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This article introduces a global hypothesis test intended for studies with mul-
tiple endpoints. Our test makes use of a priori predictions about the direction
of the result of each endpoint and we weight these predictions using the sam-
ple correlation matrix. The global alternative hypothesis concerns a parameter,
𝜙, defined as the researcher’s ability to correctly predict the direction of each
measure, essentially a binomial parameter. This allows for the test to include
expected effects that are all positive, all negative or both while still using the
cumulative information across those endpoints. A rejection of the null hypoth-
esis (H0 ∶ 𝜙 ≤ 𝜙0) provides evidence that the researcher’s underlying theory
about the natural process provides a better prediction of the observed results
relative to the null hypothesized predictive ability, thus indicating the theory is
worthy of further study. We compare our test to O’Brien’s ordinary least squares
(OLS) test and show that for small samples and situations where the effect is not
in the same direction across all endpoints our approach has better power, while
if the effect is equidirectional across all endpoints the OLS test can have greater
power.
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1 INTRODUCTION

In contemporary biomedical science many studies involve multiple outcomes of interest. While significant advances in
the methodologies to deal with multiplicity have been developed, the tendency in biomedical research to measure as many
endpoints of interest as possible within each study is not well suited to balancing sufficient multiplicity adjustments along
with sample size, financial, and logistic constraints, especially in early stage research where sample sizes are typically
small. We present a paradigm for experimental testing that controls the type I error rate of the overall experiment (or
more specifically of the global research hypothesis) while maintaining adequate power. We believe this methodology will
be especially useful for settings where a large number of endpoints are of interest, with no “primary” endpoint and the
sample size is relatively small. In addition our test is not restricted to situations where a common effect size, or direction,
is expected across all endpoints. This allows for cumulative information from endpoints where an “improvement” might
be in opposite directions to be incorporated in a single test.

The scenarios in which multiple endpoints arise are varied, ranging from trials with distinct outcomes of interest,
such as endpoints for both efficacy and safety, to trials where the complex nature of or the inability to directly measure
the hypothesis of interest necessitates multiple endpoints that can be used as proxies.1 Having more than one endpoint
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can have serious implications on the operating characteristics of a study and typically needs to be addressed. This has
led to a wealth of literature about the topic,2 including guidance from government agencies about best practices.1,3 How-
ever, despite widespread knowledge of the need for adequate multiplicity corrections when faced with multiple endpoints
a common default continues to be the designation of a primary endpoint, with all others analyzed as secondary, or
exploratory, even if there is not a true “primary” endpoint. Our test provides a method for arriving at a decision when
there is not a true primary endpoint, a common occurrence in early stage research when the validity of the overall theory
or research hypothesis is being tested. We incorporate the correlation matrix of the measured endpoints along with a set
of researcher’s predictions to form our test statistic.

1.1 Review of similar methodologies

Typical approaches for addressing multiplicity include simple single step procedures, such as the Bonferroni or Sidak
adjustment,4 multistep procedures such as Holm’s method5 as well as global procedures such as Hotelling’s T2. However,
the most comparable existing methodology to our proposed test are the global tests developed by O’Brien.6

O’Brien proposed three tests: an ordinary least squares (OLS) test, a generalized least squares (GLS) test, and a non-
parametric rank sum (RS) test. Part of the motivation for the development of the tests stemmed from the desire to not
only determine a difference between groups across endpoints, but also to perform well in situations where “improvement
was demonstrated consistently among the various endpoints,”6 that is, if the effect across the endpoints was assumed to
be in the same direction and of similar magnitude. O’Brien’s test has been shown to outperform other approaches such
as Hotelling’s T2 test when this assumption is true.6,7 The global null hypotheses for O’Brien’s set of tests is

H0 ∶ 𝜹 = 0

where 𝜹 denotes the vector of mean differences, 𝛿k of interest between two groups for the kth endpoint of interest. By
making the assumptions that the effect size for each endpoint, 𝛿k∕𝜎k, was equal to some constant, 𝜆 then O’Brien reformed
the null hypothesis to be

H0 ∶ 𝜆 = 0

against the alternative that 𝜆 > 0.8 The OLS and GLS tests are sums of t-test statistics for each individual endpoint. The
difference between the two tests is that the GLS statistic weights the different endpoints depending on the sample corre-
lation matrix, such that all weights are not required to be equal.9 This allows for more weight to be given to endpoints
that are less associated with other endpoints. Both tests have been shown to outperform methods that do not take knowl-
edge of directional alternatives into account and comparisons of the OLS and GLS tests have been made. However, direct
comparisons between the OLS and GLS test statistics are difficult due to the fact that the GLS has been shown to be very
liberal under various types of correlation matrices and regardless of the approximation used for the degrees of freedom
of the test statistic.10 Thus, direct power comparisons between the two are not meaningful. In addition, while the GLS
test makes use of the sample correlation matrix to weight endpoints this is done through the row sums of the inverse of
the sample correlation matrix which can lead to negative weights in certain situations, an undesirable property. Thus,
the OLS test is typically recommended8 and will be the main comparison for our proposed method. Both test statistics
have asymptotic F distributions with several different proposed estimators of the degrees of freedom. The OLS and GLS
tests do not have an exact distribution, and the small sample approximations can be poor,10 in these situations the RS test
could be used. Our proposed test is similar to the OLS and GLS test statistics, notably our method also uses the sample
correlation matrix to weight different endpoints and the settings in which either method could be used are similar. In
Section 6, we examine the relative merits of the two tests under various scenarios.

1.2 Motivating example

Consider an experiment in which measures of arterial spin labeling (ASL), a measure of cerebral blood flow, were collected
in different regions of the brain. This data was collected as part of a larger study examining the relationship between
exercise and Alzheimer’s disease that measured pre-post changes after a 12 week exercise intervention in 11 older adults.
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The dataset consists of ASL measures on six regions of the brain: BA46, Frontal mid, Hippocampus, M1, Superior Parietal
and Precuneus. The research hypothesis was that there would be structural changes in the brain following the intervention
and the changes in ASL function as a proxy for this more general hypothesis. No single region was considered to be of
primary interest, therefore we needed to come to a global conclusion about whether there were structural changes in the
brain. In addition the primary investigator believed that ASL values would increase in each individual region and that this
would provide evidence for an improvement postintervention. We wanted to test whether the PI’s theory was correct, that
this intervention would lead to increases in ASL values. We also wanted to take into account the predicted direction of the
pre-post change, that of an increase, and that the expected increases might be small, that is, not “statistically significant”
in a set of univariate analyses. It was expected that there would be fairly high correlation between the ASL measures on
the various endpoints due to the measurements being of blood flow within the same individual. In addition, the sample
size was relatively small (n = 11). This type of setting, a small n relative to the number of endpoints of interest, along
with directional predictions of the outcome of the endpoints that might be individually small and correlated motivated
the development of our test statistic. We note that while in this example all predicted effects are in the same direction our
method can incorporate predicted effects in different direction, e.g. some expected to increase and some decrease.

In Section 2, we introduce the test statistic and associated hypothesis test, Section 3 presents an empirical assessment
of the normal approximation, in Section 4 we look at the sensitivity of using a sample correlation matrix for both the
normal approximation and the exact test, Section 5 discusses the choice of the parameter 𝜙, Section 6 compares our
method to O’Brien’s test and applies both tests to the ASL data and finally in Section 7 we discuss the methodology
presented including its limitations and areas for future work. The appendix contains a proof showing the Lindeberg
condition of the central limit theorem holds and the supplementary information provides R code for the implementation
of the proposed test.

2 TEST STATISTIC AND ASSOCIATED TEST

Let n represent the number of experimental units, and m be the number of endpoints measured on each experimental
unit. For each endpoint the researcher makes a prediction about the direction, for example, with a pre-post study the
prediction for the first endpoint, m1, could be an increase, and for m2 a decrease. We set our predictions to be one sided,
so that without loss of generality we describe these as being predictions of either a positive or negative result for each
endpoint while not restricting the predictions to be all positive or all negative. Let p be an m× 1 vector of the results
of the predictions for the endpoints, where pi, the ith value of the vector, is an indicator function that equals 1 if the
prediction on endpoint i is correct, and 0 if the prediction is incorrect based on the observed sample. Let C represent an
m×m correlation matrix between the endpoints, where 𝜌ij is the pairwise correlation between endpoint i and j, which
we estimate with the sample correlation rij. Any type of correlation measure can be used with the choice depending on
the underlying data,11 for all examples and simulations we use Pearson’s correlation coefficient.

For the ith measure we have defined a weight wi, i= 1, … , m, that is, the inverse of the sum of the squared pairwise
correlations for the ith row of C, that is

wi =

( m∑
j=1

r2
i,j

)−1

The weight wi will take a value of 1/m for all i when there is a perfect pairwise association (positive or negative) between
each measure and will take a value of 1 for all i when the endpoints are independent. Thus W, the sum of these weights,
will equal 1 if the correlation matrix is a matrix of ones and will equal m if the correlation matrix is an identity matrix.
Conceptually we view W as an estimate of the number of “unique” or effective endpoints being considered, similar in
spirit to the idea of the effective number of variables advanced by several authors in significance threshold correction.12,13

It’s also similar the weight used in O’Brien’s GLS test which uses the inverse of the sum of the pairwise correlations with
the same goal of weighting more independent variables more heavily. However, since the weights for the GLS test do not
square the elements of the sample correlation matrix the weights can be negative, leading to the possibility of rejecting the
null hypothesis in favor of the alternative that 𝜆 > 0 when in fact the effect is in the opposite direction on every endpoint.8

For our proposed test when the endpoints are perfectly independent W =m implying we have m unique endpoints,
while if the endpoints are perfectly dependent W = 1 implying there is effectively only one independent endpoint. For
levels of correlation between these extremes 1<W <m indicating that some of the endpoints measure similar attributes.
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Our test statistic increases in value for each correct prediction by the corresponding weight wi. We define our test
statistic as

Tm =
m∑

i=1
piwi

where 0≤Tm ≤W . Notably, larger values of Tm indicate experimental results more aligned with the researcher’s hypoth-
esized predictions, while those closer to zero imply less concordance between prior predictions and experimental results.
It’s important to note that for the same number of correct predictions the value of the test statistic will change depend-
ing on which endpoints were correctly predicted, thus predicting measures with higher weights, will result in larger test
statistic values. We give greater importance to correctly predicting endpoints that are more independent of the other vari-
ables in the dataset, in this way correctly predicting a large amount of highly correlated measures may lead to a relatively
small test statistic.

2.1 Test statistic under the null

Our null hypothesis is that the researcher’s predictive ability 𝜙 is less than or equal to 𝜙0, that is, H0 ∶ 𝜙 ≤ 𝜙0. The
parameter 𝜙 is chosen in regard to the specific experiment of interest. For example, in early discovery experiments if the
researcher was able to predict the direction of more than 𝜙0 = 0.50, that is, 50%, of the endpoints then perhaps that would
be enough to warrant further study because it would indicate that the researcher’s theory was able to predict what would
happen at a rate better than chance. Under our null hypothesis we assume that the results of each prediction pi follow
a Bernoulli distribution with success parameter 𝜙. We also assume that the weights, wi, are independent of the predic-
tions. If the weights are treated as fixed and the predictive ability on all endpoints is equal our test statistic is therefore a
weighted sum of Bernoulli random variables, with expected value E[Tm] = 𝜙

∑m
i=1 wi and Var(Tm) = 𝜙 ⋅ (1 − 𝜙)

∑m
i=1 w2

i .
If the correlation matrix C is such that the off-diagonal values are not all equal then there are a discrete number of

unique w′
i s and the vector p can take on 2m permutations, as each pi ∈{0,1}. Given a sample correlation matrix we can

calculate the exact distribution of the test statistic. In doing this we need to consider that different combinations of correct
predictions will result in different values of the test statistic even if the overall number of correct predictions is the same.
Unlike a binomial probability we do care about which specific combination leads to x correct predictions, thus the pmf of
our test statistic can be considered as a binomial pmf without the constant

(
m
x

)
where x =

∑m
i=1 pi, the number of correct

predictions (ie, 1’s) in the prediction vector p.
More formally the pmf is

f (T = pTw) = 𝜙
∑

pi
0 (1 − 𝜙0)m−

∑
pi

The sum over all 2m permutations of p (and thus pTw) equals 1 as would be expected. As an example, with m = 2 and
𝜙0 = 0.50 the probability of correctly predicting 1 of the endpoints is 0.501(1− 0.50)1 = 0.502 = 0.03125, of course there are(

2
1

)
= 2 sets of correct predictions which would result in two different tests statistics depending on the weight. Under the

null hypothesis these two values of the statistic have the same probability. When 𝜙0 = 0.50 the probability of all possible
values of Tm will be equal due to the symmetry of the binomial; however, as 𝜙0 deviates from 0.50 the probability of
observing different values of the test statistic will change.

2.2 Special cases

There are two special cases concerning the distribution of our test statistic, when C = Jm, an m×m matrix of ones, and
when C = I, the identity matrix.

For C = I, wi = 1 for all i thus our test statistic can be written as:

Tm = 1 ⋅
m∑

i=1
pi
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The sum of independent Bernoulli random variables is a Binomial random variable. Thus, the test statistic would simply
follow a Binomial(m, 𝜙0).

If the sample correlation matrix C = Jm (with the off diagonals being either positive or negative one) then wi = 1/m
for all i. Our test statistic in this scenario can be written as:

Tm = 1
m

m∑
i=1

pi

If we let X =
∑

pi, and let Y be the transformation Y = 1
m

X we can show the probability mass function of Tm is:

(
m

y ⋅ m

)
py⋅m(1 − p)m−m⋅y

with support y={0, 1/m, 2/m, … ,1}. Thus, Tm is simply a linear transformation of a Binomial random variable in the
completely dependent case. For sample data the only realistic way either of these scenarios could occur would be through
error, or in a contrived way such as measuring the same variable but with different units, for example, height in inches,
centimeters and meters.

2.3 Decision rule

We are most concerned with whether the researcher’s theory provides an advantage in understanding the outcome of
different endpoints, thus we define our null and alternative hypotheses as follows:

H0 ∶ 𝜙 ≤ 𝜙0

H1 ∶ 𝜙 > 𝜙0.

We also suggest that Tm ≥ 1 in order to reject the null, that is, we require the sum of correct scores equal at least 1.
This forces the researcher to correctly predict every endpoint when the endpoints are perfectly dependent, thus simply
correctly predicting linear, or monotonic combinations of other endpoints provides no advantage. We consider the sum
of Tm to be the number of effective endpoints correctly predicted and thus it is intuitive we would require the researcher
to correctly predict endpoints with a value of at least one. In situations where the Type I error rate was of most concern
𝜙 would be close to 1, and in situations where power was the main concern 𝜙 would be closer to 0, although we would
recommend 𝜙0 ≥ 0.5 without strong reasoning otherwise.

3 NORMAL APPROXIMATION

The exact distribution for Tm becomes computationally difficult to calculate as the number of endpoints increases, with
m= 30 the number of possible permutations of p, the prediction vector, is over 1 billion. In Appendix B we have shown
that the sum of the T′

i s satisfies the Lindeberg CLT, indicating that as the number of endpoints increase the central limit
theorem will apply as long as the value of 𝜙0 is bounded away from 0 and 1.14 We show these restrictions on 𝜙0 will be met
as we let m→∞. We also conducted a simulation study for various values of 𝜙 and m. We found that if m is large enough
and 𝜙 is not too close to either boundary we can approximate our test statistic with the following normal distribution:

Tm ∼ Normal(𝜇, 𝜎)

where 𝜇 = 𝜙 ⋅ W and 𝜎 =
√

𝜙(1 − 𝜙) ⋅
∑

w2
i .

We looked at values of m ranging from 20 to 70 in increments of 5 due to the fact that with m> 20 the calculation
of the exact distribution becomes computationally expensive. We generated random correlation matrices using the R15

package clusterGeneration16 which uses partial correlations and a recursive method to generate a random m-dimensional
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F I G U R E 1 For each combination of m
and 𝜙0 we calculated the GMAE. We see a clear
decrease in GMAE as the number of endpoints
increases. GMAE, grand mean absolute error
[Colour figure can be viewed at
wileyonlinelibrary.com]

covariance matrix which we converted to a correlation matrix.17 The method depends on the dimension of the correlation
matrix and on a parameter 𝛼d. We used 𝛼d = 1 which is a special case that is uniform over the space of positive definite
correlation matrices. For each value of m, we simulated 100 different correlation matrices, for each of these correlation
matrices we randomly generated 1000 sets of predictions from a Bernoulli(𝜙0) distribution. We used these predictions and
the correlation matrix to estimate the exact CDF of Tm which we then compared with the approximate CDF using the
normal approximation. We calculated the mean absolute error (MAE), that is, the sum of absolute differences between
the values divided by the number of approximated percentiles, 1000 in this case. We took the mean of these 100 000
MAE’s (1000 for each of the 100 correlation matrices) to form the grand mean absolute error (GMAE), averaging over the
generated correlations matrices for each combination of m and 𝜙. Figure 1 shows the results.

When 𝜙0 is near one of the boundaries the approximation is poor especially with a small number of endpoints. How-
ever, as the number of endpoints increases the GMAE decreases even when𝜙0 is near the boundary. With a more moderate
value of 𝜙0 the normal approximation is much closer to the value from the exact distribution, with 𝜙0 = 0.50 the error
quickly approaches 0.01 on average.

4 SENSITIVITY ANALYSIS OF SAMPLE CORRELATION MATRIX

A concern when applying our method could be the instability of the sample pairwise correlations for small sample
sizes. Some estimates of the necessary sample size for stable estimates of correlation are in the hundreds depend-
ing on the application.18 Most of the literature concerning adequate sample sizes for sample correlations has been
focused on doing hypothesis testing on a single sample correlation or estimating a confidence interval for a single
sample correlation. While we are not directly interested in using the pairwise correlation for testing it is of concern
that unstable pairwise correlations could affect our weights and therefore affect the overall test statistic. To exam-
ine this situation, we conducted a simulation study. We let 𝜙 = (0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90) for 𝜙0 = 0.50 and
𝜙 = (0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90) for 𝜙0 = 0.70. We generated a “true” correlation matrix, then sampled from a
multivariate normal in R using the true correlation matrix to generate a sample, calculated the “true” weights and the
sampled weights and simulated our tests for n = 20. We kept track of the proportion of times that our test came to the
same conclusion, these values are presented in Table 1. For m< 20 we used the exact test while for m≥ 20 we used the
normal approximation.

The results show that estimating the true correlation matrix with a sample correlation matrix, even for with a relatively
small n, leads to the same conclusions as if we had the true correlation matrix. This holds for both the exact test statistic
and the normal approximation. Despite these results if there is concern over the validity of the sample correlation matrix,

http://wileyonlinelibrary.com
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T A B L E 1 Proportion of tests coming to the same conclusion for combinations of n, 𝜙0 and m

n 𝝓0 m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 m = 35 m = 40 Average agreement

10 0.50 100 97.1 96.6 97.4 97.7 97.9 98.1 98.2 97.6%

0.70 100 97.0 96.4 98.0 97.0 96.3 96.2 96.9 96.8%

20 0.50 100 97.9 97.4 97.9 98.1 98.4 98.5 98.4 98.1%

0.70 100 97.8 97.0 98.5 97.8 96.8 96.6 97.2 97.4%

Note: Average agreement calculations do not include m = 5 for 𝜙0 = 0.7 since the null cannot be rejected in this case.

T A B L E 2 Minimum required m for hypothesized
value 𝜙0 with 𝛼 = 0.05 𝜙0 0.50 0.60 0.70 0.80 0.90

Minimum required m 5 6 9 13 29

we would suggest eliciting expert opinions or using historical studies to estimate the correlation matrix, which can then
be used for a sensitivity analysis.

5 CHOICE OF 𝝓

The choice of the hypothesized value 𝜙0 is a critical decision that needs to be made before the data is analyzed. A higher
choice of 𝜙0 will lead to a decrease in power. If the normal approximation will be utilized the accuracy of the approxima-
tion is maximized for 𝜙0 = 0.50. It’s important to note that for some combinations of m and 𝜙0 it is impossible to reject
the null hypothesize at a given 𝛼 level due to discreteness. Table 2 provides the minimum m that can be chosen for a given
𝜙0 such that the null hypothesis could still be rejected at 𝛼 = 0.05. Note that for these combinations of 𝜙0 and m a correct
prediction would need to be made on every endpoint to reject the null.

6 PERFORMANCE

6.1 Simulated results

To assess the performance of our proposed test we have estimated the power and Type I error control under various
simulation settings. In addition we have compared our proposed test to O’Brien’s OLS test. A direct comparison of the two
tests is difficult due to the two tests having different alternative hypothesis (OLS: H1 ∶ 𝜆 > 0, Proposed: H1 ∶ 𝜙 > 𝜙0). The
OLS test considers the global alternative of an increase (or decrease) on every endpoint between groups. Essentially the
alternative is that the researcher simply predicts which direction (up or down) they think all endpoints will go. This does
restrict the application of the OLS test to only include endpoints that are expected to change in the same direction. Our
proposed test considers a null concerning the researcher’s ability to predict the direction of differences between groups
on each endpoint, typically set at 𝜙0 = 0.50. A rejection of this null leads to the determination that the predictive ability
is greater than 𝜙0, when these predictions are driven by a research hypothesis about the underlying natural phenomenon
then this provides evidence in favor of the research hypothesis. To highlight these differences we empirically evaluated
the power of both tests.

We simulated data with the following characteristics: we allowed n = (3, 10, 20, 50) per group and m = (6, 16, 26,
50). All samples are simulated from a multivariate Normal distribution; our proposed test does not require the data to be
Normal, however, the OLS test does. Since the null hypothesis is different between the two tests the effect size for our
proposed test is determined by the difference between the hypothesized 𝜙0 which we set to 0.50 and the actual predictive
ability which we simulated for values of 0.80 and 0.90. We examined four different traditional effect sizes, they are for
group 2 relative to group 1:

1. 𝛿 = 0.50: An increase of 0.50 standard deviations on all endpoints.
2. 𝛿 = ±0.50: An increase of 0.50 standard deviations on half the endpoints, and a decrease of 0.50 standard deviations

on the other half.
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n = 3 n = 10

m 𝜹 OLS 𝝓0.80 𝝓0.90 OLS 𝝓0.80 𝝓0.90

6 0.50 0.118 0.099 0.167 0.832 0.210 0.362

±0.50 0.031 0.107 0.165 0.050 0.220 0.367

Stagger 0.065 0.053 0.090 0.478 0.097 0.175

±Stagger 0.037 0.054 0.092 0.190 0.091 0.167

26 0.50 0.196 0.210 0.465 0.999 0.624 0.902

±0.50 0.031 0.206 0.461 0.049 0.628 0.910

Stagger 0.084 0.047 0.154 0.853 0.168 0.408

±Stagger 0.047 0.047 0.015 0.368 0.165 0.410

50 0.50 0.269 0.303 0.704 1 0.850 0.989

±0.50 0.031 0.310 0.696 0.051 0.855 0.990

Stagger 0.122 0.043 0.210 0.977 0.226 0.611

±Stagger 0.061 0.043 0.191 0.545 0.233 0.600

n = 20 n = 50

m 𝜹 OLS 𝝓0.80 𝝓0.90 OLS 𝝓0.80 𝝓0.90

6 0.50 0.95 0.30 0.52 0.999 0.392 0.631

±0.50 0.05 0.316 0.517 0.211 0.379 0.635

Stagger 0.777 0.151 0.255 0.954 0.231 0.379

±Stagger 0.308 0.147 0.253 0.5217 0.226 0.270

26 0.50 1 0.842 0.985 1 0.942 0.999

±0.50 0.055 0.835 0.987 0.061 0.997 1

Stagger 0.988 0.320 0.626 1 0.581 0.894

±Stagger 0.657 0.335 0.638 0.937 0.582 0.893

50 0.50 1 0.975 0.999 1 0.997 1

±0.50 0.057 0.977 0.999 0.058 0.997 1

Stagger 1 0.485 0.862 1 0.815 0.988

±Stagger 0.845 0.483 0.871 0.994 0.820 0.991

Abbreviation: OLS, ordinary least squares.

T A B L E 3 Empirical power
estimates for our proposed test and
O’Brien’s OLS test

3. 𝛿 = Stagger: An increase of 0.5 m/M standard deviations for all M endpoints.6
4. 𝛿 = ± Stagger: An effect size of 0.5 m/M standard deviations for all M endpoints, with the first half (the smallest ones)

all negative and the largest half all positive.

These effect sizes allowed us to examine equidirectional effects (𝛿 = 0.50, 𝛿 = Stagger) (a motivating reason for the
development of O’Brien’s OLS test) as well as bidirectional effects (𝛿 = ±0.50, 𝛿 = ± Stagger)). As an example, the ASL
measures introduced in Section 1.1 were expected to increase (a positive outcome) after an intervention. An example
where bidirectional effects would be incorporated together also comes from imaging. Diffusor tensor imaging can provide
outcomes of mean diffusivity (MD) or fractional anisotropy (FA) across different regions of the brain, both measures
provide information about the health of the brain and are typically collected and reported together. However, a decrease
in MD would be an improvement, while an increase in FA would be an improvement.

For our proposed test the exact test was used for m ≤ 20. Covariance matrices were simulated in the same way as in
the Normal approximation, with 50 covariance matrices simulated for each combination of n, m and 𝛿, and 100 samples
generated from each covariance matrix. Results for the power simulation are shown in Table 3.

The following conclusions can reasonably be made from the simulations.
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T A B L E 4 Empirical Type I error estimates for our proposed test

n = 3 n = 10

𝜹 m = 6 m = 16 m = 26 m = 50 m = 6 m = 16 m = 26 m = 50

1 0.027 0.020 0.013 0.006 0.044 0.042 0.045 0.038

0.50 0.010 0.003 0.002 0.0001 0.025 0.016 0.011 0.005

1 (0.10) 0.005 0.0002 0.0 0.0 0.005 0.0004 0.0001 0.0

Stagger 0.006 0.0006 0.0002 0.0 0.011 0.002 0.0008 0.0001

n = 20 n = 50

1 0.047 0.052 0.048 0.049 0.051 0.050 0.048 0.042

0.50 0.038 0.030 0.027 0.022 0.042 0.048 0.048 0.050

1 (0.10) 0.006 0.0008 0.0004 0.0 0.011 0.002 0.0008 0.0

Stagger 0.016 0.007 0.003 0.0004 0.029 0.014 0.008 0.003

1. The proposed test’s power is not conditioned on whether the effects are equidirectional. When they are, the OLS
test outperforms our proposed test unless the sample size is small. However, our test maintains good power with
bidirectional effects, something the OLS test is not suited for.

2. The OLS test is powerful against the alternative hypothesis that every effect is in the same direction. While the OLS
test is extremely insensitive (as would be expected) to effects that are in different directions.

3. For small samples sizes, n = 3 per group (N = 6 total sample), our proposed test outperforms the OLS test regardless
of the effects examined, while after n = 10 the OLS test has greater power for equidirectional effects. However, it has
been shown the OLS test is very liberal with small sample sizes due to the normal approximation, while we show in
Table 4 that our test is not, thus making comparisons more difficult.

4. As n increases the power for both tests increases but much more so for the OLS test, while as m increases the power
for both tests increase but much more so for our proposed test.

We also examined the Type I error control of our proposed method. We looked at (n = 3, 10, 20, 50) per group with
m = (6, 16, 26, 50) for values of 𝜙 = 0.50 against the null hypothesis of 𝜙0 = 0.50. These were simulated with an effect size
of 1, 0.5, a stagger, and with 1 endpoint of 1 and the rest with 0.1. All these effects were simulated as all positive, and with
half negative, the results were the same for the Type I error as with the power simulation thus we present only the Type
I error estimates with all positive endpoints. The covariance matrices were uniformly sampled from all positive definite
covariance matrices. The results are shown in Table 4.

The simulations show that our proposed test maintains Type I error at or below the nominal level. Recall that the
effect our test is trying to detect is the difference between 𝜙 and 𝜙0. The ability to detect this is also somewhat depen-
dent on the traditional effect size, that is, the standardized difference between two groups. Our simulation shows that
when the effect size 𝛿 consists of very small effects, and when 𝜙 = 𝜙0 the probability of falsely rejecting the null hypoth-
esis is very close to 0. When 𝛿 consists of larger effects, such as effect sizes of 1 for each endpoint, the Type I error is
at the nominal 0.05 level. This is due to the fact that with small samples, and small effect sizes even if a prediction
of the direction is correct, the actual median of the observed difference could be on the wrong side of 0 due to sam-
pling error. When the predictive ability is the same as the null hypothesized ability this means that there is almost no
chance of rejecting the null when it is false. It’s also interesting to note that as m increases our Type I error decreases
for fixed n and 𝛿. Due to the fact that power also increases as m increases it is advantageous to incorporate as many
endpoints that are related to the research hypothesis as possible. We also note here the difference between our pro-
posed test and O’Brien’s OLS test which has been shown to be liberal with small sample sizes.10 Conversely our test
is conservative for small samples, for example, n = 3 in Table 4, while achieving greater power than O’Brien’s OLS
test for very small samples, n = 3 in Table 3, note that the n is per group. In general our proposed test is conser-
vative when the effect sizes between groups are small, and achieves the nominal Type I error rate as the effect size
increases.
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6.2 ASL example

A dataset consisting of measurements of ASL in different regions of the brain will be used to demonstrate our test. This
data comes from Dr. Vidoni at the University of Kansas Medical Center. The data was collected as part of a larger study
examining the relationship between exercise and Alzheimer’s disease that measured pre-post changes after a 12 week
exercise intervention in 11 older adults. The data we present here consists of ASL measures on six regions of the brain:
BA46, Frontal mid, Hippocampus, M1, Superior Parietal and Precuneus, thus m= 6. The research hypothesis is that ASL
will increase in the six regions of the brain following the intervention. No single region is of greater interest, and we
take the observed result across these different regions as a proxy for the more general research hypothesis concerning
structural/functional changes in the brain following the intervention. The researcher provided predictions were that blood
flow would increase in every region. For this data we observed the following pre-post difference sample means [0.16, 0.44,
−1.49, 1.07, 0.97, −0.24] for BA46, Frontal mid, Hippocampus, M1, Superior Parietal and Precuneus, respectively. Thus,
four of the six regions did actually increase meaning the predictions were correct on only two thirds of the measures. The
results of the predictions are therefore p= [1, 1, 0, 1, 1, 0]T . For our dataset we calculated the differences in ASL in the six
regions before and after the intervention and calculated the following sample correlation matrix of those differences.

We observed the following weights wBA46 = 0.46, wFrontalMid = 0.41, wHippocampus = 0.68, wM1 = 0.48, wSuperior Parietal = 0.39
and wPrecuneus = 0.40, with W =

∑6
i=1 wi = 2.22.

Our observed test statistic is tm = 1 ⋅ (0.46)+ 1 ⋅ (0.41)+ 0 ⋅ (0.68)+ 1 ⋅ (0.48)+ 1 ⋅ (0.39)+ 0 ⋅ (0.40)= 1.74.
The weight given to the ASL measure in the Hippocampus is over 140% of the weight of any other measure, indicating

that ASL measures in the Hippocampus were more “independent” of the other regions, thus the result of predictions in
that region are given more weight.

There are 26 possible combinations of predictions, thus our test statistic can take on 64 different values. The null
hypothesis for this study was set at 𝜙0 = 0.50. The probabilities of correctly predicting {0, 1, 2, 3, 4, 5, 6} responses are
(0.015625, 0.09375, 0.234375, 0.3125, 234375, 0.09375, 0.015625), these are simply binomial probabilities with success
parameter 0.50 and n = 6. There are (1, 6, 15, 20, 15, 6, 1) combinations, respectively, of getting the {0, 1, 2, 3, 4, 5, 6} correct
predictions. Thus, the probability of any single test statistic value depends on the number of correct predictions shown
below. [0.015625

1
,

0.09375
6

,
0.234375

15
,

0.3125
20

,
0.234375

15
,

0.09375
6

,
0.015625

1

]
= [0.015625, 0.015625, 0.015625, 0.015625, 0.015625, 0.015625].

In the case where𝜙0 = 0.5 the probability of any single test statistic value will be the same as any other value, however,
this is not the case when 𝜙0 ≠ 0.5. Given the probabilities of all possible test statistic values, we can then calculate the
distribution of the test statistic exactly since we can enumerate the probability of every possible value and could calculate
every value.

For our observed tm = 1.74 with 𝜙0 = 0.50 the probability of getting a test statistic as or more extreme under the null,
that is, the p-value, is .3125, thus we would fail to reject the null hypothesis at the traditional 𝛼 = 0.05 level in favor of
the alternative that the research’s true predictive ability is ≥ 0.50. We note that if t-tests had been carried out on all 6
measures, and one specified as primary, with the others as secondary, it would not matter which one was designated as
primary because the p-value for all six tests is >.05. This dataset also could be analyzed using O’Brien’s OLS test since the
predicted response was in the same direction for each endpoint. The OLS test resulted in a test statistic of TOLS = 0.03,
with p-value of .86. Both our proposed test and O’Briens OLS test came to similar conclusions. The interpretation for
the OLS test is that there is little evidence that the effect of the intervention was positive across all endpoints, namely,
because they pre-post changes were not all positive. Our proposed test can be interpreted as providing little evidence that
the researcher was able to predict the directional changes, indicating that the research hypothesis which informed those
predictions was not supported by the data.

7 DISCUSSION

We have described a new statistical test for studies with multiple endpoints. Our technique makes use of researcher’s
predictions and is essentially a test of whether a researcher’s understanding of the natural process, that is, their ability
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to correctly predict the outcomes, is convincing enough to support their research hypothesis. This test is able to answer
an essential question in early biomedical research, does the researcher understand enough about the natural process to
continue supporting that research, or should it be abandoned in favor of a more promising research track. Our test has
an exact distribution as well as a normal approximation for use when the computation of the exact distribution becomes
difficult. We compared our test to O’Brien’s OLS test which has been used extensively in settings with multiple endpoints
and found several key differences. O’Brien’s OLS test is more powerful when the effects on each endpoint are all in the
same direction except when the sample size is very small. While this may sometimes be the case, it is certainly a restriction
on the applicability of the test to situations where some of the endpoints may be expected to change in different directions.
Our proposed test uses all endpoints to come to a single conclusion about a research hypothesis but does not restrict the
directional change to one direction. We have shown that our test performs well in those situations and when all effects
are in the same direction for a large number of endpoints. Importantly, our test has an exact distribution and can be used
for extremely small samples (simulation showed N = 6, with 3 per group) and many endpoints, situations under which
similar tests that rely on approximations, such as the OLS test or Hotelling’s T2 are unreliable.

7.1 Limitations, extensions, and future work

For small sample sizes it has been shown that sample correlations can be unstable.18,19 This is the main concern with
treating the weights as fixed since for large sample sizes the sample pairwise correlations and thus the weights will be
close to their true values. The literature on the topic has been concerned with the stability of estimates for hypothesis
testing while we are interested in the point estimate; nevertheless, for small sample sizes the instability of the pairwise
sample correlations could lead to our weights being far from the true value and our test might over or under weight
various endpoints. While this is a concern, we note that our test came to the same conclusions over 96% of the time in all
scenarios we examined in Section 6.

We believe there are many ways to extend this methodology. In this article, we have only included one-sided predic-
tions, however, predictions of “change” or “no-change” can also be made. For example, with a prediction of a “change”
that is a difference from 0 by making an assumption about the distribution, such as Normal, of the endpoint we can define
an interval around 0 such that there is 𝜙0 probability of an observation being within that interval. An observed value
outside the interval would be considered a correct prediction.

One assumption of our approach is that the predictive ability on all endpoints is constant, this may not be realistic in
scenarios where the researcher has better information about one endpoint relative to another. For instance, a researcher
could be very certain that endpoint A would increase and set 𝜙0,A = 0.8 while they might be less certain that endpoint
B would have their predicted change and set 𝜙0,B = 0.5. If the predictive ability differed across endpoints both the mean
and variance of our proposed test statistic would change. Under this null distribution the sum of the responses from these
endpoints could be modeled as a weighted Poisson Binomial Distribution which can be calculated via a recursive formula
for small samples20 or can be approximated with larger samples.

Our current work and plans for future work include: extending the methodology beyond one sided predictions to
encompass the two sided predictions discussed and allowing different prediction probabilities for different endpoints,
thereby assigning more importance to different endpoints. In addition, further work needs to be done to compare our test
to other nonparametric tests such as O’Brien’s RS test under various settings.
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APPENDIX A. ASYMPTOTIC NORMAL APPROXIMATION

The Lindberg14 Condition states that for a set of independent but not necessarily identically distributed random
variables Xi with expected values 𝜇i and variances 𝜎2

i where we let s2
m =

∑m
i=1 𝜎

2
i that

m∑
i=1

Xi − 𝜇i√∑m
i=1 𝜎

2
i

d
→N(0, 1)

as long as the following condition holds for all 𝜖 > 0

lim
m→∞

1
s2

m

m∑
i=1

E
[
(Xi − 𝜇i)2 ⋅ 1|Xi−𝜇i|>𝜖⋅sm

]
= 0

We show that as long as 𝜙0 is bounded away from 0 and 1 this condition will hold. We consider the approximation for
𝜙0 ∈ (0, 1) and we do not consider the cases where C = I or C = Jm since we have shown that in both cases the test statistic
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follows a binomial distribution and thus has a well-known normal approximation. We also make the assumption that as
m→∞ the number of unique w′

i s, the weights, also goes to infinity. By assuming this we restrict this approximation to
settings where the measure of interest are not all equal, or for instance, where all but 1, or 2 are all equal. We assume here
that the number of unique measures grows.

Let Xi = piwi then under the null hypothesis and treating the weights as fixed leads to E[Xi] = 𝜙0wi and 𝜎2
Xi
= 𝜙0(1 −

𝜙0)w2
i and sn =

√
𝜙0(1 − 𝜙0)

∑m
i=1 w2

i gives the following formulation of the Lindberg condition

lim
m→∞

1
𝜙0(1 − 𝜙0)

∑m
i=1 w2

i

m∑
i=1

E

⎡⎢⎢⎢⎢⎢⎣
(piwi − 𝜙0wi)2 ⋅ 1

|piwi−𝜙0wi|>𝜖⋅
√√√√√√𝜙0(1−𝜙0)

m∑
i=1

w2
i

⎤⎥⎥⎥⎥⎥⎦
= 0

The LHS of the limit
(

1
𝜙0(1−𝜙0)

∑m
i=1 w2

i

)
will always go to 0 as m→∞ because since wi > 0 for all i and we assume the

weights are not all identical the sum of the squared weights will go to ∞ as m→∞.
Thus, we focus on the expectation and specifically on the indicator function. We show that for given

restriction of 𝜙0 the indicator will always be 0, thus the expectation will always be 0 and thus the limit as
m→∞ equals 0, satisfying the condition and we show that these restrictions on 𝜙0 will always be satisfied
as m→∞.

There are two scenarios to consider the indicator function under, when pi = 0 and when pi = 1.
For all i such that pi = 0 :
Note that wi and 𝜙0 are always > 0. The indicator function depends on

| − 𝜙0wi| > 𝜖

√√√√𝜙0(1 − 𝜙0)
m∑

i=1
w2

i

= 𝜙2
0w2

i > 𝜖2𝜙0(1 − 𝜙0)
m∑

i=1
w2

i

= 𝜙0w2
i > 𝜖2(1 − 𝜙0)

m∑
i=1

w2
i

= 𝜙0w2
i > 𝜖2

m∑
i=1

w2
i − 𝜙0𝜖

2
m∑

i=1
w2

i

−𝜙0

(
w2

i + 𝜖2
m∑

i=1
w2

i

)
> 𝜖2

m∑
i=1

w2
i (combining like terms)

⇒ 𝜙0 >
𝜖2 ∑m

i=1 w2
i

(w2
i + 𝜖2 ∑m

i=1 w2
i )
.

Thus, when pi = 0 the indicator function will be 1 for all i if the above inequality holds, thus the indicator function
will be 0 for all i such that pi = 1 if the following inequality holds.

𝜙0 <
𝜖2 ∑m

i=1 w2
i

(w2
i + 𝜖2 ∑m

i=1 w2
i )
.

For all i such that pi = 1 : Note that wi and 𝜙0 are always > 0. The indicator function depends on
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|wi − 𝜙0wi| > 𝜖

√√√√𝜙0(1 − 𝜙0)
m∑

i=1
w2

i

|wi(1 − 𝜙0)| > 𝜖

√√√√𝜙0(1 − 𝜙0)
m∑

i=1
w2

i

w2
i (1 − 𝜙0)2 > 𝜖2𝜙0(1 − 𝜙0)

m∑
i=1

w2
i (removing absolute value and squaring)

w2
i (1 − 𝜙0) > 𝜖2𝜙0

m∑
i=1

w2
i

w2
i − w2

i 𝜙0 > 𝜖2𝜙0

m∑
i=1

w2
i

w2
i >

(
𝜖2

m∑
i=1

w2
i + w2

i

)
𝜙0

w2
i

𝜖2 ∑m
i=1 w2

i + w2
i

> 𝜙0.

Thus, when pi = 1 the indicator function will be 1 for all i if the above inequality holds, therefore the indicator function
will equal 0 for all i such that pi = 1 if the following inequality holds.

w2
i

𝜖2 ∑m
i=1 w2

i + w2
i

< 𝜙0

These two scenarios, that for a given i pi = 0 or pi = 1 cover all possible outcomes. When we combine these two restric-
tions on 𝜙0 they give an upper and lower bound for 𝜙0 such that the indicator function will equal 0 if for all i 𝜙0 is
within (

w2
i

𝜖2 ∑m
i=1 w2

i + w2
i

,
𝜖2 ∑m

i=1 w2
i

(w2
i + 𝜖2 ∑m

i=1 w2
i

)

If this holds then the indicator function will always be 0 and the limit will equal 0, thus the Lindberg condition will
hold. We note that as m→∞ the summation

∑m
i=1 w2

i will tend to infinity so long that as m increases the number of unique
weights also increases (ie, the increase in m is not solely driven by adding copies of the same measure). Thus, as the
lower bound will tend to 0, and the upper bound will tend to 1, so the restriction on 𝜙0 tends to (0, 1) as m→∞. Thus,
asymptotically the normal approximation will hold so long as 𝜙0 is not set equal to 0, or 1.


