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Photosystem II (PSII) performs the solar-driven oxidation of water used
to fuel oxygenic photosynthesis. The active site of water oxidation is
the oxygen-evolving complex (OEC), a Mn4CaO5 cluster. PSII requires
degradation of key subunits and reassembly of the OEC as frequently
as every 20 to 40min. Themetals for the OEC are assembledwithin the
PSII protein environment via a series of binding events and photochem-
ically induced oxidation events, but the full mechanism is unknown. A
role of proton release in this mechanism is suggested here by the
observation that the yield of in vitro OEC photoassembly is higher in
deuterated water, D2O, compared with H2O when chloride is limiting.
In kinetic studies, OEC photoassembly shows a significant lag phase in
H2O at limiting chloride concentrations with an apparent H/D solvent
isotope effect of 0.14± 0.05. The growth phase of OEC photoassembly
shows an H/D solvent isotope effect of 1.5 ± 0.2. We analyzed the
protonation states of the OEC protein environment using classical
Multiconformer Continuum Electrostatics. Combining experiments and
simulations leads to a model in which protons are lost from amino acid
that will serve as OEC ligands as metals are bound. Chloride and D2O
increase the proton affinities of key amino acid residues. These residues
tune the binding affinity of Mn2+/3+ and facilitate the deprotonation of
water to form a proposed μ-hydroxo bridgedMn2+Mn3+ intermediate.
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Inorganic cofactors facilitate chemical reactions in a wide va-
riety of enzymes. For multinuclear cofactors, individual metal

ions must be assembled into clusters with specific geometries and
ligands. These clusters can be assembled externally in specialized
scaffold proteins, such as those commonly used for iron/sulfur
clusters (1), or can be assembled in situ directly in the apo enzyme
as found for the Mn4CaO5 oxygen-evolving complex (OEC) in
photosystem II (PSII) (2–4). The OEC has a complex geometry
that includes a Mn3CaO4 heterocubane linked to a fourth Mn via
an additional μ-oxo bridge (5, 6). Most of the Mn and Ca ligands
are amino acid side chains from PSII protein subunits (6). This
specialized ligand environment results in a cluster that cannot be
extracted without destruction (3).
In its functional form, the PSII OEC has high-valent Mn3+ and

Mn4+ ions (7). During cluster assembly, light excitation of the pri-
mary chlorophyll-a donor, P680, leads to oxidation of labile Mn2+ via
a redox-active tyrosine residue. This light-dependent process does
not require metallochaperones and has been termed photoactivation
or photoassembly (reviewed in refs. 2, 3).
The oxidation of water to O2 by PSII requires highly oxidizing

reduction potentials for the OEC (standard reduction potential
(Em) = 0.9 V) and the primary chlorophyll-a donor, P680 (Em =
1.2 V) (4). These values are among the most positive found in
biology. In vivo, PSII is subjected to oxidative damage and must be
frequently repaired (8, 9). The cell includes repair machinery for
complex turnover so that a functional population is maintained.
Instead of replacing the entire complex, only the protein

subunit that is most likely to be damaged, D1 (10), is replaced

(11, 12). This subunit contains most of the OEC ligating residues
(6). A new D1 subunit is then translated and inserted into the
PSII complex. Following the processing of a C-terminal tail, a
new OEC must be photoassembled before PSII can be functional
(9). The lifetime of PSII is ∼20 to 40 min in the chloroplast (13),
and it is repaired at a high bioenergetic cost (14, 15).
The complex yet efficient process of PSII repair makes this

reaction center a model catalytic system. Nature builds a scaffold
in which a water-oxidation catalyst is self-assembled from earth-
abundant, nontoxic Mn, Ca, and H2O. The same protein scaffold
that facilitates catalytic activity also facilitates assembly. If un-
derstood at a mechanistic level, these remarkable features will
inform practical inorganic catalytic systems, including those used
in artificial photosynthesis technologies.
The net reaction of OEC photoassembly to form the first cata-

lytically active intermediate, the S0 state (16, 17), is shown in Eq. 1:

4Mn2+ +Ca2+ + 5H2O→
�
Mn3+

�
3Mn4+CaO5H + 5e- + 9H+.

[1]

This process includes 5 sequential Mn2+ and Ca2+ bindings, 5
one-electron Mn oxidations, and proton releases from 5 waters
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to form multiple μ-oxo or μ-hydroxo bridges. In addition to these
5 water molecules, several other waters must be removed from
[Mn(H2O)6]

2+ and [Ca(H2O)]2+ as these ligands are replaced by
amino acid residues. The functional OEC retains 4 terminal water
ligands (6).
An early study by Radmer and Cheniae (18) established that

OEC photoassembly is a “2-quantum” process. In this model
shown in Fig. 1, which includes later insights from other groups
(reviewed in ref. 2), an initiating light-dependent step is followed
by a slow light-independent step and another light-dependent
step. First, 1 Mn2+ binds to a single high-affinity site (HAS). The
dissociation constant (Kd; at equilibrium) of the first Mn2+ at the
HAS is 40 to 50 μM (19). This intermediate is notated as A in Fig. 1.
Next, Mn2+ in the HAS is oxidized to Mn3+ through photochemical
charge separation (20) to form intermediate B. B is slowly con-
verted to C with a half-life of 100 to 150 ms. This conversion does
not require light and involves a second metal binding event.
Contrasting reports suggest that the second metal that binds is
Ca2+ or Mn2+ (19, 21–23). The net conversion of A to C has a low
quantum yield because both B and C can spontaneously decay
back to A (24). Therefore, the production of C is controlled by
equilibrium processes and is rate-determining for photoassembly.
C is converted to D through a second light-driven Mn oxidation
event. D is stable in the dark, and following the last light-induced
oxidation, it is converted to a functional OEC rapidly with a high
quantum yield (18, 24–26).
Given the relatively slow rate of conversion of B to C, Cheniae

and coworkers (27) and Dismukes and coworkers (28–30) pro-
posed that this step involves a protein conformation change.
However, a recent structural study by Zouni and coworkers (31)
showed that the OEC protein environment is essentially un-
changed when the OEC is partially removed, fully removed, or
partially reassembled. This result is consistent with an earlier
mutagenesis study that indicated little change in protein confor-
mation (32). This structural insight motivated us to reexamine the
rate-determining step of photoassembly to more fully explain its
chemical mechanism. We present data here to support an updated
photoassembly mechanism in which the migration of Mn3+ within
the apo site and the extraction of proton(s) to form a μ-hydroxo
bridged Mn2+Mn3+ dimer control the yield of photoassembly.

Results
The apo-OEC PSII membranes from spinach used here have
been treated with 1 M CaCl2 to remove the extrinsic subunits
PsbO, PsbP, and PsbQ, and with 5 mM NH2OH to remove the
OEC. PsbO is known to alter Mn2+ access to the apo site and is
not essential for photoassembly (33, 34). The samples used have
no detectable O2 evolution activity (SI Appendix, Table S1), >85%
of total Mn content has been removed (SI Appendix, Fig. S1),
and >95% of extrinsic subunits have been removed (SI Appendix,
Fig. S2).
In vitro photoassembly conditions of apo-OEC PSII mem-

branes were optimized under continuous light. Given our sample
sizes and chlorophyll concentrations, optimal photoassembly was
observed after 20 min at 50 μE·m−2·s−1 (SI Appendix, Fig. S3).
Consistent with earlier results from Ananyev and Dismukes (29),
we observe that the ratio of Ca2+ to Mn2+ is a strong determinant
of photoassembly yield (SI Appendix, Fig. S4). For all subsequent

experiments, we used the optimized concentrations of 40 mM
Ca2+ and 0.16 mM Mn2+ ([Ca2+]/[Mn2+] = 250).
As previously observed for apo-OEC PSII membranes with

PsbO removed, maximum photoassembly yields require high
chloride concentrations (>150 mM) (35). Chloride dependence
varies with the negative logarithm of hydrogen ion concentration
(pH) (Fig. 2). At all pH values tested, photoassembly yield increases
as chloride concentration increases. Highest yields of photoassembly
are observed at pH 5.5 with 250 to 1,000 mM chloride.
When the photoassembly solvent was replaced with deuter-

ated water, D2O, chloride dependence decreased (Fig. 3A). At
pL 6.05, where L represents either H+ or D+, photoassembly
yield in D2O is approximately 2-fold higher at 100 mM chloride
than in H2O.
To kinetically resolve phases of photoassembly, we shifted

from steady-state experiments (Fig. 3) to kinetic experiments
(Fig. 4). The yield of photoassembly with respect to illumination
time is sigmoidal in H2O with a subsaturating chloride concen-
tration of 100 mM at pH 6.05 (Fig. 4A). The lag phase is sig-
nificantly shorter when H2O is replaced with D2O at 100 mM
chloride (Fig. 4B). A similar trend is observed in H2O with a
saturating chloride concentration of 750 mM (Fig. 4C).
The kinetic data in Fig. 4 were fit to a sigmoidal function with

a lag phase and growth phase that reach a steady-state value
(Table 1). Based on the resulting rate constants, the photo-
assembly lag phase at 100 mM chloride has an inverse apparent
H/D solvent isotope effect of 0.14 ± 0.05, with the rate being
faster in D2O than in H2O at pL 6.05. The growth phase at
100 mM chloride has a normal apparent H/D solvent isotope
effect of 1.5 ± 0.2.
Photoassembly kinetics are altered by the presence of the

extrinsic subunit PsbO. As shown in SI Appendix, Fig. S5 and
Table S2, the extent of the lag phase is decreased when PsbO is
bound compared with when it is absent (Fig. 4 and Table 1).
Nonetheless, at low chloride concentrations, the lag phase du-
ration decreases when H2O is replaced with D2O and an inverse
H/D solvent isotope effect is observed. The same decrease in the

Fig. 1. Proposed sequence of intermediates in OEC photoassembly. hν, light
energy.
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Fig. 2. Two-dimensional analysis of [Cl−] and pH dependence of photo-
assembly. All samples contained 0.25 mM 2-(N-morpholino)ethanesulfonic
acid (pH 5.5 to 7.0), 40 mM CaCl2, 0.16 mM MnCl2, 8 mM NaHCO3, 400 mM
sucrose, 10 μM dichlorophenolindophenol (DCIP), and 0.25 mg/mL chloro-
phyll as apo-OEC PSII membranes. Variable concentrations of NaCl were
added to control [Cl−]. Photoassembly was performed at 50 μE·m−2·s−1 for 20
min. Dots represent the 24 buffer combinations used to generate the plot
(pH values of 5.5, 6.0, 6.5, and 7.0, and chloride concentrations of 100, 200,
300, 500, 750, and 1,000 mM). Yields were normalized to the rate of
extrinsics-depleted PSII membranes under identical measurement conditions
[44.1 μmol of O2 (mg Chl)−1·h−1; SI Appendix, Table S1].
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lag phase duration occurs when a saturating concentration of
chloride is added.
The Mn4CaO5 core complex has a charge of +6 in the initial S0

or stable S1 state. Anionic ligands of the OEC include 2 aspar-
tates (D1-D170 and D1-D342), 3 glutamates (D1-E189, D1-
E333, and CP43-E354), and the C terminus of the D1 peptide
(D1-A344), in addition to 1 neutral histidine (D1-H332). D1-
H337 and CP43-R357 make hydrogen bonds with μ-oxo li-
gands, while D1-D61 makes a hydrogen bond with a terminal
water ligand (6). The nearby D2-K317 is involved in binding
chloride (36). Comparison of the crystal structure of the apo-
OEC PSII complex and earlier structures of the intact PSII
complex show that the positions of these residues are remarkably
similar (31). However, structural studies provide little insight
into how the protonation of these residues in the apo structure
responds to the removal of the positively charged cluster.
The classical Multiconformer Continuum Electrostatics pro-

gram MCCE (37) was used to determine amino acid protonation
states as a function of pH and chloride in the apo structure from
Zouni and coworkers (Protein Data Bank [PDB] ID code 5MX2)
(31) and in a structure optimized around the S1 state with the
cluster removed (38, 39). The protonation states of all residues in
the full PSII structure are allowed to change. As shown in SI Ap-
pendix, Fig. S6, with the exception of D1-D170, which is predicted
to be ionized under all conditions tested, and the D1 C-terminal
A344, which is predicted to be neutral under all conditions tested,
the residues closely associated with the OEC (D1-E189, D1-E333,
D1-D342, CP43-E354, and D1-H332) are found in a distribution of
protonation states. If the considered residues (7 carboxylates, 1
arginine, 1 lysine, and 2 histidines) had standard solution charges,
the total charge would be −3 to −5 depending on the histidine
protonation states. However, the average net charge ranges from
−0.26 (PDB ID code 5MX2 with chloride at pH 5.5) to −0.49 (S1
without chloride at pH 7.0). Thus, several of the acidic ligands
bind protons to compensate for the loss of the OEC cluster. This
allows them to maintain their positions without encountering major
electrostatic repulsion. The protonation of OEC ligands D1-D170,
D1-E189, the D1 C-terminal A344, and D1-H332, as well as the
nearby residues CP43-R357 and D2-K317, change very little with
pH or the presence of chloride (SI Appendix, Fig. S6). The proton
affinities of D1-D61, D1-E333, and CP43-E354 decrease when

chloride is removed, while the proton affinity of D1-D342 increases
when chloride is removed (SI Appendix, Fig. S6).
The predicted protonation states are similar when the calcu-

lations are carried out on the true apo structure (31) compared
with the results when the Mn4CaO5 cluster and bound waters are
removed from the holo PSII (SI Appendix, Fig. S6). Only D1-
H337 is especially sensitive to the starting structure. As shown in
SI Appendix, Fig. S6, it has lower proton affinity and is more
chloride-sensitive in the true apo-PSII structure (PDB ID code
5MX2) compared with the OEC-deleted S1 structure. These
results confirm that the function and structure of the OEC
binding site change little when the metals are removed.

Discussion
PSII is a system where a binding site is prearranged to facilitate
assembly of its active site as seen in the comparison of the crystal
structures with and without the OEC (31). The protein prebuilds the
binding site and constructs the OEC within this scaffold. The current
measurements of pH and chloride dependence, H/D solvent isotope
effects, and MCCE simulations of the pH and chloride dependence
show the important role protons and chloride play in stabilizing the
highly acidic region in a rigid structure prepared for assembly.
As illustrated in Fig. 5, we identify 2 key components and roles

of the apo-OEC protein environment in the early stages of
photoassembly: Protons must be shuttled away from the active
site during μ-hydroxo or μ-oxo bridge formation, as well as re-
moving the protons on the acidic ligands. The Kd for binding the
first Mn to the HAS must be tuned to facilitate Mn2+ binding,
Mn2+ oxidation, and Mn3+ translocation. As discussed below, we
propose that D1-D61 facilitates proton transfer and D1-E333
tunes the relative affinity of the HAS for Mn2+ or Mn3+.

D1-D61 and Chloride Facilitate Proton Release. Residue D1-D61 is
located 2.9 Å from D1-E333 in the apo-OEC structure (31), at
the entrance of both the narrow and broad hydrogen-bonded
channels (40). D1-D61 is ionized when the OEC is present
(38) and acts as a hydrogen-bond acceptor to terminal water W1 (6).
Earlier experiments and simulations have shown the coupled effects
of protonation and chloride occupancy on proton release from the
OEC to the thylakoid lumen during oxygen evolution (40–43). In
intact PSII, chloride binds to D2-K317 (36, 44, 45). Upon chloride
removal, D2-K317 forms a salt bridge with D1-D61, decreasing the

A B

Fig. 3. Chloride dependence of photoassembly yield varies in H2O and D2O. (A) Photoassembly was performed in buffers containing H2O or D2O for 20 min at
50 μE·m−2·s−1 at variable chloride concentrations. Buffer pL was 6.05. Other conditions were similar to Fig. 2. Photoassembly yield was measured as O2

evolution rates in H2O. (B) Ratio of the observed photoassembly yield in H2O vs. D2O varies with chloride concentration. Data with error bars represent
average values and SE (n = 3 to 6).
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negative logarithm of the acid dissociation constant (pKa) of D1-D61
(44) and slowing the release of protons (36).
In the ensemble of states found in MCCE calculations on the

apo-OEC structure, D1-D61 is likely to be a protonated car-
boxylic acid (SI Appendix, Fig. S6). In the absence of chloride,
more anionic D1-D61 is present in the ensemble at a given pH,
indicating a lower proton affinity (i.e., a lower apparent pKa).
This result was also found for PSII containing the OEC (38).
Therefore, D1-D61 is a better Brønsted base when chloride is
present in apo-OEC PSII. The formation of a metastable Mn
dimer intermediate (discussed below) requires the formation of a
μ-oxo or μ-hydroxo bridge. Thus, to form this ligand, water must
be deprotonated and the proton efficiently shuttled away. We
propose that D1-D61 serves this role during photoassembly.

Location of the HAS. The specific location of the HAS is disputed.
Both experimental and computational studies have suggested
that D1-H332 is a ligand to the first Mn2+ during photoassembly,
which would place the HAS at the Mn1 site in the intact OEC
(46, 47). However, other evidence suggests that D1-D170 is a
component of the HAS, which would place the HAS at the
dangler Mn4 site in the intact OEC (48–52). The findings of a
pulsed electron paramagnetic resonance (EPR) experiment by
Asada and Mino (53) that measured the distance between
Mn2+ in the HAS and the stable tyrosine-D radical are consistent
with the latter HAS location (Fig. 5).
As reviewed by Bao and Burnap (2), mutagenesis studies also

inform our understanding of the structure of the HAS. Mutants
of D1-D170 strongly perturb the ability of PSII to bind Mn2+ and
assemble a functional OEC (48–52). Only substitution with glu-
tamate maintains high activity (48, 50, 52). On the other hand,
mutagenesis of D1-E333 has a smaller effect on OEC assembly,
with substitution of D1-E333 with glutamine supporting moderate
PSII activity (32). This glutamate is calculated to be protonated in
the apo structure. As described below, our data support a HAS at
the Mn4 position ligated by D1-D170 and D1-E333.

Tuning the Kd of the HAS Facilitates Mn3+ Translocation.At the HAS,
D1-D170 is calculated to be always fully ionized, while D1-E333
is in a mixture of protonated and deprotonated states. These
results support earlier mutagenesis studies: D1-D170 can only be
replaced by a residue that provides a strong Mn2+/3+ ligand,
while D1-E333 is a weak Mn2+/3+ ligand and can be replaced by
other residues. In the presence of chloride, the free energy of
D1-E333 favors the neutral state by ∼1 kcal·mol−1 at pH 5.5
(average charge of −0.2). The propensity to be ionized increases
as the pH is increased to 7.0 (average charge of −0.4; SI Ap-
pendix, Fig. S6). The small change in protonation with pH shows
the strong thermodynamic coupling of proton affinity among the
OEC ligands. We predict that the HAS will have the highest
affinity for Mn2+ when both D1-D170 and D1-E333 are ionized
and that the Kd for Mn2+ will increase as D1-E333 is protonated.
Using a nonequilibrium assay, Ono and Mino (20) measured the
effective Kd for Mn2+ as a function of pH. They found that the
Kd decreased as pH was increased from 5.0 to 7.0 and remained
constant at pH ≥ 7.0. In their discussion of these data, they
proposed that “a residue responsible for Mn2+ binding has been
protonated below pH 7 . . .” (20). Based on their study, the likely
location of the HAS (53), and our current MCCE calculations,
we propose that D1-E333 has an apparent pKa value of ∼7 and
tunes the Kd of Mn2+ binding in a pH- and chloride-dependent
manner.
Zouni and coworkers (31) recently proposed a mechanism in

which Mn2+ first binds to the HAS and is later translocated to a
different site deeper in the OEC binding pocket. Next, a second
Mn2+ binds to the now vacant HAS and is oxidized. We note that
observed Kd values for Mn2+ binding of ∼50 μM for both the first
(19) and second (24) binding events are consistent with this
mechanism.

Potential Identity of Intermediate C. In this mechanism, the first
metal dimer intermediate (C in Fig. 1) is Mn2+Mn3+, which is

A

B

C

Fig. 4. Rates of photoassembly are dependent on solvent and chloride
concentration. Samples were photoassembled at 50 μE·m−2·s−1 for variable
times. Sample conditions are identical to Fig. 3. Photoassembly was per-
formed in H2O, pH 6.05, with 100 mM total Cl− (A); D2O, pL 6.05, with
100 mM total Cl− (B); or H2O, pH 6.05, with 750 mM total Cl− (C). Data with
error bars represent average values and SE (n = 3 to 6). Traces represent
kinetic analyses described in Table 1.

Table 1. Rates of photoassembly determined by fitting data from Fig. 4

Solvent [Cl−], mM
Lag phase duration,

Tlag, s
Average lag phase rate,

klag, s
−1

Growth phase rate,
kgrowth, s

−1

H2O 100 287 ± 7 0.0036 ± 0.0001 0.0029 ± 0.0003
D2O 100 41 ± 15 0.024 ± 0.009 0.0019 ± 0.0001
H2O 750 104 ± 7 0.0096 ± 0.0007 0.0033 ± 0.0002

Errors represent uncertainty of the fit.
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consistent with previous spectroscopic (21–23) and structural
(31) studies. However, Dismukes and coworkers (19) presented
compelling evidence that a μ-hydroxy or μ-oxo bridged Mn3+Ca2+

dimer formed first. In their model, Ca2+ binds early in the pho-
toassembly process. In other models, Ca2+ binds as late as the very
last step (26). Using parallel mode EPR detection of Mn3+, they
observed that the ligand field of the first Mn3+ is highly symmet-
rical at pH ≥ 7.5 and becomes distorted as the pH decreases to
6.0. All of these experiments were performed at temperatures
below −20 °C, so that diffusion of ions is limited (19). In light of
the discussion above, these results have 2 implications. First, a
more symmetrical ligand field for Mn3+ locked in the HAS is
consistent with D1-E333 being deprotonated as we predict at high
pH. At lower pH values, the Mn3+ will have less favorable in-
teraction with a protonated carboxylic acid group in an axial po-
sition. Second, the use of low temperatures to prevent diffusion
does not facilitate Mn3+ translocation in subsequent steps.
Therefore, it is possible that the observed Mn3+Ca2+ species is
only present when Mn3+ is prevented from vacating the HAS. We
propose that at higher temperatures, Mn3+ migrates and a second
Mn2+ binds to the HAS. Ca2+ is clearly an essential component of
photoassembly (27), but the precise step in which it is incorporated
is not fully understood and motivates future studies.

Protons and Chloride Gate OEC Photoassembly. In Fig. 2, both pH
and chloride concentration affect photoassembly yield. At pH
5.5, when chloride is not saturating (lower left corner of Fig. 2),
our simulations suggest that D1-E333 is mostly ionized and that
D1-D61 is mostly protonated. In this regime, Mn3+ translocation
will be hindered because the HAS has a low Kd. While proton
transfer is favored, the Mn2+Mn3+ dimer intermediate is unable
to efficiently form. At pH 5.5, when chloride is saturating (upper
left corner of Fig. 2), our simulations suggest that both D1-E333
and D1-D61 are mostly protonated. Here, both Mn3+ trans-
location and proton transfer are favored, and photoassembly
yield is high. At pH 7.0, the proton affinity of D1-E333 is not
strongly affected by the presence of chloride. However, the proton

affinity of D1-D61 is at least 2-fold greater when chloride is pre-
sent. At this pH value, D1-E333 remains partially protonated,
Mn3+ translocation is favored, and the observed enhancement of
photoassembly yield by the addition of chloride is only affected by
proton release.
Maintaining D1-E333 and D1-D61 in environments where

their pKa values are relatively high facilitates Mn3+ translocation
and proton transfer, respectively, thus increasing the yield of
photoassembly. The MCCE simulations show that adding chlo-
ride to the system has this desired effect. The pKa values of
carboxylate groups can also be increased by replacing H2O with
D2O (54). In general, this replacement increases pKa values by
∼0.5 pH units (55, 56). In Fig. 3, we observed that photoassembly
yields are higher in D2O compared with H2O only when chloride
is limiting. As described below, we interpret these data as the
result of an inverse H/D solvent equilibrium isotope effect. At
saturating chloride concentrations at pL 6, the proton affinities
of D1-E333 and D1-D61 are already optimized for photo-
assembly, and the addition of D2O has little effect.
Kinetic resolution of these data show that photoassembly at

pH 6 in H2O with 100 mM chloride has a pronounced lag phase
(Fig. 4A). We attribute this lag phase to the decay of interme-
diates B and C in the early stages of photoassembly. Dramati-
cally, this lag phase is effectively eliminated when H2O is
replaced with D2O (Fig. 4B), resulting in an apparent H/D sol-
vent isotope effect of 0.14 ± 0.05 (Table 1). Because the pKa

values of D1-D61 and D1-E333 increase in D2O, both μ-hydroxo
bridge formation and Mn3+ translocation will be favored even
though chloride is limiting. Therefore, intermediate C accumu-
lates at earlier time points. The reversible nature of intermedi-
ates B and C makes this process dependent on equilibrium. The
shortened lag phase of photoassembly in H2O with saturating
chloride concentrations mimics that of D2O at lower chloride
concentrations (Fig. 4C).
The growth phase of photoassembly represents the irreversible

and non–rate-determining steps following the formation of in-
termediate C. Here, the rate is insignificantly different in H2O at
low and high chloride concentrations (Fig. 4 A and C). In D2O,
the rate is slower, giving an apparent H/D solvent isotope effect
of 1.5 ± 0.2 (Table 1). These later steps of photoassembly are
kinetically controlled.

Conclusion
In our current mechanism of OEC photoassembly based on our
present data and a critical examination of the literature, Mn2+

first binds to the HAS in the apo-OEC protein environment.
This environment is already in a “preorganized shell,” (31) and
no protein conformational changes are required, but protons
may need to be removed. The proton affinities of carboxylic acid
groups in the pocket are relatively high, and electrostatic re-
pulsion is minimized. The first Mn2+ is oxidized to Mn3+ and is in
a sufficiently labile ligand environment to facilitate translocation
to a site deeper in the apo-OEC pocket. A second Mn2+ binds to
the now vacated HAS. This second Mn2+ is trapped in place by
the formation of a μ-hydroxo bridge with the Mn3+ ion. For-
mation of this ligand requires proton release and an efficient
Brønsted base located nearby. These early steps are controlled
by equilibrium and show strong chloride dependence and an
inverse H/D solvent equilibrium isotope effect. Next, the second
Mn2+ is oxidized to Mn3+, forming a Mn3+Mn3+ dimer. This
intermediate is highly stable and templates the remaining pho-
toassembly process. All remaining steps are kinetically rapid.
These latter steps do not show chloride dependence and have a
moderate H/D solvent kinetic isotope effect greater than 1.

Fig. 5. Protein environment of the apo-OEC binding site from Zouni and
coworkers (PDB ID code 5MX2) (31). Protons have been added to titratable
groups based on the predominant species observed in MCCE calculations (SI
Appendix, Fig. S6). The HAS represents the location where Mn2+ binds
during photoassembly. To form intermediate C (Fig. 1), oxidized Mn3+ must
migrate deeper into the apo site (purple arrow). Water must be deproto-
nated for μ-hydroxo bridge formation, and the proton(s) must be shuttled
out of the site (cyan arrow). Residues D1-E333 and D1-61 facilitate these 2
processes. When chloride is removed, the pKa values of CP43-E354, D1-E333,
and D1-D61 (tan sticks) decrease and the pKa value of D1-D342 (purple sticks)
increases.
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Materials and Methods
Detailed methods on sample preparation, characterization, in vitro photo-
assembly, analysis, and MCCE simulations are provided in SI Appendix,
Supplemental Materials and Methods.
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