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Metabolic modeling provides the means to define metabolic processes at a systems level;
however, genome-scale metabolic models often remain incomplete in their description
of metabolic networks and may include reactions that are experimentally unverified. This
shortcoming is exacerbated in reconstructed models of newly isolated algal species, as
there may be little to no biochemical evidence available for the metabolism of such iso-
lates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides
an efficient, high-throughput method to functionally define cellular metabolic activities in
response to a large array of entry metabolites.The platform can experimentally verify many
of the unverified reactions in a network model as well as identify missing or new reactions
in the reconstructed metabolic model. The PM technology has been used for metabolic
phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for
the phenotyping of microalgae. Here, we introduce the use of PM assays in a system-
atic way to the study of microalgae, applying it specifically to the green microalgal model
species Chlamydomonas reinhardtii. The results obtained in this study validate a number
of existing annotated metabolic reactions and identify a number of novel and unexpected
metabolites.The obtained information was used to expand and refine the existing COBRA-
based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to
the network, and the effects of these additions on flux distribution within the network are
described. The novel reactions include the support of metabolism by a number of D-amino
acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular
respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed
here can be used as a foundation to functionally profile other microalgae such as known
microalgae mutants and novel isolates.

Keywords: microalgae, Chlamydomonas reinhardtii, flux balance analysis, phenotype microarray, metabolic
network refinement

INTRODUCTION
Optimization of algal metabolism toward improved bioprod-
uct production while maintaining strain robustness remains a
challenge that requires experimental strategies informed through
systems-level analyses of metabolism. The use of metabolic net-
work models can guide the development of optimization strategies
that would be otherwise difficult through rational designs (Ober-
hardt et al., 2009; Schmidt et al., 2010; Koskimaki et al., 2013;
Koussa et al., 2014). While an increasing number of algal species
are being isolated and sequenced for biofuel or other applications,
to date, there are only a handful of reconstructed algal networks
available (Koussa et al., 2014). A major obstacle in the reconstruc-
tion of high-quality network models for algae remains hinged
on the inability to obtain rapid and high-throughput metabolic
phenotypic data to guide and validate reconstruction efforts.

One potential high-throughput phenotypic analysis technol-
ogy is the Biolog OmniLog® phenotype microarray (PM) (Biolog,
Hayward, CA, USA) (Bochner et al., 2001; Bochner, 2003, 2009).

By assaying cellular metabolism in response to thousands of
metabolites, signaling molecules, and effector molecules (as well as
osmolites), the Biolog PM assays have greatly boosted functional
metabolic profiling by providing insight into function, metabo-
lism, and environmental sensitivity (Bochner et al., 2001; Bochner,
2003, 2009). Biolog PM assays rely on the measurement of metabo-
lite utilization of cells in 96-well microplates. Each well contains
different nutrients, metabolites, and pH and osmolarity solutes.
Other bioactive molecules such as antibiotics and hormones may
also be assayed. This utilization is assessed and measured in the
form of cell respiration determined by the amount of color devel-
opment produced by the NADH reduction of a tetrazolium-based
redox dye (Bochner et al., 2001; Bochner, 2003, 2009). Plates can be
monitored automatically over time with the OmniLog platform.
A common set of 20 96-well microplates are designed to measure
carbon, nitrogen, sulfur, phosphorus utilization phenotypes, along
with osmotic/ion, and pH effects. This high-throughput and stan-
dardized approach has the ability to provide a quick method for
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the phenotypic comparison of different strains and organisms in
a convenient manner leading to insights into the metabolic state
of the cell. While the PM technology has been used for metabolic
phenotyping of various microbial species including bacteria and
fungi, it has not been reported for the phenotyping of microalgae.
Likewise, the technology has been successfully used for verification
and expansion of a number of existing microbial metabolic net-
work models (Bochner et al., 2001; Bochner, 2003, 2009; Bartell
et al., 2014), yet its use for improvement of microalgal models
remains unreported.

The goal of the present study is to establish a reliable method
for characterizing metabolic phenotypes of microalgae that can
be used to expand existing network models or guide the recon-
struction of new algal metabolic models. We present the imple-
mentation of the PM platform for metabolic phenotyping of
microalgae using Chlamydomonas reinhardtii as a model organism
then expand a well-curated existing metabolic network model of
C. reinhardtii accordingly.

MATERIALS AND METHODS
PHENOTYPE MICROARRAY EXPERIMENTS
Phenotyping was done using standard Biolog assay plates and
using the OmniLog instrument. In total 190 substrate utilization
assays for carbon sources (PM01 and PM02), 95 substrate utiliza-
tion assays for nitrogen sources (PM03), 59 nutrient utilization
assays for phosphorus sources, and 35 nutrient utilization assays
for sulfur sources (PM04), along with peptide nitrogen sources
(PM06–08) were utilized. A defined tris-acetate-phosphate (TAP)
medium (Gorman and Levine, 1965) containing 0.1% tetrazolium
violet dye “D” (Biolog, Hayward, CA, USA) was used for the PM
tests. The carbon, nitrogen, phosphorus, or sulfur component of
the media was omitted from the defined medium when applied to
the respective PM microplates that tested for each of those sources.

Chlamydomonas reinhardtii strain CC-503 was obtained from
the Chlamydomonas Resource Center at the University of Min-
nesota, USA. Cells were grown in fresh TAP media to mid-log
phase, then spun down at 2,000× g for 10 min, and then resus-
pended in fresh media to a final concentration of 1× 106 cells
before inoculation into Biolog’s 96-well plates. A 100 µL aliquot
of cell-containing media was inoculated into each well before the
plates were inserted into the OmniLog system. A final concentra-
tion of 400 µL/mL timentin® (GlaxoSmithKline, New Zealand)
was used to inhibit bacterial growth in all plates. In addition,
ampicillin and kanamycin were used at 50–100 µg/ml occasion-
ally. Bacterial contamination was monitored by streaking cells on
yeast extract/peptone plates and performing gram stains before
and after Biolog assays. All microplates were incubated at 30°C for
up to 7 days and the dye color change (in the form of absorbance)
was read with the OmniLog system every 15 min. As the OmniLog
instrument does not provide a source of continuous light during
incubation, the algae is assumed to be carrying out heterotrophic
respiration.

DATA ANALYSIS
The Biolog PM data analysis was carried out using an OmniLog
phenotype microarray (OPM) software package (Vaas et al., 2012,
2013) that runs within the R software environment. The raw

kinetic data were exported as CSV files to the OPM package and
then the biological information was added as metadata (e.g., strain
designation, growth media, temperature, etc.). Kinetic curves were
plotted from the raw data in the form of xy and level plots, and a
statistical analysis was carried out to visualize the metabolic prop-
erties and generate OmniLog values. An OmniLog value or the
curve parameter“A”simply lists the maximum height of the growth
curve.

Duplicate assays were carried out for all the plates that were
tested to assess reproducibility of the data. An assay was consid-
ered positive when the absorbance (OmniLog value) was positive
after subtraction from the negative control well and the respec-
tive blank well. This summation is a representation of the abiotic
reaction of the dye with the media in the presence of the tested
compound.

IDENTIFICATION OF REACTIONS AND GENES ASSOCIATED WITH NEW
METABOLITES
Gene to reaction associations for compounds were established as
follows: assignment of a compound’s enzyme commission number
(EC) and relevant reactions were performed by searching KEGG1

and MetaCyc2. The genomic evidence for each reaction was then
recovered by using the identified EC numbers as a search basis in
multiple available annotation resources from available algal anno-
tation databases, such as the Joint Genome Institute (JGI), Phyto-
zome3, and peer-reviewed publications. When the query returned
no genomic evidence for a given EC number, the relevant asso-
ciated proteins in other organisms were identified then a profile-
based search was carried out using the NCBI PSI-BLAST server
with default settings and using non-redundant protein sequences
(nr) in C. reinhardtii (taxid: 3055). PSI-BLAST hits with E values
of ≤0.05 were manually curated for relevance to the searched EC
number through either the evaluation of their described enzymatic
activity, or by querying those BLAST hits through EMBL-EBI
Pfam4, or InterPro5 protein domain prediction servers.

MODEL REFINEMENT AND EVALUATION
Identified reactions with their associated genes were added to
iRC1080 using the COBRA Toolbox functions add Reaction and
Change Gene Association. In addition, transport reactions for the
new metabolites were incorporated into the model as transport by
passive diffusion from the extracellular medium into the cytosol.
The behavior of the new resultant model, iBD1106, was tested by
carrying out flux balance analyses under light and dark condi-
tions for the maximization of biomass as the objective function.
The comparison of the two models was based on reported shadow
prices (sensitivity of the objective function to changes in system
variables) of the metabolites. The Biomass function was defined
previously (Chang et al., 2011) for growth under dark and light
conditions. The revised model can be found in the supplementary
file iBD1106.xml in an SBML file format.

1http://www.genome.jp/kegg/
2http://metacyc.org/
3http://www.phytozome.net
4http://pfam.xfam.org/search
5http://www.ebi.ac.uk/interpro/
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RESULTS
PHENOTYPE MICROARRAY SCREENING OF MODEL ALGA
CHLAMYDOMONAS REINHARDTII
To implement the use of the PM platform for algal metabolic
phenotyping, we used C. reinhardtii as a model. The single-cell
green alga C. reinhardtii is a model organism that has been widely
used for basic and applied biological research. Its genome was
sequenced and publically released by JGI in 2007 (Merchant et al.,
2007) and genome-scale models of its metabolism have been

reconstructed (May et al., 2009; Chang et al., 2011; Dal’Molin et al.,
2011). The ability to grow phototrophically or heterotrophically,
along with rapid growth and scalability, are features that make this
alga an attractive model system for algal-based biofuel studies.

Our pipeline (Figure 1) integrates the high-throughput PM
assays, applied to the alga of interest, with genomic searches to
provide experimental evidence that can lead to the refinement
of an existing metabolic network model. The pipeline may also
be applied for a new reconstruction if an existing model is not

FIGURE 1 |The pipeline for genome-scale metabolic network
refinement using PM data. After a new compound tests positive in a PM
assay, its enzyme commission number (EC), reaction, and pathway are
identified from available databases, e.g., KEGG and MetaCyc. Genomic
evidence is then extracted directly from genomic and annotation
resources when available and constitutes a link between genotype and

phenotype. When direct genomic evidence is unavailable, the protein
sequence is identified from the EC numbers and through the protein
sequence, genetic evidence is identified via PSI-BLAST. The reconstructed
metabolic network is then refined based on newly identified compounds,
but only after a quality control step. The quality control step entails
querying the protein domains using relevant databases.
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available. The PM assays test the ability of the alga to utilize vari-
ous carbon, nitrogen, sulfur, and phosphorus sources in a minimal
medium. When a new compound tests positive for utilization, the
compound’s relevant reaction profiles are defined using metabolic
knowledge bases such as KEGG (see text footnote 1) or MetaCyc
(see text footnote 2). This step defines all potential reactions and
pathways that can be associated with a metabolite to provide EC
numbers. The next step is to find supporting genetic evidence from
genetic databases specific to the alga, such as databases from the
JGI, Phytozome (see text footnote 3), or peer-reviewed publica-
tions. If genetic evidence is available, the reactions and metabolites
are added to the model to expand and refine the model. If, on the
other hand, genomic evidence is not found in support of the EC
number, a profile-based search, such as PSI-BLAST, can be per-
formed to identify candidate genes associated with the reaction.
The results of such searches are then manually evaluated; those
passing this QC step are added to the network model. In excep-
tional cases, if genes are not identified for reactions but compelling
biochemical evidence exists, reactions may be provisionally added
to the network pending future investigations.

IMPLEMENTATION AND VALIDATION
We optimized the PM assays for metabolic profiling of C. rein-
hardtii by modifying the standard Biolog protocol with respect to
inoculum concentration, type of dye, and pre-inoculation growth
conditions (Materials and Methods). We used plates 1–4 and 6–8
of the PM platform, which provide a range of test compounds
including utilization of carbon, nitrogen, sulfur, phosphorus, and
a variety of di- and tripeptides. The summary kinetics of selected
plates (PM01 and PM03) are shown in Figure 2. Splined-based
curve fitting was implemented to extract the curve parameters
[the lag phase (λ), the respiration (or growth rate µ or the steep-
ness of the slope), the maximum cell respiration “A,” and the area
under the curve (AUC)]. The maximum cell respiration “A” of the
blank and negative controls of each microwell plate (which rep-
resents abiotic reactivity of the dye with the medium and the test
metabolite) were used as background subtraction values to identify
positive metabolites. The“xy-plots”show the respiration measure-
ments over time mapped to the assay 96-well plates, in terms of the
raw measurements values (y-axis) and time (x-axis). In addition,
the data was transformed to a heat map format to allow for a quick
comparative overview of the multitude of the kinetic data. The
heat map presents the kinetic values with different colors (varied
from light yellow to dark orange or brownish; Figures 2B,D).

To assess the level of combined experimental and biological
noise and systematic errors and biases from Biolog’s PM measure-
ments, the data from two independent replicate experiments were
plotted against one another (Figure 3). This figure visually assesses
the reproducibility of the PM data obtained from PM01–04 and
PM10 plates. Figure 3 shows that the majority of the data were
identical as they fall on the 45° line with only a few outliers. This
plot confirms the quality and reproducibility of the experiments
for this alga.

IDENTIFICATION OF NEW METABOLITES
We compared the number of metabolites that can be identi-
fied by Biolog’s PM (662 chemical compounds from seven plates

{PM01–PM04, and PM06–PM08}) with the iRC1080 metabolites
and the metabolites measured using gas chromatography time-
of-flight (GC-TOF) (Bölling and Fiehn, 2005) (Figure 4). Only
six metabolites were overlapping among the three sets (adenine,
glycerol, glycine, myo-Inositol, putrescine, and uracil), while 149
were common between iRC1080 and the Biolog set under investi-
gation. This shows that while each technology/tool has its strength
in metabolic profiling research, the Biolog set can be a significant
source of new metabolic information.

After subtracting the background signal, we observed acetic
acid as the only positive assay for carbon utilization (in PM01
plate). Detection of acetate as the only carbon source from this
plate is consistent with the Chlamydomonas literature (e.g., Harris,
2009) and provides evidence for specificity of our assays. Four pos-
itive reactions for sulfur utilization (sulfate, thiosulfate, tetrathion-
ate, d,l-Lipoamide) and four positive assays for phosphorus uti-
lization (thiophosphate, dithiophosphate, d-3-phospho-glyceric
acid and cysteamine-S-phosphate) were detected. C. reinhardtii
showed positive results for several nitrogen sources including
both l-amino and d-amino acids, and less common amino acids
such as l-homoserine, l-pyroglutamic acid, methylamine, eth-
ylamine, ethanolamine, and d,l-α-amino-butyric acid. Further-
more, a large number of dipeptides and a few tripeptides assayed
positive (Table 1).

Altogether, we identified 128 new metabolites from the PM
data that were not present in our iRC1080 metabolic model:
eight d-amino acids, tetrathionate, thiophosphate, dithiophos-
phate, cysteamine-S-phosphate, l-pyroglutamic acid, and ethyl-
amine, 108 dipeptides, and 5 tripeptides. We note that sequence
specificity was observed for utilization of both di- and tripeptides.
The identified metabolites are summarized in Table 1 and Table
S2 in Supplementary Material.

We searched KEGG and MetaCyc to define all possible reactions
and EC numbers associated with the identified new metabo-
lites. Forty-nine unique EC numbers were associated with the
newly identified metabolites. Table S2 in Supplementary Material
includes pathways, reactions, EC numbers, proteins, and Chlamy-
domonas annotation sources for each of the metabolites. Five
different sources were used to obtain genomic evidence for the
reactions. These included Phytozome Version 10.0.2 (Goodstein
et al., 2012), JGI Version 4 (Ghamsari et al., 2011), AUGUSTUS 5.0
and 5.2 (Chang et al., 2011), annotations from Manichaikul et al.
(2009), and KEGG (Kanehisa et al., 2014). Out of 49 searched
ECs, 15 transcripts could be found with annotations matching
the searched ECs (Table 1; Tables S1 and S2 in Supplementary
Material).

The metabolic reactions and their respective EC numbers for
which no genomic evidence was found (using the aforementioned
resources) were then entered into the Universal Protein Resource
website (UniProt)6 (Apweiler et al., 2004; Consortium, 2014).
There, sequences that are related to the metabolites but are from
other organisms were identified. Those sequences were then used
to run Position-Specific Iterated BLAST (PSI-BLAST queries)7

6http://www.uniprot.org/
7https://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 2 | Phenotypic microarray profiling selection of C. reinhardtii .
Respiration (or growth) xy -plots and level plots of the PM01 [Carbon sources;
(A,B)] and PM03 [Nitrogen sources; (C,D)] assay plates are shown. The figure
is an 8×12 array where each cell represents a well plate and, thus, a given
metabolite or growth environment. Within each cell or well representation,
curves represent dye conversion by reduction (y -axis) as a function of time
(x -axis). PM respiration curves from the CC-503 and blank are both shown in

each cell and are indicated by color (teal color represents blank and purple
color represents CC-503). The level-plot represents each respiration curve as a
thin horizontal line changing color (or remaining unchanged) over time.
Shading color changes from light yellow to dark orange or brownish based on
the level of respiration measurement values, with the brownish color
representing higher respiration values. Metabolites utilized by C. reinhardtii
(CC-503) and the blank plates are shown.
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FIGURE 3 | Reproducibility of PM tests. OmniLog values were collected
over a 168 h period and the maximum values were plotted for two replicate
studies. Each axis represents the maximum OmniLog values for each study
(the x -axis being one replicate study and the y -axis another). Identical
values fall on a 45° line; there are a few deviating test values (some
deviations were by more than 50 units). Each point represents a single
maximum OmniLog value.

FIGURE 4 | Venn diagram of metabolites. The Venn diagram is a
representation of metabolites common to Biolog’s PM plates, the iRC1080
metabolic model and Gas Chromatography time-of-flight (GC-TOF)
experiments. Each circle indicates the total number of metabolites that exists
in each respective method of study, while the overlapping regions represent
the number of metabolites shared between those methods of study. The
iRC1080 metabolic model contains a total of 1,068 unique metabolites, the
GC-TOF identified a total of 77 metabolites (Bölling and Fiehn, 2005), while
there are a total of 662 metabolites tested using Biolog’s PM plates.

Table 1 | List of identified positive substrate utilization metabolites

(C, P, S, N) not present in the iRC1080 model.

Biolog

chemical

ECa Gene annotation PSI-BLAST

Cysteamine-S-

phosphate

3.1.3.1 JLM_162926b,c,d,e

Tetrathionate 1.8.2.2 Insignificant E-value

1.8.5.2 Insignificant E-value

D-Alanine 1.4.1.1 XP_001700222.1

1.5.1.22 Failed manual QC

2.1.2.7 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

2.3.2.10 Insignificant E-value

2.3.2.14 Insignificant E-value

2.3.2.16 Insignificant E-value

2.3.2.17 Insignificant E-value

2.3.2.18 Insignificant E-value

2.6.1.21 Failed manual QC

3.4.13.22 XP_001698572.1,

XP_001693532.1,

XP_001701890.1,

XP_001700930.1

3.4.16.4 Chlre2_kg.scaffold_

14000039b,c,d

3.4.17.8 Failed manual QC

3.4.17.13 Insignificant E-value

3.4.17.14 Insignificant E-value

4.5.1.2 Insignificant E-value

6.1.1.13 Failed manual QC

6.1.2.1 Failed manual QC

6.3.2.4 au.g14655_t1b,c,d

6.3.2.10 Failed manual QC

6.3.2.16 Insignificant E-value

6.3.2.35 Insignificant E-value

D-Asparagine 1.4.5.1 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

3.1.1.96 Insignificant E-value

2.3.1.36 Insignificant E-value

1.4.99.1 XP_001692123.1

3.5.1.77 e_gwW.1.243.1b,c

3.5.1.81 Insignificant E-value

5.1.1.10 Failed manual QC

D-Aspartic acid 6.3.1.12 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

D-Glutamic

acid

1.4.3.7 Insignificant E-value

1.4.3.3 Insignificant E-value

D-Lysine 5.4.3.4 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

6.3.2.37 Failed manual QC

(Continued)
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Table 1 | Continued

Biolog

chemical

ECa Gene annotation PSI-BLAST

D-Serine 2.7.11.8 Insignificant E-value

2.7.11.17 Cre12.g486350.

t1.3b,c,d,e

3.4.21.78 Failed manual QC

3.4.21.104 Failed manual QC

4.3.1.18 g6244.t1e Failed manual QC

6.3.2.35 Insignificant E-value

6.3.3.5 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

D-Valine 1.21.3.1 Failed manual QC

6.3.2.26 Failed manual QC

1.4.3.3 Cre02.g096350.t1.3f

L-Pyroglutamic

acid

Thiophosphate

Dithiophosphate

Ethylamine 6.3.1.6

D,L-α-Amino-

butyric

acid

2.1.1.49 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

Di-peptide 3.4.13.18 Cre02.g078650.t1.3b

Tri-peptide 3.4.11.4 Cre16.g675350.t1.3b

aReaction was not include if no gene was identified.
bPhytozome version 10.0.2 (http://phytozome.jgi.doe.gov/pz/portal.html#!info?

alias=Org_Creinhardtii).
cJGI version 4 (Ghamsari et al., 2011).
dAugustus version 5 (Chang et al., 2011).
eKEGG (http://www.genome.jp/kegg/kegg1.html).
fJGI version 3.1 (Manichaikul et al., 2009).

from the NCBI website to identify homologous sequences in C.
reinhardtii. Only the sequences that produced significant align-
ments were considered; specifically, results with an E-value below
0.005 were retained. The final step before integrating the genes
from the PSI-BLAST results with the iRC1080 metabolic model
was to check whether the genes’ relevant reactions related to the
new metabolites; only hits with relevant annotated enzymatic reac-
tions were kept. The PSI-BLAST yielded four additional transcripts
(Table 1; Table S2 in Supplementary Material).

MODEL REFINEMENT
The metabolites identified as new to the network were catego-
rized and annotated in the model based on their utilization into
nitrogen sources, phosphate sources, and sulfur sources. The nitro-
gen source metabolites were 8 d-amino acids, 2 l-amino acids,
108 dipeptides, and 5 tripeptides. The phosphate sources were
cysteamine-S-phosphate, thiophosphate, and dithiophosphate.

Table 2 | Contents of iRC1080 and iBD1106.

Model Reactions Metabolites Genes

iRC1080 2,191 1,706 1,086

iBD1106 2,445 1,959 1,106

Table 3 | Summery of new reactions in iBD1106.

Category or class of reactions Number of reactions

Amino acids 20

Dipeptides 108

Tripeptides 5

Transport reaction 120

The only new sulfur source metabolite was tetrathionate. No
genomic evidence for tetrathionate was found in databases and
its PSI-BLAST E values did not pass the threshold of 0.005, thus,
no reaction for this metabolite was added to the model. In addi-
tion, l-pyroglutamic acid, thiophosphate, dithiophosphate, and
ethylamine were not added to model due to lack of genomic
evidence.

To expand the existing model, reactions associated with the
new metabolites and the genes associated with the new reactions
were added to iRC1080 model to generate an expanded network,
iBD1106. iBD1106 accounts for 2,445 reactions, 1,959 metabo-
lites, and 1,106 genes (Table 2). The new 254 added reactions are
distributed as follows: 20 amino acid reactions, 108 di-peptide
reactions, 5 tri-peptide reactions, and 120 transport reactions
(Table 3). The new 20 amino acids reactions were associated with
4 new genes (Cre02.g096350.t1.3, au.g14655_t1, e_gwW.1.243.1,
Cre12.g486350.t1.3). The d-amino acids are oxidized into ammo-
nium and a 2-oxo-carboxylate via the following reaction with EC
number of 1.4.3.3 and associated gene Cre02.g096350.t1.3:

D−amino acid+O2+H2O→ NH4+H2O2+2−oxo carboxylate
(1)

Equation 1 is a general reaction for all d-amino acids. However,
some d-amino acids contribute to different reactions in addition
to their own oxidation reactions. For example, d-serine reacts with
ATP producing ADP and phospho-d-serine. Moreover, the chiral-
ity of d-amino acids can also be inverted into L forms and vise
versa through annotated racemases (Table S2 in Supplementary
Material).

Four genes identified by PSI-BLAST were added into the
model and account for the d-alanine transaminase reaction
(Eq. 2); XP_001698572.1, XP_001693532.1, XP_001701890.1,
XP_001700930.1:

2 −oxoglutarate+D−alanine↔ D−glutamate+pyruvate (2)

In addition, XP_001692123.1, a PSI-BLAST identified gene, was
associated with the oxidation of d-asparagine reaction as shown
in Eq. 1.
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A total of 113 added new reactions account for the hydrol-
ysis of dipeptides and tripeptides. The hydrolysis of dipep-
tides and tripeptides are associated with two genes, one
for dipeptides (Cre02.g078650.t1.3), and one for tripeptides
(Cre16.g675350.t1.3). The dipeptides and tripeptides are decom-
posed into their unit l-amino acids, for instance, Leu–Pro
decomposes into l-leucine and l-proline.

With respect to sources of phosphorus, a reaction for hydroly-
sis of cysteamine-S-phosphate into cysteamine and phosphate was
added according to the following reaction that is associated with
the gene JLM_162926:

Cysteamine− S−Phosphate+H2O→ Cysteamine+Phosphate
(3)

In order to specify the cellular compartment where the new
reactions occur, we used the WoLF PSORT tool (Horton et al.,
2007)8 and the results reported by Ghamsari et al. (2011). By
providing protein sequences that are associated with the new reac-
tions, WoLF PSORT predicted that the new reactions are localized
to the cytosol.

In metabolic models, incomplete biochemical information may
create gaps that form discontinuity in the network. In order
to identify if any new gaps were introduced in the new model,
gapFind, a COBRA command that lists root gaps, was used. The
root gaps are defined as metabolites that cannot be produced in the
metabolic model (Becker et al., 2007; Schellenberger et al., 2011).
Using this command we found that both iRC1080 and iBD1106
models contain the same 91 root gaps. This indicates that the addi-
tion of the new metabolites and their associated reactions, did not
introduce any new gaps. We note that transport reactions for the
import of new metabolites into the cytosol were added.

The metabolic behavior of iBD1106 was tested under light
conditions (no acetate) and dark conditions (with acetate) by car-
rying out flux balance analyses with the biomass as the maximized
objective function. To assess the contribution that each metabolite
makes to the set objective function, shadow prices for all metabo-
lites were obtained (Tables S3 and S4 in Supplementary Material).
The shadow price of a metabolite is defined as the change in an
objective function with respect to flux changes of a metabolite
(Varma et al., 1993; Orth et al., 2010). Shadow price allows the
determination of whether a metabolite is in “excess” or is “lim-
iting” the objective function, e.g., biomass production. Negative
values are for metabolites that will decrease the objective function,
positive values are for those that will increase the objective func-
tion, and values of 0 are for metabolites that will have no effect on
the objective function. The comparison of shadow prices between
iBD1106 and iRC1080 indicates that, for most metabolites, a large
change is not observed (Figure 5; Tables S3–S5 in Supplemen-
tary Material); however, differences are observed in 105 and 70
cases under light and dark growth, respectively. Instances of such
metabolites are provided in Table 4.

DISCUSSION
Algae are a group of diverse photosynthetic eukaryotes, which
are polyphyletic in origin (Pröschold and Leliaert, 2007). Algal

8http://www.genscript.com/psort/wolf_psort.html

FIGURE 5 | Shadow prices of metabolites in iRC1080 and iBD1106
under different conditions for biomass maximization. Each circle on the
“radar plots” corresponds to a shadow price value, while each line
extending from the center of a plot indicates a metabolite. (A) shows the
different shadow prices and subsequently metabolic behaviors of iRC1080
and iBD1106 under light growth conditions, while (B) shows the different
metabolic behaviors of metabolites of iRC1080 and iBD1106 under dark
growth conditions.

lineages include the viridiplantae, which the green algae (or
Chlorophyta) belong to; stramenopiles that include brown,
golden, and yellow algae and diatoms; rhodophyta or the red algae;
and photosynthetic alveolates that include dinoflagelates (Barton
et al., 2007). Given the evolutionary distances between these lin-
eages, significant differences in genome size and coding potential,
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Table 4 | Examples of significant shadow prices for iRC1080 and iBD1106.

Growth condition Metabolite Name iRC1080 iBD1106

Light 4r5au 4-(1-d-Ribitylamino)-5-aminouracil 0 0.168

5aprbu 5-Amino-6-(5′-phosphoribitylamino)uracil −0.009 0.158

pa1819Z18111Z 1-(9Z)-octadecenoyl,2-(11Z)-octadecenoyl-sn-glycerol3-phosphate −0.009 −0.65

Dark 4abut 4-aminobutanoate 0.18 −0.05

environmental niche, and metabolic properties can be expected.
Members of green algae may be aquatic or soil organisms with
mixotrophic or autotrophic modes of metabolism (Pröschold and
Leliaert, 2007). In addition, microalgae may or may not require
co-factors for their growth. Studies on microalgal growth require-
ments have indicated that more than half require cobalamin (vita-
mine B12), while 22% require thiamine and 5% need biotin (Croft
et al., 2006). Interestingly, these requirements are not reflected in
algal phylogeny (Helliwell et al., 2011).

Genomic approaches powered by next-generation sequencing
technologies help to improve the understanding of the encoded
algal metabolic potential; however, the full characterization of
algal metabolism requires phenotypic data. For instance, the
metabolome of C. reinhardtii has been studied under a num-
ber of conditions, including sulfur deprivation (Matthew et al.,
2009; Shu and Hu, 2012; Aksoy et al., 2013), nitrogen deprivation
(Blaby et al., 2013; Courant et al., 2013), and response to irradiance
(Mettler et al., 2014) to provide insight into regulatory and meta-
bolic responses of the species to environmental perturbations. In
addition, transcriptomics, proteomics, and metabolomics studies
have guided non-targeted profiling approaches for the detection
and quantification of metabolites. Those non-targeted profiling
approaches have included nuclear magnetic resonance (NMR),
liquid chromatography mass spectrometry (LC-MS/MS), and gas
chromatography mass spectrometry (GC/MS) (Veyel et al., 2014;
Wase et al., 2014). The ability to study functional responses and
phenotypes has been classically limited to targeted serial stud-
ies that usually employ mutagenesis, genetic knockouts, genetic
over-expression, and physiological studies (Bochner, 2003; Dent
et al., 2005; Morgan et al., 2009; Tshikhudo et al., 2013; Greetham,
2014). The wealth of phenotypic information gained from the PM
technology, as demonstrated in this study, can help provide more
complete systems-level knowledge when combined with other
omics data, and help develop and refine metabolic models.

Genome-scale metabolic networks provide predicted genotype-
phenotype relationships through metabolic flux optimization-
based approaches. We previously reconstructed a genome-scale
model for C. reinhardtii (iRC1080) (Chang et al., 2011) based
on literature evidence (entailing ~250 sources), structurally veri-
fied genomic evidence, and predicted gene function and cellular
localization information. This model has 1,706 metabolites with
2,191 reactions. Through the pipeline that we have described in
this work, we were able to expand the network significantly to
include 1,959 metabolites, 2,445 reactions, and 1,106 associated
genes. A clear advantage that the PM provides is functional assays
for entry metabolites to inform model refinement. Whereas mass
spectrometry approaches give information on intermediate- and

final-level metabolites, PM assays have the unique capability, due
to the accounting for entry-level metabolites, to inform more com-
plete models from the start of metabolic pathways. PM assays and
mass spectrometry can therefore be considered as complementary
approaches when characterizing organisms’ metabolic profiles,
with each technology refining and filling in specific gaps in meta-
bolic models. Yet, PM’s contribution to a metabolic model’s refine-
ment is made through a rapid, high-throughput, and convenient
manner with an entire set of metabolites assayed in 5–7 days.

NEW METABOLITES
We have identified a number of di and tripeptides, and d-amino
acids that significantly expand the list of nitrogen utilization
compounds in C. reinhardtii. While we found d-amino acids
can support metabolism of C. reinhardtii, they may be involved
in additional functions. A serine-type d-alanyl-d-alanine car-
boxypeptidase was found in C. reinhardtii’s genome that could
potentially be involved in d-alanine metabolism. Serine-type d-
alalyl-d-alanine carboxypeptidases have been shown to play a
variety of protective roles including protection against ionic and
hyperosmotic stress (Príncipe et al., 2009). A d-alanine ligase was
found in C. reinhardtii’s genome that is potentially involved in
d-alanine multimerization. Recent research using 15N NMR spec-
troscopy found that d-alanine accumulated in plants during UV
exposure and this finding is supported by previous research under
various stress signals (Monselise et al., 2014). Therefore, the possi-
bility that d-amino acids might have additional cellular functions
in C. reinhardtii, aside from providing a source of nitrogen, can be
a subject of future investigations.

Chlamydomonas reinhardtii is known to be able to use a variety
of amino acids as a sole nitrogen source as long as acetate is present
(Munoz-Blanco et al., 1990). In C. reinhardtii, arginine is the only
amino acid known to be imported with high affinity; the rest are
believed to be deaminated extracellularly (Kirk and Kirk, 1978) or
transported passively (Zuo et al., 2012). We note that a search in
the literature for d-amino acid transports has not provided any
information on the mode of transport for this class of amino acids
in C. reinhardtii, nor is it known if the C. reinhardtii deaminase can
deaminate d-amino acids. However, C. reinhardtii has been shown
to exhibit amino acid racemerase activity (Takahashi et al., 2012),
which could explain the ability to assimilate d-amino acids intra-
cellularly. This also provides indirect evidence that these amino
acids may be absorbed or transported into the cell for conversion
to their L counterparts. A biological function for d-amino acids
has not been clearly defined; however, d-alanine and d-aspartate
were detected in algae using a reversed-phase HPLC; d-alanine was
present in some marine diatoms while d-aspartate was found in
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all the selected freshwater green microalgae and marine diatoms
(Yokoyama et al., 2003).

In many microbes, dipeptides are imported into the intra-
cellular compartment before they are eventually hydrolyzed. For
instance, Francisella tularensis relies on an amino acid transporter
of the major facilitator superfamily of secondary transporters for
transporting amino acids intracellularly. Furthermore, dipeptides
containing asparagine were effective at restoring cellular multipli-
cation in the infection cycle of a F. tularensis mutant that lacked
that essential amino acid transporter (Gesbert et al., 2014). In
this study, a variety of dipeptides were found to promote het-
erotrophic respiration in C. reinhardtii. The latest version of C.
reinhardtii’s genome contains a gene annotated as a peptide hydro-
lase Cre02.g078650.t1.3. We note that the detected utilization of
the dipeptides is not without sequence specificity as 159 out of 267
of the dipeptides and 9 out of 14 of the tripeptides did not result
in positive assay results.

From these newly identified metabolites, three phos-
phorus compounds were found: (1) cysteamine-S-phosphate
(C2H7NO3PS), which is an organic phosphorothioate anion that
is derived from deprotonation of thiophosphate OH groups and
protonation of the amino group, (2) thiophosphate (or phospho-
rothioate), and (3) dithiophosphate, which is the product of the
reaction of a base with phosphorus pentasulfide.

The only new sulfur source that was identified, tetrathionate, is
a sulfur oxoanion and is derived from the compound tetrathionic
acid and is commonly found in soils. It is a key intermediate in the
oxidation of various reduced inorganic sulfur compounds. Several
species of bacteria including Salmonella enterica (Winter et al.,
2010) and Acidithiobacillus ferrooxidans (Rohwerder et al., 2003;
Holmes and Bonnefoy, 2007; Chen et al., 2012) are known to be
able to assimilate tetrathionate. Strains of A. ferrooxidans overex-
pressing tetrathionate hydrolase (tetH) were found to grow better
on both sulfur and tetrathionate. In the archeon Acidianus hospi-
talis, tetrathionate is secreted to form filaments from tetrathionate
homomultimers (Krupovic et al., 2012). These remarkable fila-
ments are believed to play a role in sulfur metabolism and adap-
tation to A. hospitalis’s extreme environment. Prokaryotes have
also been shown to use tetrathionate as an electron acceptor in
cobalamin (coenzyme B12) synthesis (Roth et al., 1996). Sulfur
is commonly assimilated as reduced sulfur for most living organ-
isms, but bacteria are known to reduce tetrathionate, thiosulfate,
sulfite, sulfur, and dimethyl sulfoxide in dissimilatory reactions as
well (Barrett and Clark, 1987). Tetrathionate is often used as an
electron sink for oxidative phosphorylation (Chen et al., 2012).
Bacteria that are known to respire using tetrathionate are often
found to have the capability of reducing thiosulfate as well, but
thiosulfate is not found to be reduced among organisms that do
not respire thiosulfate (Rohwerder et al., 2003). Considering that
C. reinhardtii is a soil organism, the ability to assimilate this com-
pound is likely to provide an important survival advantage in
Chlamydomonas’ natural life cycle.

iBD1106 MODEL VS. iRC1080
Different behaviors can be observed for iBD1106 than those for
iRC1080 under different conditions. When the biomass produc-
tion was set as the objective function, a differential change can be

noticed as a result of growth conditions. The addition of the new
nitrogen sources (d-amino acids, dipeptides, and tripeptides) has a
significant and differential effect on the shadow prices of metabo-
lites under light and dark conditions for biomass production
(Figures 5A,B, respectively).

Under light growth, the d-aspartate in iBD1106 showed sig-
nificant effect on the behavior of the chloroplastic metabo-
lites of the riboflavin pathway. In iBD1106, d-aspartate is
converted into l-aspartate through racemase, and l-aspartate
can be produced through hydrolysis of its dipeptides (Asp–
Leu, Asp–phe, Pro–Asp, Asp–Ala, Asp–Gln, and Asp–Gly). Also
the oxidation of d-asparagine produces d-aspartate as oxo-
carboxylate (Eq. 1). The addition of l-aspartate increases
its consumption in purine metabolism, which yields to
more production of 2,5-Diamino-6-hydroxy-4-(5′-phosphoribos
ylamino)-pyrimidine (25dhpp). The latter can be converted
into 5-Amino-6-(5′-phosphoribosylamino)uracil (5apru) in the
riboflavin metabolism resulting in an excess of 4-(1-d-
Ribitylamino)-5-aminouracil (4r5au) and 5aprbu, with shadow
prices of 0.168 and 0.158, respectively. Those results were not
observed in iRC1080.

Another example of model discrepancy under light
growth is the effect of adding d-serine reactions in
iBD1106. Addition of d-serine limited the availability of
the metabolite 1-(9Z)-octadecenoyl,2-(11Z)-octadecenoyl-sn-
glycerol-3-phosphate (pa1819Z18111Z) (shadow price −0.009
in iRC1080 and −0.65 in iBD1106). This metabolite is pro-
duced and consumed by the reactions of glycerolipid metabolism
for the production of Palmitoyl-CoA (n-C16:0CoA) (pmtcoa).
The addition of l-serine in iBD1106 results in more consump-
tion of pmtcoa in the sphingolipid metabolism through the
reaction serine C-palmitoyltransferase (SERPT) that produces
3-dehydrosphinganine.

Under dark growth conditions,4-aminobutanoate was in excess
in iRC1080 and became limiting in iBD1106 with shadow price
values of 0.18 and −0.05, respectively. The reason for this lim-
iting availability is the addition of d-histidine and d-glutamate
dipeptides hydrolysis reactions, e.g., Ala–His, and inversion into
l-histidine and l-glutamate through a racemase. This addition
increases the consumption of l-glutamate and l-histidine along
with 4-aminobutanoate in glutamate and arginine and proline
metabolisms, respectively. Moreover, the dark growth condition
did not affect the behavior of 4-aminobutanoate significantly
in iBD1106; however, in iRC1080 it was shifted from a limiting
metabolite (−0.07) into an excess metabolite (0.18) (Table 4).
The excessiveness of 4-aminobutanoate in iRC1080 under dark
conditions might be related to the high consumption of NADPH
under dark growth conditions. In proline metabolism, NADPH
and 4-aminobutanoate are consumed more rapidly in dark than
that in light conditions. As such, the addition of d-histidine and
d-glutamate compensates the effect of growth under dark in the
proline metabolism.

CONCLUSION
Phenotypic profiling has tremendous utility in modeling and
understanding algal metabolism and is essential in elucidating
genotypic differences in algae and the effects of environmental
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conditions on metabolism. The method presented here demon-
strates the first reproducible study utilizing PM assays in profiling
microalgae using C. reinhardtii as a model. We observed pos-
itive growth on 148 nutrients (one positive assay for C-source
utilization, four positive assays for the S-source and P-source uti-
lization, and 139 positive assays for N-source utilization). The
wealth of phenotypic data can be used along with other refer-
ences to compare organisms with known mutants or unknown
isolates. This wealth of information will also shed light on new
and novel metabolic pathways. The substrate utilization informa-
tion and the newly identified metabolites were used for metabolic
network expansion and refinement of the iRC1080 metabolic
model. The study also provides a framework to bridge the miss-
ing links between genomics and metabolomics in microalgae. The
described work provides an excellent method for the initial char-
acterization of newly isolated or uncharacterized strains of algae.
This combination of high-throughput phenotypic screening with
metabolic modeling can allow for rapid refinement of existing
metabolic network models as demonstrated and also provides bio-
chemical evidence to support de novo reconstruction of new algal
models.
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