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The objective of this meta-analysis is to explore the correlation between the apparent diffusion coefficient (ADC) on diffusion-
weighted MR and the standard uptake value (SUV) of 18F-FDG on PET/CT in patients with cancer. Databases such as PubMed
(MEDLINE included), EMBASE, and Cochrane Database of Systematic Review were searched for relevant original articles that
explored the correlation between SUV andADC in English. After applying Fisher’s 𝑟-to-𝑧 transformation, correlation coefficient (𝑟)
values were extracted from each study and 95% confidence intervals (CIs) were calculated. Sensitivity and subgroup analyses based
on tumor type were performed to investigate the potential heterogeneity. Forty-nine studies were eligible for the meta-analysis,
comprising 1927 patients. Pooled 𝑟 for all studies was −0.35 (95% CI: −0.42–0.28) and exhibited a notable heterogeneity (𝐼2 =
78.4%; 𝑃 < 0.01). In terms of the cancer type subgroup analysis, combined correlation coefficients of ADC/SUV range from −0.12
(lymphoma, 𝑛 = 5) to −0.59 (pancreatic cancer, 𝑛 = 2).We concluded that there is an average negative correlation between ADC and
SUV in patients with cancer. Higher correlations were found in the brain tumor, cervix carcinoma, and pancreas cancer. However,
a larger, prospective study is warranted to validate these findings in different cancer types.

1. Introduction

At present, various imaging modalities play an important
role in diagnosis, staging, follow-up, and therapeutic eval-
uation of patients with cancer. Positron emission tomogra-
phy/computed tomography with F-18 based fluorodeoxyglu-
cose (18F-FDG PET/CT) is considered as an accurate method
for characterizing tumor lesions due to the availability of
anatomic and glucose metabolic information of tumor [1].
The standardized uptake value (SUV) is the most frequently
used parameter derived from 18F-FDG PET, which has
been used for assessing tumor aggressiveness, differentiating
benign from malignant tumors, and monitoring treatment
[2, 3].

Magnetic resonance imaging (MRI) is another important
tool to detect and characterize tumors. Specifically, diffusion-
weighted imaging (DWI) provides an additional promising

dimension to the conventional anatomical MRI. Apparent
diffusion coefficient (ADC) is a parameter obtained by MR-
DWI, reflecting the Brownian movement of water molecules.
The ADC value has been shown to link with the cell
density, microvascular circulation, and membrane integrity
of a tumor tissue [4].

Although glucose metabolism and cell density represent
two different facets of tumor biology, many researchers tried
to find the relationship between ADC and SUV. However,
there is a controversy in this relationship. Some data demon-
strated that there was no significant correlation observed
between SUV and ADC [5], while other studies reported that
SUV was inversely correlated with ADC [6, 7]. Given the
conflicting evidence on this issue, we conducted this meta-
analysis to explore the correlation between ADC and SUV in
cancer patients.
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2. Methods

2.1. Literature Search. Two observers independently searched
the PubMed (MEDLINE included), EMBASE, and Cochrane
Library databases for published studies. The search was
limited to publications written in English.The databases were
searched using the terms ((positron emission tomography)
OR (PET) OR (positron emission tomography/computed
tomography) OR (PET/CT) OR (PET-CT) OR (positron
emission tomography-computed tomography)) AND ((18F-
FDG) OR (fluorodeoxyglucose) OR (FDG) OR (18FDG)
OR (FDG-F18)) AND ((apparent diffusion coefficient) OR
(ADC)) AND ((DiffusionMagnetic Resonance Imaging) OR
(Diffusion MRI) OR (Diffusion Weighted MRI) OR (DWI)
OR (diffusion-weighted magnetic resonance imaging) OR
(MRIDWI)OR (diffusion-weighted imaging)OR (diffusion-
weighted MRI)).

2.2. Study Identification and Selection. Two independent re-
viewers evaluated the potentially relevant articles on the basis
of the inclusion and exclusion criteria. Articles were included
if they met the following criteria:

(a) Investigation of the relationship between ADC mea-
sured byMRand SUVmeasuredwith PETor PET/CT
scanning

(b) Studies focusing on patients with malignant tumors,
which may include patients with benign conditions
as long as the vast majority of patients (>50%) in the
study had cancer

(c) Research article published in the peer-reviewed jour-
nals

The exclusion criteria included the following:

(a) Data or part of data presented inmore than one article
(in this case, the article containing the latest and/or
the most complete data was chosen)

(b) Animal studies, reviews, case report, letters, editori-
als, abstracts, comments, and in vitro studies

(c) Studies including less than 10 patients or 10 lesions
(d) Articles without sufficient information for calculation

of correlation coefficient

If there was discordance among the 2 independent research-
ers for one study, its eligibility was decided by the 3rd
investigator.

2.3. Data Extraction. The data were extracted from the
included literatures by two investigators (Shengming Deng
and Bin Zhang) independently, and the extracted contents
included the following:

(a) Overall characteristics of studies, including authors,
year of publication, number of patients and lesions,
and tumor type

(b) Technical characteristics of PET or PET/CT mea-
surement of 18F-FDG, including characteristics of the

scanner, 18F-FDG dose, uptake time of the tracer,
emission scan time, delineation of the tumor, and
indexes of uptake (SUVmax, SUVmean, or others)

(c) Technical characteristics ofMR or PET/MRmeasure-
ment ADC covered imaging equipment, 𝑏 value, MRI
field strength, and the index used to characterize the
ADC (average, minimum, or others)

(d) The degree of correlation between ADC and SUV,
including Spearman’s correlation coefficient (SCC),
Pearson’s correlation coefficient (PCS), and r2. If
the article did not report the value of correlation
coefficient 𝑟 directly, 𝑟 value was calculated based on
the raw data or scatter plot using the free software
Engauge Digitizer (free software downloaded from
https://sourceforge.net) and the SPSS 18.0 software.
SCC was used for this meta-analysis. Since the SCC
has already been processed by logarithmic conver-
sion, it does not need to undergo the conversion
again. The published PCSs were converted to SCCs
for further analysis [57]. The sampling of SCC is not
normally distributed. Because its confidence interval
(CI) depends on the value of correlation coefficient,
we converted the SCC by Fisher transformation to
obtain 𝑧 value with an approximately normal dis-
tribution. 𝑧 value was then converted by inverse
Fisher transformation to obtain the SCC and the
corresponding CI.

If more than one correlation coefficient value calculated
according to various SUV indexes or ADC indexes was
reported in the article, the lowest value was chosen.

When disagreements occurred between the two review-
ers, a third investigator joined to vote for a decision.

2.4. Methodology of Quality Assessment. Two investigators
(Shengming Deng and Bin Zhang) assessed the quality of
the articles independently according to the QUADAS-2 [58],
which consists of 2 parts of contents: “risk assessment” and
“practical application.” The former was assessed from 4 key
domains as patient selection, index test, reference standard,
and flow and timing, and the latter included 3 aspects as
patient selection, index test, and reference standard.

To make sure that the QUADAS-2 tool is applicable
to the present study, we designated SUV measurement as
the “reference test” and ADC measurement as the “index
test.” In this study, we chose one month as the threshold
interval between PET or PET/CT examination and DWI-
MRI detection in case tumor biology will change much. A
third reviewer was introduced when there were assessing
differences between the two observers.

2.5. Meta-Analysis. The pooled correlation coefficient be-
tween SUV and ADC was calculated according to the values
of correlation coefficients obtained in each individual study.
Correlation coefficient values were converted by Fisher’s 𝑟-
to-𝑧 transformation to obtain approximately normally dis-
tributed 𝑧 values to further calculate 95% CIs. The random-
effects model was used for the pooled analysis in this study.

https://sourceforge.net
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Figure 1: Flow diagram of study selection.

Correlations were classified as poor (correlation coefficient
𝑟 < 0.20), average (𝑟= 0.20–0.39), moderate (𝑟= 0.40–0.59),
significant (𝑟= 0.60–0.79), and strong (𝑟 > 0.80) [59]. Publi-
cation bias was assessed by means of Begg’s funnel plots and
Begg’s statistical test.

The heterogeneity of 𝑟 values between studies was tested
by calculating 𝑄 statistic and the inconsistency index (I2).
𝑝 < 0.05 or I2 > 50% indicated the presence of heteroge-
neity. In case of the existence of heterogeneity, a sensitivity
analysis was performed for all studies to further investigate
the study heterogeneity. In a subgroup analysis, studies were
stratified according to tumor type and correlation coeffi-
cient value (SUVmean/ADCmean, SUVmax/ADCmin, SUVmax/
ADCmean, etc.).

Statistical analysis was performed using STATA 11 soft-
ware package (Stata Corporation, College Station, TX, USA).
𝑝 < 0.05 was considered statistically significant.

3. Results

3.1. Literature Search and Selection of Studies. The original
search identified 145 articles in PubMed and 759 articles
in EMBASE. After removing duplicates, 789 abstracts were
screened according to the evaluation criteria, and 115 in

total were selected to be read in full as potentially eligible.
After reading the full texts, 66 studies were excluded for
the following reasons: (1) the article did not involve the
evaluation of the relationship between ADC value and 18F-
FDG uptake (𝑛 = 38); (2) the number of cases or tumor
sites studied was fewer than 10 (𝑛 = 13); (3) the raw data in
the article failed to generate the correlation coefficient values
(𝑛 = 10); (4) part of the data in the study appeared in other
articles (𝑛 = 3); (5) parameters measured by two individual
reviewers were presented in the article which was difficult to
choose (𝑛 = 1); and (6) most of the cases studied were benign
tumors (𝑛 = 1). Figure 1 describes the study selection process
and results according to the PRISMA guidelines. Finally, 49
published articles were included in the present study [8–56].

3.2. Study Characteristics. The selected studies were pub-
lished between 2008 and 2015. The median number of
patients per studywas 32 (range: 7–131) with a total number of
1927 patients. In some studies, more than one tumor site was
analyzed on several patients; therefore, a total of 2356 samples
were assessed in the meta-analysis. Studies covering a range
of cancer sites are summarized in Table 1.

The most studied tumor location was the lung with 10
studies.The second tumor type was head and neck cancer, for



4 Contrast Media & Molecular Imaging
Ta

bl
e
1:
1
8
F-
FD

G
PE

T
sc
an

ch
ar
ac
te
ris

tic
sa

nd
M
RI

sc
an
ne
r.

Au
th
or

Ye
ar

Sc
an
ne
r

FD
G
do

se
(M

Bq
)

U
pt
ak
ep

er
io
d
(m

in
)

Em
iss
io
n
tim

e(
m
in
)

SU
V
in
de
x

D
eli
ne
at
io
n

M
or
ie
ta
l.
[8
]

20
08

G
E
D
isc

ov
er
y
ST

PE
T/
CT

+
Ph

ili
ps

In
te
ra

Ac
hi
ev
aN

ov
aD

ua
l1
.5
T
M
R

3.
7/
kg

60
3

SU
V-
CR

M
an
ua
l

H
o
et
al
.[
9]

20
09

G
E
D
isc

ov
er
y
ST

16
PE

T/
CT

+
Si
em

en
s

Ti
m

Tr
io

3.
0T

M
R

33
3–
40

7
50

3
SU

V
m
ax
/S
U
V

m
ea
n

Au
to
m
at
ic

Pa
lu
m
bo

et
al
.[
10
]

20
09

G
E
Ad

va
nc
eP

ET
+
G
E
1.5

T
M
R

44
4–

55
5

45
6–

10
SU

V-
CR

Se
m
ia
ut
om

at
ic

Ao
ya
gi
et
al
.[
11
]

20
10

PE
T
+
Ph

ili
ps

In
te
ra

Ac
hi
ev
aN

ov
aD

ua
l

1.5
T
M
R

N
N

N
SU

V
m
ax

N

N
ak
aj
o
et
al
.[
12
]

20
10

G
E
D
isc

ov
er
y
ST

E
PE

T/
CT

+
Ph

ili
ps

In
te
ra

Ac
hi
ev
a1

.5
T
M
R

3.
7/
kg

60
2.
5

SU
V

m
ax

Au
to
m
at
ic

Pu
nw

an
ie
ta
l.
[1
3]

20
10

G
E
D
isc

ov
er
y
LS

PE
T/
CT

+
Si
em

en
s

Av
an
to

1.5
T
M
R

37
0

60
N

SU
V

m
ax

M
an
ua
l

Ta
ni
m
ot
o
et
al
.[
14
]

20
10

To
sh
ib
aA

qu
id
uo

PE
T/
CT

+
G
E
Si
gn

a
H
D
x
3.
0T

M
R

21
7.8

–3
72
.5

60
3

SU
V

Au
to
m
at
ic

Ch
oi
et
al
.[
15
]

20
11

Ph
ili
ps

G
em

in
io
rS

ie
m
en
sB

io
gr
ap
h
40

PE
T/
CT

+
G
E
Si
gn

aH
D
x
or

H
D
xt

1.5
T

M
R

5.
2/
kg

60
2

SU
V

m
ea
n

M
an
ua
l

Fr
ue
hw

al
d-
Pa
lla
m
ar

et
al
.[
16
]

20
11

Si
em

en
sB

io
gr
ap
h
64

PE
T/
CT

+
Ph

ili
ps

Ac
hi
ev
a3

.0
T
M
R

30
0

50
3

SU
V

m
ax

Au
to
m
at
ic

G
u
et
al
.[
17
]

20
11

G
E
D
isc

ov
er
y
VC

T
PE

T/
CT

+
Ph

ili
ps

Ac
hi
ev
a3

.0
T
M
R

4.
8/
kg

60
4

SU
V

m
ax

Au
to
m
at
ic

O
hb

ae
ta
l.
[1
8]

20
11

G
E
D
isc

ov
er
y
ST

PE
T/
CT

+
Ph

ili
ps

Ac
hi
ev
a3

.0
T
or

Ph
ili
ps

G
yr
os
ca
n
In
te
ra

Ac
hi
ev
aN

ov
aD

ua
l1
.5
T
M
R

3.
7/
kg

60
3

SU
V-
CR

N

U
su
da

et
al
.[
19
]

20
11

Si
em

en
sB

io
gr
ap
hy

Se
ns
at
io
n
16

PE
T/
CT

+
Si
em

en
sM

ag
ne
to
m

Av
an
to

1.5
T
M
R

18
5

60
3

SU
V

m
ax

Au
to
m
at
ic

W
u
et
al
.[
20
]

20
11

G
E
D
isc

ov
er
y
ST

E
16

PE
T/
CT

+
Si
em

en
s

Tr
io
-T
im

3.
0T

M
R

37
0

60
3

SU
V

m
ax

M
an
ua
l

Ca
fa
gn

ae
ta
l.
[2
1]

20
12

G
E
D
isc

ov
er
y
ST

E
16

PE
T/
CT

+
Ph

ili
ps

Ac
hi
ev
a1

.5
T
M
R

3.
7/
kg

60
3

SU
V

m
ax

N

Ch
oi
et
al
.[
22
]

20
12

Si
em

en
sB

io
gr
ap
h
D
uo

or
Bi
og
ra
ph

Tr
ue
po

in
tP

ET
/C
T
+
Ph

ili
ps

Ac
hi
ev
a

1.5
T
or

Si
em

en
sM

ag
ne
to
m

Ve
rio

3.
0T

M
R

N
N

2-
3

SU
V

m
ax

N

M
at
su
sh
im

ae
ta
l.
[2
3]

20
12

To
sh
ib
aA

qu
id
uo

PC
A-

70
00
B
PE

T/
CT

+
G
E
Si
gn

aE
xc
ite

H
D
xt

1.5
T
M
R

3.
7/
kg

60
6

SU
V-
CR

M
an
ua
l

N
ak
aj
o
et
al
.[
24
]

20
12

G
E
D
isc

ov
er
y
ST

E
PE

T/
CT

+
Si
em

en
s

M
ag
ne
to
m

Av
an
to

1.5
T
M
R

3.
7/
kg

60
N

SU
V

m
ax

Au
to
m
at
ic

N
ak
am

at
su

et
al
.[
25
]

20
12

To
sh
ib
aA

qu
id
uo

16
PE

T/
CT

+
Si
em

en
s

M
ag
ne
to
m

Sy
m
ph

on
y
1.5

T
M
R

16
6.
7–
32
0.
8

60
2

SU
V

m
ea
n

M
an
ua
l

N
ak
am

ur
ae

ta
l.
[2
6]

20
12

Si
em

en
sB

io
gr
ap
h
LS

/S
en
sa
tio

n
16

PE
T/
CT

+
Si
em

en
sM

ag
ne
to
m

Av
an
to

1.5
T
M
R

3.
7/
kg

90
2.
4

SU
V

m
ax

M
an
ua
l

Re
gi
er

et
al
.[
27
]

20
12

Ph
ili
ps

G
em

in
iG

XL
10

PE
T/
CT

+
Ph

ili
ps

Ac
hi
ev
a1

.5
T
M
R

5/
kg

60
1–
1.5

SU
V

m
ax

N



Contrast Media & Molecular Imaging 5

Ta
bl
e
1:
C
on

tin
ue
d.

Au
th
or

Ye
ar

Sc
an
ne
r

FD
G
do

se
(M

Bq
)

U
pt
ak
ep

er
io
d
(m

in
)

Em
iss
io
n
tim

e(
m
in
)

SU
V
in
de
x

D
eli
ne
at
io
n

A
hn

et
al
.[
28
]

20
13

Si
em

en
sB

io
gr
ap
h
Tr
ue
po

in
t4

0
PE

T/
CT

+
Si
em

en
sM

ag
ne
to
m

Ti
m

Tr
io

3.
0T

M
R

5.
5/
kg

45
N

SU
V

m
ax

N

By
un

et
al
.[
29
]

20
13

Si
em

en
sB

io
gr
ap
h
6
PE

T/
CT

+
Si
em

en
s

M
ag
ne
to
m

Tr
io
A
Ti
m

3.
0T

M
R

7.4
/k
g

60
3.
5

SU
V

m
ax

Au
to
m
at
ic
or

m
an
ua
l

G
on

g
et
al
.[
30
]

20
13

G
E
D
isc

ov
er
y
VC

T
PE

T/
CT

+
Ph

ili
ps

Ac
hi
ev
a3

.0
T
M
R

4.
8/
kg

60
4

SU
V

m
ax

M
an
ua
l

N
ak
am

ur
ae

ta
l.
[3
1]

20
13

Si
em

en
sB

io
gr
ap
h
LS

/S
en
sa
tio

n
16

PE
T/
CT

+
Si
em

en
sM

ag
ne
to
m

Av
an
to

1.5
T
M
R

3.
7/
kg

90
2.
4

SU
V

m
ax

M
an
ua
l

Ra
kh

ej
ae

ta
l.
[3
2]

20
13

Si
em

en
sB

io
gr
ap
h
m
CT

PE
T/
CT

+
Si
em

en
sB

io
gr
ap
h
m
M
R
PE

T/
M
R

55
5

45
2

SU
V

m
ax

M
an
ua
l

Sc
hm

id
te
ta
l.
[3
3]

20
13

Si
em

en
sH

I-
RE

Z
Bi
og
ra
ph

16
or

Si
em

en
s

Bi
og
ra
ph

m
CT

PE
T/
CT

+
Si
em

en
s

Bi
og
ra
ph

m
M
R
PE

T/
M
R

31
7–
38
1

55
–6

1
2-
3

SU
V

m
ax

N

Ts
uc
hi
da

et
al
.[
34
]

20
13

G
E
D
isc

ov
er
y
LS

4
PE

T/
CT

+
G
E
Si
gn

a
Ex

ci
te
1.5

T
M
R

18
5

50
2

SU
V

m
ea
n

N

Va
ro
qu

au
x
et
al
.[
35
]

20
13

Si
em

en
sB

io
gr
ap
h
16
-s
lic
eP

ET
/C
T
+

Si
em

en
sE

sp
re
e1
.5
T
or

Tr
io

3.
0T

M
R

37
0

60
3

SU
V

M
an
ua
l

Ba
ba

et
al
.[
36
]

20
14

G
E
Ad

va
nc
eN

Xi
PE

T/
CT

+
Ph

ili
ps

In
te
ra

Ac
hi
ev
a1

.5
T
M
R

3.
7/
kg

60
2

SU
V

m
ax

M
an
ua
l

de
Jo
ng

et
al
.[
37
]

20
14

Si
em

en
sB

io
gr
ap
h
40

Tr
ue

Po
in
to

r
Ph

ili
ps

G
em

in
iT

O
F
PE

T/
CT

+
Ph

ili
ps

Ac
hi
ev
ao

rS
ie
m
en
sM

ag
ne
to
m

Av
an
to

1.5
T
M
R

2.
0–

3.
7/
kg

60
–7
5

2-
3

SU
V

m
ax

M
an
ua
l

Er
et
al
.[
38
]

20
14

G
E
D
isc

ov
er
y
ST

PE
T/
CT

+
Si
em

en
s

M
ag
ne
to
m

Ve
rio

3.
0T

M
R

5.
55
/k
g

50
–6

0
N

SU
V

m
ax

M
an
ua
l

G
ig
an
ti
et
al
.[
39
]

20
14

G
E
D
isc

ov
er
y
ST
,D

isc
ov
er
y
ST

E,
D
isc

ov
er
y-
69
0,
or

Ph
ili
ps

G
em

in
iG

XL
PE

T/
CT

+
Ph

ili
ps

Ac
hi
ev
a1

.5
T
M
R

3.
7/
kg

60
2.
5

PV
C-

SU
V

m
ea
n

Au
to
m
at
ic

G
ru
en
ei
se
n
et
al
.[
40

]
20
14

Si
em

en
sB

io
gr
ap
h
m
M
R
PE

T/
M
R

20
1±

69
10
2
±
39

8
SU

V
m
ax

M
an
ua
l

Iiz
uk

ae
ta
l.
[4
1]

20
14

G
E
D
isc

ov
er
y
ST

El
ite

PE
T/
CT

+
Si
em

en
sA

va
nt
o
1.5

T
M
R

3.
7/
kg

60
2-
3

SU
V

m
ax

N

Sa
ka
ne

et
al
.[
42
]

20
15

Ph
ili
ps

G
em

in
iG

XL
PE

T/
CT

+
G
E
Si
gn

a
H
D
xt

3.
0T

M
R

3.
7/
kg

60
2

SU
V

m
ea
n

M
an
ua
l

Sc
hw

en
ze
re

ta
l.
[4
3]

20
14

PE
T/
CT

+
Si
em

en
sB

io
gr
ap
h
m
M
R

PE
T/
M
R

29
4–

38
6

62
±
4

6
SU

V
m
ea
n

M
an
ua
l

Su
n
et
al
.[
44

]
20
14

Ph
ili
ps

In
ge
nu

ity
TF

PE
T/
M
R

24
0–

35
0

60
±
12

4
SU

V
m
ea
n

Au
to
m
at
ic

Yu
et
al
.[
45
]

20
14

G
E
D
isc

ov
er
y
VC

T
PE

T/
CT

+
Ph

ili
ps

Ac
hi
ev
a3

.0
T
M
R

4.
8/
kg

60
2.
5

SU
V

m
ea
n

M
an
ua
l

Zh
an
g
et
al
.[
46

]
20
14

Si
em

en
sB

io
gr
ap
h
40

PE
T/
CT

+
Si
em

en
s

Tr
io
-T
im

3.
0T

M
R

5.
55
/k
g

60
N

SU
V

m
ax

N



6 Contrast Media & Molecular Imaging

Ta
bl
e
1:
C
on

tin
ue
d.

Au
th
or

Ye
ar

Sc
an
ne
r

FD
G
do

se
(M

Bq
)

U
pt
ak
ep

er
io
d
(m

in
)

Em
iss
io
n
tim

e(
m
in
)

SU
V
in
de
x

D
eli
ne
at
io
n

Zu
ko
ty
ns
ki
et
al
.[
47
]

20
14

G
E
Ad

va
nc
eN

Xi
,D

isc
ov
er
y
LS

,a
nd

D
isc

ov
er
y
ST

E;
Ph

ili
ps

G
-P
ET

;S
ie
m
en
s

H
R1

an
d
H
I-
RE

Z
Bi
os
ca
n
PE

T
+
1.5

T
M
R

5.
55
/k
g

40
–6

0
10

SU
V

m
ea
n/
W
M

M
an
ua
l

Br
an
dm

ai
er

et
al
.[
48
]

20
15

Si
em

en
sB

io
gr
ap
h
m
M
R
3.
0T

PE
T/
M
R

30
9
±
70
.32

13
0

5
SU

V
m
ax

M
an
ua
l

C
ov
el
lo
et
al
.[
49
]

20
15

Ph
ili
ps

G
em

in
iT

F
PE

T/
CT

+
Si
em

en
s

Bi
og
ra
ph

m
M
R
3.
0T

M
R

40
6
±
40

81
±
15

3
SU

V
Au

to
m
at
ic

H
an

et
al
.[
50
]

20
15

G
E
D
isc

ov
er
y
ST

E
PE

T/
CT

+
G
E
Si
gn

a
H
D
xt

1.5
T
M
R

5/
kg

60
2.
5

SU
V

m
ea
n

M
an
ua
l

H
ea
co
ck

et
al
.[
51
]

20
15

Si
em

en
sB

io
gr
ap
h
m
CT

PE
T/
CT

+
Si
em

en
sB

io
gr
ap
h
m
M
R
3.
0T

PE
T/
M
R

50
6.
9–

56
6.
1

45
2-
3

SU
V

m
ax

M
an
ua
l

Ka
ra
n
et
al
.[
52
]

20
16

G
E
D
isc

ov
er
y
ST

E
8
PE

T/
CT

+
Si
em

en
s

Av
an
to

1.5
T
M
R

29
6–

37
0

60
2.
5

SU
V

m
ax

Au
to
m
at
ic

Li
tto

oi
je
ta
l.
[5
3]

20
15

Si
em

en
sB

io
gr
ap
h
16

or
Bi
og
ra
ph

40
Tr
ue
po

in
t,
Ph

ili
ps

G
em

in
iT

O
F
or

A
lle
gr
o
PE

T-
CT

+
Ph

ili
ps

Ac
hi
ev
a,

Si
em

en
sA

va
nt
o
or

G
E
Si
gn

a1
.5
T
M
R

2–
3.
7/
kg

60
N

SU
V

m
ax

N

Li
u
et
al
.[
54
]

20
15

Si
em

en
sB

io
gr
ap
h
40

PE
T/
CT

+
G
E

Si
gn

aH
D
E
1.5

T
M
R

5.
55
/k
g

60
N

SU
V

m
ax

N

M
et
ze

ta
l.
[5
5]

20
15

Si
em

en
sB

io
gr
ap
h
Se
ns
at
io
n
16

PE
T/
CT

+
Si
em

en
sM

ag
ne
to
m

Av
an
to

1.5
T
M
R

45
6
±
25

64
±
3

2
SU

V
m
ea
n

M
an
ua
l

Sc
ha
ar
sc
hm

id
te
ta
l.
[5
6]

20
15

Si
em

en
sm

CT
�
PE

T/
CT

+
Si
em

en
s

Bi
og
ra
ph

m
M
R
PE

T/
M
R

28
0
±
50

58
±
11

2
SU

V
m
ea
n

M
an
ua
l

N
:n
ot

re
po

rt
ed
.



Contrast Media & Molecular Imaging 7

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Patient selection

Index test

Reference standard

Flow and timing

High

Unclear

Low

Risk of bias Applicability concerns

Figure 2: Methodological quality of all eligible studies.

which there were 6 studies. Five groups studied breast cancer,
lymphoma, and cervical cancer. Other tumor types include
metastatic gastrointestinal stromal tumors (GIST), brain
cancer, hepatocellular cancer, esophageal cancer, peritoneal
carcinomatosis, pancreatic cancer, and gastric, rectal, uterus,
hepatocellular, and various types.

For MR-DWI examination, forty-one studies used a
stand-alone MR scanner, while 8 studies used a PET/MR
scanner. For MRI field strength, twenty-four studies used
1.5 T, twenty-three studies used 3.0 T, and 2 studies used both.
For the index of ADC, twenty-six studies used ADCmean,
fifteen studies usedADCmin, and 8 studies used other indexes.
For 18F-FDG PET scan, SUVmax, SUVmean, and other SUV
were used to calculate 𝑟 values in 29, 11, and 9 studies,
respectively (Table 2).

3.3. The Results of QUADAS-2 Assessing the Quality of the
Included Articles. As shown in Figure 2, the results of
QUADAS-2 assessing the quality of the included articles
indicated that the results of 10 studies adequately addressed
all risk of bias domains. Among all the 49 studies, risk of
bias was high or unclear with regard to patient selection for
7 studies, the index text for 32 studies, the reference standard
for 31 studies, and flow and timing for 14 studies.

Interpretation of ADC or SUV in a blinded fashion
was an item which most studies did not report. Seventeen
studies clearly stated that the index test was assessed without
knowledge of the results of the reference standard, while
this was unclear in 32 studies. Similarly, in 18 studies, the
interpretation of reference standard was clearly stated as
under unknown index test, while the other 31 studies did not
state the interpretation of reference standard clearly.

Acceptable delay between reference and index tests was
the item which many studies did not report. Eleven studies
provided no information about the time interval between the
execution of MR-DWI and the 18F-FDG PET/CT scan. In 3
studies documented, the interval was more than 4 weeks.

In addition, patients enrolled in 1 study were investigated
on residual tumors after completion of therapy. In these
patients, whether the relationship between 18F-FDG uptake
and ADC value differs from that in patients with prethera-
peutic tumor is unclear; therefore, the risk of case selection

bias in this study was considered unclear in the present
analysis.

3.4. The Results of a Meta-Analysis. The data provided by the
finally chosen studies all met the standard of meta-analysis. 𝑟
values for 3 studies were calculated from provided 𝑟2, and 𝑟
values for 2 other studies were determined from the provided
scatter plot. For 3 other studies, 𝑟 values were calculated
based on the provided raw data of corresponding ADC and
SUV.

Final combined 𝑟 value calculated from all the included
articles was −0.35 (95% CI: −0.42–−0.28), but the results of
heterogeneity test indicated the presence of marked hetero-
geneity among studies (I2 = 78.4%; 𝑝 < 0.01; Figure 3).
We then conducted a sensitivity analysis by excluding each
article at a time to observe its effect on the final outcome,
but the results showed that no individual study contributed
more greatly to the total heterogeneity. The results of Begg’s
test indicated no significant publication deviation among the
included articles (𝑝 > 0.05; Figure 4).

As shown in Figure 5, the subgroup analysis for tumor
types showed that combined 𝑟 for the 10 studies of lung cancer
was −0.35 (95% CI: −0.49–−0.20), and there was significant
heterogeneity among the included studies (I2 = 68.6%; 𝑝 <
0.01). Combined 𝑟 value for the 6 studies on head and neck
cancer was −0.31 (95% CI: −0.44–−0.19; I2 = 11.0%; 𝑝 > 0.05)
which displayed no heterogeneity. Combined 𝑟 value for the
subgroup of 5 studies on lymphoma and cervical cancer was
−0.12 (95% CI: −0.34–0.11) and −0.48 (95% CI: −0.59–−0.37),
respectively, without significant heterogeneity ((I2 = 51.6%;
𝑝 > 0.05) and (I2 = 0.0%; 𝑝 > 0.05)). Combined 𝑟 value
for the 5 studies on breast cancer was −0.24 (95% CI: −0.41–
−0.08; I2 = 68.2%; 𝑝 < 0.01).

Results for the subgroup analysis based on correlation
coefficient value are shown in Figure 6. Eight studies in
SUVmean/ADCmean resulted in 𝑟 = −0.39 (95% CI: −0.54–
−0.23), with I2 = 62.7% (𝑝 < 0.01). Pooled 𝑟 for ten studies
in SUVmax/ADCmin was −0.47 (95% CI: −0.59–−0.34), with
I2 = 70.3% (𝑝 < 0.01). In SUVmax/ADCmean, sixteen studies
provided 𝑟 = −0.29 (95% CI: −0.43–−0.14) with I2 = 80.5%
(𝑝 < 0.01).
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Figure 3: Forest plots of the summary correlation coefficient (𝑟) with corresponding 95% CIs for the correlation between SUV and ADC in
all eligible studies.

4. Discussion

In the recent years, the correlation between ADC and SUV
has been increasingly studied. In the present study, we
investigated the relationship between 18F-FDG uptake and
ADC value using meta-analysis methods. Our meta-analysis
showed that, in cancer patients, there was an average negative
correlation between the SUV and ADC. Subgroup analysis
on different tumor types indicated that degrees of correlation
among different tumor types varied and heterogeneity of

some subgroups changed significantly.The subgroup analysis
on various correlation coefficient values indicated that com-
bined 𝑟 values of subgroups did not show significant changes,
and there were no significant changes in heterogeneity.

In this study, we used QUADAS-2 as an evidence-based
quality assessment tool. In the present analysis, the vast
majority of the articles did not mention whether the test
results of DWI-MRI and 18F-FDG PET (or PET/CT) are
interpreted blindly. Inmost studies, the time interval between
18F-FDG PET (or PET/CT) imaging and the acquirement of
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Figure 4: The funnel plot of the publication bias.

ADC was not clearly stated. In addition, some studies did
not address the inclusion criteria of patients adequately. The
above problems may increase the bias of study.

DWI provides an excellent tissue contrast through detec-
tion of differences in the Brownianmotion ofwatermolecules
in tissues. ADC is a parameter calculated from DWI and
altered by any architectural changes in the proportion of
extracellular to intracellular water molecules because the
diffusion of water molecules is disturbed by intracellular
organelles and macromolecules [60]. Malignant tumors usu-
ally show decreased ADC values because they are character-
ized by increased cellularity, larger nuclear/cytoplasmic ratio,
and less extracellular space relative to normal tissues which
restrict the diffusion of water molecules [61]. Currently, 18F-
FDG PET/CT has been considered as the standard of care in
various cancers. 18F-FDG uptake is correlated with the num-
ber of viable tumor cells and their metabolic activity. Glucose
utilization in tumors is increased due to the Warburg effect
[62]. Recently, the introduction of simultaneous PET/MRI
makes it possible to combine functional and metabolic
studies inmalignancies in one examination. It was postulated
that there is a correlation betweenADC and SUV.The present
study showed that the pooled correlation coefficient between
SUV and ADC was −0.35, indicating an average negative
correlation. A possible explanation of this result might be
that although there is a certain overlap of the information
provided by 18F-FDGPET andDW-MRI, the two parameters
(SUV andADC) reflect different tumor biology. For example,
except for cellularity, ADC is correlated directly with tumor
necrosis because of increased presence of free water in the
necrotic area [63]. However, 18F-FDG PET demonstrates
tumor necrosis as photopenic defects. In addition, although
the ADCmeasurement is derived from DWI which is an MR
sequence that is known for a high detection rate of lesions, it
is not always very specific [64]. Our result suggested that 18F-
FDG PET and DWI-MRI might complement each other on
the clinical diagnosis.

We conducted a subgroup analysis based on different
tumor types. The meta-analysis about ADC and tumor
cellularity correlation revealed no notable variation between

the subgroups based on cancer type [65]. In this study, our
results showed that the correlation between 18F-FDG SUV
and ADC differed between histological types. Combined
correlation coefficients range from −0.12 (lymphoma, 𝑛 = 5)
to−0.59 (pancreatic cancer, 𝑛 = 2). Correlationwasmoderate
in brain, cervix, and pancreas, average in lung, head and neck,
breast, and rectum, and poor in lymphoma. However, this
issue needs to be further explored with more experiments.

The present study has some potential limitations. First,
although the number of patients included in this study was
large, they were relatively limited to a certain type of tumors.
This may cause limitations in our inference based on the
results of subgroup analysis on different histological types.
Second, our meta-analysis was based only on published
studieswhich provided 𝑟 values or rawdatawhich can be used
to calculate 𝑟 values. Other articles which only report positive
or negative results without specific data were excluded from
this analysis. In addition, this study was restricted to articles
published in English, which would cause publication bias.
However, the results of Begg’s test showed no evidence of
publication bias. We also used the random-effects model to
reduce heterogeneity. Therefore, the results of the present
study are reliable.

In short, although there are limitations in this study, our
meta-analysis demonstrated an average negative correlation
between the SUV and ADC values in patients with cancer.
Sufficient data support a moderate correlation for brain,
cervix, and pancreas, average correction for lung, head and
neck, breast, and rectum, and poor for lymphoma. However,
a prospective study with a larger population is warranted to
validate these findings in different cancer types.
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Figure 5: Forest plot of subgroup analysis based on cancer type.
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Figure 6: Forest plot of subgroup analysis based on correlation coefficient value.
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[64] K.-O. Lövblad, H.-J. Laubach, A. E. Baird et al., “Clinical
experience with diffusion-weighted MR in patients with acute
stroke,” American Journal of Neuroradiology, vol. 19, no. 6, pp.
1061–1066, 1998.

[65] L. Chen, M. Liu, J. Bao et al., “The correlation between apparent
diffusion coefficient and tumor cellularity in patients: a meta-
analysis,” PLoS ONE, vol. 8, no. 11, Article ID e79008, 2013.


