] using all traits available per gene. Statistical significance 218 

was determined by applying a Bonferroni multiple-testing correction accounting for the 

number of GWAS traits (4,765 traits) available in the GWASAtlas (p<1.05 x10-5). Each trait 220 

was grouped into a domain (Supplementary file2 Table S5) which was tested for 

enrichment using one-sided Fisher’s exact test for high proportion of significant traits 222 

versus all others tested. A significant domain enrichment was defined considering a 

Bonferroni-corrected threshold accounting for the number of domains tested (p-value < 224 

0.0019; 0.05/26).  
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5.4 Gene-Drug Interactions and Biological Functions 226 

Information on drugs that interact with ACE2 network genes were extracted from The 

Drug-Gene Interaction database (DGIdb) [9] followed by drug-set enrichment  for over 228 

represented biological functions using  DSEA (Drug-Set Enrichment Analysis) [10].  

5.5 Characterization of SNPs 230 

Single nucleotide polymorphism (SNPs) were extracted based on the genomic 

coordinates of the genes (± 10kb) for GrCh37; dbSNP153 from the UCSC browser [66] 232 

using bigbed utilities [67] , and referred to as ‘ACE2-network SNPs.’ ACE2-network SNPs 

were annotated for global allele frequency, Combined Annotation-Dependent Depletion 234 

(CADD) score [12], deep learning based algorithm framework (DeepSEA) [13], and target 

miRNAs using SNPnexus [68]. DeepSEA is a deep learning-based algorithmic framework 236 

for predicting the chromatin effects of sequence alterations with single nucleotide 

sensitivity[13].The identified miRNAs were tested for over-represented miRNA clusters, 238 

functions, and diseases using TAM 2.0 [69].  

5.6 Neanderthal introgression  240 

Motivated by evidence of a chromosome 3 COVID-19 risk locus enriched of Neanderthal 

local ancestry (LA) [47], we compared the distribution of probability of Neanderthal LA in 242 

our COVID-19 ACE2-network SNP set and 1,000 randomly sampled SNP sets comprised 

on SNPs across the genome with comparable genomic features. ACE2-network SNPs 244 

were mapped using previously-defined Neanderthal LA data [70,71]. A total of 6,822 LD-

independent pairwise SNPs (r2=0.1 and p=0.1 in 250kb window size) were used as 246 

standard input for SNPsnap [72]. In SNPsnap, 1,249/6,822 independent ACE2 network 

SNPs could be matched based on the following genomic features relative to the input 248 

SNP list: minor allele frequency within 2%, gene density within 50%, nearest gene within 

50%, and number of linkage disequilibrium groups within 50%. SNPsnap was instructed 250 

to exclude the ACE2-network SNP list from the pool of eligible feature-matched SNPs. 

Non-parametric Wilcoxon rank sum tests were used to compare the Neanderthal LA of 252 

our ACE2 network SNP list to that of all 1,000 random SNP sets and multiple testing 

correction was applied to adjust for a false discovery rate of 5%. 254 
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5.7 Association statistics of ACE2 network SNPs from the COVID-19 Host Genetics 

Initiative (HGI) 256 

The ACE2-network SNPs were extracted from association statistics released by the 

COVID-19 HGI [15] for six phenotypes describing COVID-19 susceptibility. These 258 

phenotypes were A2_V2 (very severe respiratory confirmed COVID-19 cases [N=536] vs. 

population[N=329391]), B1_V2 (hospitalized COVID-19 cases [N=928] vs. not hospitalized 260 

COVID-19 cases [N=2028]), B2_V2 (hospitalized COVID-19 cases [N=3199] vs. 

population [N=897488]), C1_V2 (COVID-19 cases [N=3523] vs. lab/self-reported negative 262 

[N=36634]), C2_V2 (COVID-19 cases [N=6696] vs. population [N=1073072]), and D1_V2 

(predicted COVID-19 cases from self-reported symptoms [N=1865] vs. predicted or self-264 

reported non-COVID-19 cases [N=29174]). The SNPs of the ACE2 network were 

extracted and pruned for LD and p-value using plink1.9. The multiple testing correction 266 

was applied using Bonferroni p-value < 0.05. These significant SNPs were annotated 

further for pathogenicity using Combined Annotation Dependent Depletion (CADD) score 268 

and their role as quantitative trait loci (QTL) for gene expression using GTEx, and 

methylation using QTLbase [73].  270 

6 Author Contribution 

G.A.P conceptualized the study design, analyzed, and drafted the manuscript. F.R.W. 272 

contributed to analysis, and manuscript writing. Authors, A.G., F.D.A. and R.P. contributed 

to result interpretation, manuscript drafting and revision. R.P. supervised the study and 274 

finalized the manuscript. 

7 Competing Interests 276 

The authors have no competing interests. 

8 Acknowledgements 278 

We would like to acknowledge support from the National Institutes of Health (R21 

DC018098, R21 DA047527, R01 DA12690, F32 MH122058), and thank the COVID-19 280 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 13 
 

Host Genetics Initiative (https://www.covid19hg.org/acknowledgements/) for providing 

open access to genetic association data.  282 

9 Data Availability 

The data presented is available in supplementary files and also on 284 

https://gpwhiz.github.io/ACE2Netlas/ 

10 References 286 

 

[1]  Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak 288 

associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273. 

doi:10.1038/s41586-020-2012-7. 290 

[2]  Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus 

associated with human respiratory disease in China. Nature 2020;579:265–269. 292 

doi:10.1038/s41586-020-2008-3. 

[3]  Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, 294 

Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 

2020;181:281–292.e6. doi:10.1016/j.cell.2020.02.058. 296 

[4]  Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus ADME, 

et al. The emerging role of ACE2 in physiology and disease. J Pathol 2007;212:1–298 

11. doi:10.1002/path.2162. 

[5]  Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 300 

Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, 

China. JAMA 2020;323:1061–1069. doi:10.1001/jama.2020.1585. 302 

[6]  Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Somnez T, Coker D, et al. Trans-

ethnic analysis reveals genetic and non-genetic associations with COVID-19 304 

susceptibility and severity. medRxiv 2020. doi:10.1101/2020.09.04.20188318. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://www.covid19hg.org/acknowledgements/
https://gpwhiz.github.io/ACE2Netlas/
https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 14 
 

[7]  Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. 306 

Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl 

J Med 2020. doi:10.1056/NEJMoa2020283. 308 

[8]  Pairo-Castineira E, Clohisey S, Klaric L, Bretherick A, Rawlik K, Parkinson N, et al. 

Genetic mechanisms of critical illness in Covid-19. medRxiv 2020. 310 

doi:10.1101/2020.09.24.20200048. 

[9]  Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, et al. 312 

DGIdb: mining the druggable genome. Nat Methods 2013;10:1209–1210. 

doi:10.1038/nmeth.2689. 314 

[10]  Napolitano F, Sirci F, Carrella D, di Bernardo D. Drug-set enrichment analysis: a 

novel tool to investigate drug mode of action. Bioinformatics 2016;32:235–241. 316 

doi:10.1093/bioinformatics/btv536. 

[11]  Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJC, 318 

et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat 

Genet 2019;51:1339–1348. doi:10.1038/s41588-019-0481-0. 320 

[12]  Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the 

deleteriousness of variants throughout the human genome. Nucleic Acids Res 322 

2019;47:D886–D894. doi:10.1093/nar/gky1016. 

[13]  Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep 324 

learning-based sequence model. Nat Methods 2015;12:931–934. 

doi:10.1038/nmeth.3547. 326 

[14]  Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited 

from Neanderthals. Nature 2020. doi:10.1038/s41586-020-2818-3. 328 

[15]  COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global 

initiative to elucidate the role of host genetic factors in susceptibility and severity of 330 

the SARS-CoV-2 virus pandemic. Eur J Hum Genet 2020;28:715–718. 

doi:10.1038/s41431-020-0636-6. 332 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 15 
 

[16]  Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. 

SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a 334 

Clinically Proven Protease Inhibitor. Cell 2020;181:271–280.e8. 

doi:10.1016/j.cell.2020.02.052. 336 

[17]  Huang JK, Carlin DE, Yu MK, Zhang W, Kreisberg JF, Tamayo P, et al. Systematic 

evaluation of molecular networks for discovery of disease genes. Cell Syst 338 

2018;6:484–495.e5. doi:10.1016/j.cels.2018.03.001. 

[18]  Gardinassi LG, Souza COS, Sales-Campos H, Fonseca SG. Immune and Metabolic 340 

Signatures of COVID-19 Revealed by Transcriptomics Data Reuse. Front Immunol 

2020;11:1636. doi:10.3389/fimmu.2020.01636. 342 

[19]  Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, et al. COVID-19 and 

comorbidities: Deleterious impact on infected patients. J Infect Public Health 2020. 344 

doi:10.1016/j.jiph.2020.07.014. 

[20]  Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small 346 

bowel. Rev Esp Enferm Dig 2020;112:383–388. doi:10.17235/reed.2020.7137/2020. 

[21]  Ajaimy M, Melamed ML. COVID-19 in Patients with Kidney Disease. Clin J Am Soc 348 

Nephrol 2020;15:1087–1089. doi:10.2215/CJN.09730620. 

[22]  Gao M, Wang Q, Wei J, Zhu Z, Li H. Severe Coronavirus disease 2019 pneumonia 350 

patients showed signs of aggravated renal impairment. J Clin Lab Anal 2020:e23535. 

doi:10.1002/jcla.23535. 352 

[23]  Pawlotsky J-M. COVID-19 and the liver-related deaths to come. Nat Rev 

Gastroenterol Hepatol 2020. doi:10.1038/s41575-020-0328-2. 354 

[24]  RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell 

JL, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. 356 

N Engl J Med 2020. doi:10.1056/NEJMoa2021436. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 16 
 

[25]  Ghazizadeh Z, Majd H, Richter M, Samuel R, Zekavat SM, Asgharian H, et al. 358 

Androgen Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe 

COVID-19 Symptoms in Men. BioRxiv 2020. doi:10.1101/2020.05.12.091082. 360 

[26]  Cadegiani FA, Goren A, Wambier CG. Spironolactone may provide protection from 

SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and 362 

renin-angiotensin-aldosterone system (RAAS). Med Hypotheses 2020;143:110112. 

doi:10.1016/j.mehy.2020.110112. 364 

[27]  Dumanlı GY, Dilken O, Ürkmez S. Use of Spironolactone in SARS-CoV-2 ARDS 

Patients. Turk J Anaesthesiol Reanim 2020;48:254–255. 366 

doi:10.5152/TJAR.2020.569. 

[28]  Petersen MW, Meyhoff TS, Helleberg M, Kjær M-BN, Granholm A, Hjortsø CJS, et 368 

al. Low-dose hydrocortisone in patients with COVID-19 and severe hypoxia (COVID 

STEROID) trial-Protocol and statistical analysis plan. Acta Anaesthesiol Scand 2020. 370 

doi:10.1111/aas.13673. 

[29]  Yen F-S, Wei JC-C, Yang Y-C, Hsu C-C, Hwu C-M. Respiratory outcomes of 372 

metformin use in patients with type 2 diabetes and chronic obstructive pulmonary 

disease. Sci Rep 2020;10:10298. doi:10.1038/s41598-020-67338-2. 374 

[30]  Bramante C, Ingraham N, Murray T, Marmor S, Hoversten S, Gronski J, et al. 

Observational Study of Metformin and Risk of Mortality in Patients Hospitalized with 376 

Covid-19. medRxiv 2020. doi:10.1101/2020.06.19.20135095. 

[31]  Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of 378 

COVID-19 pandemic? Int Rev Immunol 2020;39:153–162. 

doi:10.1080/08830185.2020.1756284. 380 

[32]  Keller A, Ludwig N, Fehlmann T, Kahraman M, Backes C, Kern F, et al. Low miR-

150-5p and miR-320b Expression Predicts Reduced Survival of COPD Patients. 382 

Cells 2019;8. doi:10.3390/cells8101162. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 17 
 

[33]  Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with 384 

severe coronavirus disease 2019 (COVID-19). Respir Med 2020;167:105941. 

doi:10.1016/j.rmed.2020.105941. 386 

[34]  Zhu J, Wang F-L, Wang H-B, Dong N, Zhu X-M, Wu Y, et al. TNF-α mRNA is 

negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced 388 

by high mobility group box-1 protein. Sci Rep 2017;7:12239. doi:10.1038/s41598-

017-12492-3. 390 

[35]  Ye Z, Li G, Kim C, Hu B, Jadhav RR, Weyand CM, et al. Regulation of miR-181a 

expression in T cell aging. Nat Commun 2018;9:3060. doi:10.1038/s41467-018-392 

05552-3. 

[36]  Osei ET, Florez-Sampedro L, Timens W, Postma DS, Heijink IH, Brandsma C-A. 394 

Unravelling the complexity of COPD by microRNAs: it’s a small world after all. Eur 

Respir J 2015;46:807–818. doi:10.1183/13993003.02139-2014. 396 

[37]  Mallick B, Ghosh Z, Chakrabarti J. MicroRNome analysis unravels the molecular 

basis of SARS infection in bronchoalveolar stem cells. PLoS One 2009;4:e7837. 398 

doi:10.1371/journal.pone.0007837. 

[38]  Khan MA-A-K, Sany MRU, Islam MS, Mehebub MS, Islam ABMMK. Epigenetic 400 

regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2 and SARS-

CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and 402 

distinct clinical characteristics of pandemic COVID-19. BioRxiv 2020. 

doi:10.1101/2020.05.06.081026. 404 

[39]  Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. 

COVID-19 in people with diabetes: understanding the reasons for worse outcomes. 406 

Lancet Diabetes Endocrinol 2020;8:782–792. doi:10.1016/S2213-8587(20)30238-2. 

[40]  Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause 408 

ketosis and ketoacidosis. Diabetes Obes Metab 2020. doi:10.1111/dom.14057. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 18 
 

[41]  Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K, et al. Association of the insulin 410 

resistance marker TyG index with the severity and mortality of COVID-19. 

Cardiovasc Diabetol 2020;19:58. doi:10.1186/s12933-020-01035-2. 412 

[42]  Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et 

al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients 414 

Hospitalized With COVID-19 in the New York City Area. JAMA 2020;323:2052–2059. 

doi:10.1001/jama.2020.6775. 416 

[43]  Yancy CW, Fonarow GC. Coronavirus Disease 2019 (COVID-19) and the Heart-Is 

Heart Failure the Next Chapter? JAMA Cardiol 2020. 418 

doi:10.1001/jamacardio.2020.3575. 

[44]  Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, et al. 420 

Histopathological findings and viral tropism in UK patients with severe fatal COVID-

19: a post-mortem study. Lancet Microbe 2020. doi:10.1016/S2666-5247(20)30115-422 

4. 

[45]  Chang TS, Ding Y, Freund MK, Johnson R, Schwarz T, Yabu JM, et al. Prior 424 

diagnoses and medications as risk factors for COVID-19 in a Los Angeles Health 

System. medRxiv 2020. doi:10.1101/2020.07.03.20145581. 426 

[46]  Kuo C-L, Pilling LC, Atkins JL, Masoli JAH, Delgado J, Kuchel GA, et al. APOE e4 

genotype predicts severe COVID-19 in the UK Biobank community cohort. J 428 

Gerontol A, Biol Sci Med Sci 2020. doi:10.1093/gerona/glaa131. 

[47]  Zeberg H, Paabo S. The major genetic risk factor for severe COVID-19 is inherited 430 

from Neandertals. BioRxiv 2020. doi:10.1101/2020.07.03.186296. 

[48]  Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): 432 

Regulatory Functions in Immunity, Development, Circadian Rhythm, and 

Metabolism. Nucl Receptor Res 2015;2. doi:10.11131/2015/101185. 434 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 19 
 

[49]  Haim-Vilmovsky L, Walker JA, Henriksson J, Miao Z, Natan E, Kar G, et al. Rora 

regulates activated T helper cells during inflammation. BioRxiv 2019. 436 

doi:10.1101/709998. 

[50]  Nejati Moharrami N, Bjørkøy Tande E, Ryan L, Espevik T, Boyartchuk V. RORα 438 

controls inflammatory state of human macrophages. PLoS One 2018;13:e0207374. 

doi:10.1371/journal.pone.0207374. 440 

[51]  de Almeida RMC, Thomas GL, Glazier JA. Transcriptogram analysis reveals 

relationship between viral titer and gene sets responses during Corona-virus 442 

infection. BioRxiv 2020. doi:10.1101/2020.06.16.155267. 

[52]  Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: 444 

emerging opportunities. Nat Rev Drug Discov 2015;14:543–560. 

doi:10.1038/nrd4626. 446 

[53]  Vuille-Dit-Bille RN, Liechty KW, Verrey F, Guglielmetti LC. SARS-CoV-2 receptor 

ACE2 gene expression in small intestine correlates with age. Amino Acids 2020. 448 

doi:10.1007/s00726-020-02870-z. 

[54]  Lian J, Jin X, Hao S, Jia H, Cai H, Zhang X, et al. Epidemiological, clinical, and 450 

virological characteristics of 465 hospitalized cases of coronavirus disease 2019 

(COVID-19) from Zhejiang province in China. Influenza Other Respi Viruses 2020. 452 

doi:10.1111/irv.12758. 

[55]  Jin X, Lian J-S, Hu J-H, Gao J, Zheng L, Zhang Y-M, et al. Epidemiological, clinical 454 

and virological characteristics of 74 cases of coronavirus-infected disease 2019 

(COVID-19) with gastrointestinal symptoms. Gut 2020;69:1002–1009. 456 

doi:10.1136/gutjnl-2020-320926. 

[56]  Khan M, Khan H, Khan S, Nawaz M. Epidemiological and clinical characteristics of 458 

coronavirus disease (COVID-19) cases at a screening clinic during the early 

outbreak period: a single-centre study. J Med Microbiol 2020. 460 

doi:10.1099/jmm.0.001231. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 20 
 

[57]  Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA 462 

update 2018. Nucleic Acids Res 2018;46:W60–W64. doi:10.1093/nar/gky311. 

[58]  Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING 464 

database in 2017: quality-controlled protein-protein association networks, made 

broadly accessible. Nucleic Acids Res 2017;45:D362–D368. 466 

doi:10.1093/nar/gkw937. 

[59]  Prieto C, De Las Rivas J. APID: agile protein interaction dataanalyzer. Nucleic Acids 468 

Res 2006;34:W298–302. doi:10.1093/nar/gkl128. 

[60]  Deelen P, van Dam S, Herkert JC, Karjalainen JM, Brugge H, Abbott KM, et al. 470 

Improving the diagnostic yield of exome- sequencing by predicting gene-phenotype 

associations using large-scale gene expression analysis. Nat Commun 472 

2019;10:2837. doi:10.1038/s41467-019-10649-4. 

[61]  Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The 474 

BioGRID interaction database: 2019 update. Nucleic Acids Res 2019;47:D529–D541. 

doi:10.1093/nar/gky1079. 476 

[62]  Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease 

genes by network-based boosting of genome-wide association data. Genome Res 478 

2011;21:1109–1121. doi:10.1101/gr.118992.110. 

[63]  Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration 480 

of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 

2009;4:1184–1191. doi:10.1038/nprot.2009.97. 482 

[64]  Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and 

annotation of genetic associations with FUMA. Nat Commun 2017;8:1826. 484 

doi:10.1038/s41467-017-01261-5. 

[65]  Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The GTEx 486 

Consortium atlas of genetic regulatory effects across human tissues. BioRxiv 2019. 

doi:10.1101/787903. 488 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 21 
 

[66]  Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The 

UCSC Genome Browser database: 2019 update. Nucleic Acids Res 2019;47:D853–490 

D858. doi:10.1093/nar/gky1095. 

[67]  Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The 492 

UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004;32:D493–6. 

doi:10.1093/nar/gkh103. 494 

[68]  Dayem Ullah AZ, Oscanoa J, Wang J, Nagano A, Lemoine NR, Chelala C. 

SNPnexus: assessing the functional relevance of genetic variation to facilitate the 496 

promise of precision medicine. Nucleic Acids Res 2018;46:W109–W113. 

doi:10.1093/nar/gky399. 498 

[69]  Li J, Han X, Wan Y, Zhang S, Zhao Y, Fan R, et al. TAM 2.0: tool for MicroRNA set 

analysis. Nucleic Acids Res 2018;46:W180–W185. doi:10.1093/nar/gky509. 500 

[70]  Durvasula A, Sankararaman S. A statistical model for reference-free inference of 

archaic local ancestry. PLoS Genet 2019;15:e1008175. 502 

doi:10.1371/journal.pgen.1008175. 

[71]  Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The 504 

genomic landscape of Neanderthal ancestry in present-day humans. Nature 

2014;507:354–357. doi:10.1038/nature12961. 506 

[72]  Pers TH, Timshel P, Hirschhorn JN. SNPsnap: a Web-based tool for identification 

and annotation of matched SNPs. Bioinformatics 2015;31:418–420. 508 

doi:10.1093/bioinformatics/btu655. 

[73]  Zheng Z, Huang D, Wang J, Zhao K, Zhou Y, Guo Z, et al. QTLbase: an integrative 510 

resource for quantitative trait loci across multiple human molecular phenotypes. 

Nucleic Acids Res 2020;48:D983–D991. doi:10.1093/nar/gkz888. 512 

 

 514 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


| Characterization of ACE2-network 

pg. 22 
 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.20220665doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220665
http://creativecommons.org/licenses/by-nd/4.0/


Figures and Supplementary file Legends  

Figures 

Figure 1: The ACE2-gene network. The genes that connect with ACE2 were extracted 
from six different gene-network databases and compiled together in one network. 

Figure 2: Tissues enriched based on ACE2-network gene expression for GTEx tissues. 
The genes from the ACE2-network show over-representation of tissues (x-axis) and -
log10 p-value (y-axis). The red bars are significant enrichments. 

Figure 3: Drug-set enrichment analysis. LEFT: The similarity of drugs based on pathways 
identified. RIGHT: Biological Processes identified based on drugs that interact with 
genes from the ACE2-network 

Figure 4: Domain distribution of PheWAS of ACE2-network genes. The ACE2 gene 
network associations are grouped based on domains (y-axis) and gene names (x-axis). 
The size of the data points reflects number of phenotypes surviving multiple testing 
correction. 

Figure 5: Enrichment of biological functions based on miRNA:SNP annotation. Using 
miRNAs annotation, over-represented biological processes are shown on y-axis and -
log10 pvalue on x-axis. 

Supplementary files 

Supplementary file1: File containing figures S1-S60 

Supplementary file2: Tables S1:S14. Tabular details of the list of genes, tissue 
enrichment, gene-drug interaction, drug-set enrichment, PheWAS of all genes, 
Significant traits of PheWAS, domain enrichment, miRNA enrichment, SNPs from the 
network for six COVID-19 phenotypes from COVID-19 Host Genetics Initiative – Freeze3 

Supplementary file3: Text file of all the SNPs within ±10kb of the genes and their 
genomic coordinates and allele frequency. 

• Column Headers:  
o Variation ID: <dbsnp rs#>  
o dbSNP: link to dbSNP, if known 
o Chromosome: Variant mapped chromosome location 
o Position: Variant start position on chromosome 
o REF Allele: Reference allele 
o ALT Allele (IUPAC): Observed allele 
o Minor Allele: Minor allele observed in global population, if known 
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o Minor Allele Frequency: Minor allele frequency observed in global 
population, if known 

o Contig: Variant mapped contig location 
o contigPosition: Variant start position on contig 
o Band: SNP cytogenetic location 

Supplementary file4: Text file of SNPs with their overlapping and nearest gene 
annotation using Ensembl GRCh37. 

• Column Headers: 
o Variation ID: <dbsnp rs#> 
o Chromosome: Variant mapped chromosome location 
o Position: Variant start position on chromosome 
o Overlapped Gene: Name of the gene (HGNC system) to which the variant 

is overlapped 
o Type: Gene type, e.g., protein coding, miRNA, non coding, Pseudogene, 

snoRNA, lincRNA etc. 
o Annotation: Summary of whether the variant overlapped with the coding, 

intronic or untranslated regions of the various transcript isoforms of the 
gene, as annotated from Ensembl gene system. 

o Nearest Upstream Gene: If variant is not overlapped with any gene, then 
the gene whose end position is nearest to the variant on the left 
(considering the alignment of genes on the positive strand as left-to-right) 

o Type of Nearest Upstream Gene: Gene type, e.g., protein coding, miRNA, 
non coding, Pseudogene, snoRNA, lincRNA etc. 

o Distance to Nearest Upstream Gene: distance from the end position of the 
nearest upstream gene. 

o Nearest Downstream Gene: If variant is not overlapped with any gene, 
then the gene whose start position is nearest to the variant on the right 
(considering the alignment of genes on the positive strand as left-to-right) 

o Type of Nearest Downstream Gene: Gene type, e.g., protein coding, 
miRNA, non coding, Pseudogene, snoRNA, lincRNA etc. 

o Distance to Nearest Downstream Gene: distance from the start position of 
the nearest downstream gene. 

 

Supplementary file5: Text file of all the SNPs with CADD (Combined Annotation 
Dependent Depletion) scores >10 

• Column Headers: 
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o Variation ID: <dbsnp rs#> 
o Chromosome: Chromosome name 
o Position: Variant start position on chromosome 
o Variant: <reference allele,"/",observed allele> as reported in the tool's 

genome-wide score 
o PHRED: PHRED-like (-10*log10(rank/total)) scaled CADD-score ranking a 

variant relative to all possible substitutions of the human genome. A 
score≥10 indicates that it is predicted to be in the 10% most deleterious 
substitutions that you can do to the human genome, a score≥20 indicates 
the 1% most deleterious and so on. 

Supplementary file6: Text file of all the SNPs with DeepSEA (deep learning based 
algorithm framework) functional scores > 0.5, which represents atleast 50% probability 
to have regulatory effect 

• Column Headers:  
o Variation ID: <dbsnp rs#>  
o Chromosome: Chromosome name 
o Position: Variant start position in the chromosome 
o Variant: <reference allele,"/",observed allele> as reported in the tool's 

genome-wide score 
o eQTL Probability: The probability of the variant being a eQTL variant given 

by functional variant prioritization classifier. 
o GWAS Probability: The probability of the variant being a trait-associated 

(GWAS) variant given by functional variant prioritization classifier. 
o HGMD Probability: The probability of the variant being a inherited disease-

associated (HGMD) variant given by functional variant prioritization 
classifier. 

o Functional Significance Score: A measure in the range [0-1] depicting the 
significance of magnitude of predicted chromatin effect and evolutionary 
conservation. Lower score indicates higher likelihood of functional 
significance of the variant. 
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Figure 1: The ACE2-gene network. The genes that connect with ACE2 were extracted from 
six different gene-network databases and compiled together in one network. 
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Figure 2: Tissues enriched based on ACE2-network gene expression for GTEx tissues. The 
genes from the ACE2-network show over-representation of tissues (x-axis) and -log10 p-value 
(y-axis). The red bars are significant enrichments. 
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Figure 3: Drug-set enrichment analysis. LEFT: The similarity of drugs based on pathways 
identified. RIGHT: Biological Processes identified based on drugs that interact with genes 
from the ACE2-network.  
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Figure 4: Domain distribution of PheWAS of ACE2-network genes. The ACE2 gene network associations 
are grouped based on domains (y-axis) and gene names (x-axis). The size of the data points reflects 
number of phenotypes surviving multiple testing correction. 
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Figure 5: Enrichment of biological functions based on miRNA:SNP annotation. Using 
miRNAs annotation, over-represented biological processes are shown on y-axis and -log10 
pvalue on x-axis.   
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