11362 measured reflections

 $R_{\rm int} = 0.019$

7992 independent reflections

5675 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzyltriphenylphosphonium perchlorate

Liwei Li* and Xiaogiang He

College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, People's Republic of China Correspondence e-mail: jclgllw@126.com

Received 19 May 2011; accepted 6 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.060; wR factor = 0.185; data-to-parameter ratio = 14.3.

The asymmetric unit of the title compound, $C_{25}H_{22}P^+ \cdot ClO_4^-$, contains two independent cations and two independent anions. The closest intermolecular contact is a weak intermolecular C–H··· π (arene) interaction.

Related literature

For the applications of large cations and anions, see: Fox et al. (2004); Huynh et al. (2000). For related structures, see: Zhang et al. (2010); Fischer & Wiebelhaus (1997); Hubner et al. (1997); Skapski & Stephens (1974).

Experimental

Crystal data

2	
$C_{25}H_{22}P^+ \cdot ClO_4^-$	$\gamma = 73.195 \ (2)^{\circ}$
$M_r = 452.85$	V = 2300.7 (4) Å ³
Triclinic, P1	Z = 4
a = 10.096 (1) Å	Mo $K\alpha$ radiation
b = 13.8967 (13) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 18.2577 (17) Å	T = 293 K
$\alpha = 69.765 \ (2)^{\circ}$	$0.31 \times 0.29 \times 0.24$ mm
$\beta = 84.826 \ (2)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.923, \ T_{\max} = 0.939$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	559 parameters
$wR(F^2) = 0.185$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
7992 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C27-C32 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots Cg^i$	0.93	2.83	3.757 (9)	176
Symmetry code: (i)	$r \perp 1$ $v \perp 1$ z			

Sv

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5256).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Fischer, A. & Wiebelhaus, D. (1997). Z. Krist. New Cryst. Struct. 212, 335-336.

Fox, D. C., Fiedler, A. T., Halfen, H. L., Brunold, T. C. & Halfen, J. A. (2004). J. Am. Chem. Soc. 126, 7627-7638.

Hubner, J., Wulff-Molder, D., Vogt, H. & Meisel, M. (1997). Z. Naturforsch. Teil B. 52, 1321-1325.

Huynh, M. H. V., El-Samanody, E.-S., Demadis, K. D., White, P. S. & Meyer, T. J. (2000). Inorg. Chem. 39, 3075-3085.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Skapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77-85.

Zhang, D. P., Zhang, L. F., Chen, Y. T., Wang, H. L., Ni, Z. H., Wernsdorfer, W. & Jiang, J. Z. (2010). Chem. Commun. 46, 3550-3552.

Acta Cryst. (2011). E67, o1635 [doi:10.1107/S1600536811021660]

Benzyltriphenylphosphonium perchlorate

L. Li and X. He

Comment

Large cations and anions are often employed to act as counter ions in coordination chemistry (Fox *et al.*, 2004; Huynh *et al.*, 2000). Here, we report the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The P atoms are bonded in slightly distorted tetrahedral environments. The P—C bond distances are comparable to those in related componds containing $Ph_3(PhCH_2)P^+$ cations (Zhang, *et al.*, 2010; Fischer & Wiebelhaus, 1997; Hubner, *et al.*, 1997; Skapski & Stephens, 1974). The closest intermolecular contact is a weak intermolecular C—H··· π (arene) interaction.

Experimental

The title compound was synthesized by reacting $[Ph_3(PhCH_2)]Cl$ and $NaClO_4.H_2O(1:1, molar ratio)$ in ethanol. The mixture was stirred for for about 10 min at room temperature, then filtered, and then the filtrate was allowed to slowly evaporate undisturbed for ten days to afford colorless crystals suitable for X-ray diffraction with a yield about 85%.

Refinement

H atoms were placed using the HFIX commands in *SHELXL-97* (Sheldrick, 2008) with C—H distances of 0.93 and 0.97 Å and were allowed for as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Benzyltriphenylphosphonium perchlorate

Crystal data

$C_{25}H_{22}P^+ \cdot ClO_4^-$	Z = 4
$M_r = 452.85$	F(000) = 944
Triclinic, PT	$D_{\rm x} = 1.307 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.096 (1) Å	Cell parameters from 2162 reflections
<i>b</i> = 13.8967 (13) Å	$\theta = 2.4 - 26.7^{\circ}$
c = 18.2577 (17) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 69.765 \ (2)^{\circ}$	T = 293 K
$\beta = 84.826 \ (2)^{\circ}$	Block, colourless
$\gamma = 73.195 \ (2)^{\circ}$	$0.31 \times 0.29 \times 0.24 \text{ mm}$
$V = 2300.7 (4) \text{ Å}^3$	

Data collection

ections
$> 2\sigma(I)$
1°
1

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.185$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.099P)^{2} + 1.1578P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7992 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
559 parameters	$\Delta \rho_{max} = 0.95 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.28935 (10)	0.87956 (7)	0.37917 (6)	0.0715 (3)
Cl2	0.64016 (9)	0.63901 (7)	0.12239 (5)	0.0618 (3)
P1	0.78887 (9)	0.70653 (7)	0.35120 (5)	0.0504 (2)
P2	0.15337 (8)	0.25542 (6)	0.15262 (5)	0.0455 (2)
01	0.2871 (6)	0.8624 (3)	0.4591 (2)	0.160 (2)
O2	0.3355 (3)	0.9704 (2)	0.3405 (2)	0.1007 (10)
03	0.1552 (4)	0.8940 (3)	0.3548 (3)	0.1497 (19)
O4	0.5282 (5)	0.6397 (6)	0.1692 (2)	0.186 (3)
05	0.6241 (5)	0.6110 (5)	0.0585 (3)	0.1600 (19)
O6	0.6364 (6)	0.7454 (3)	0.0897 (4)	0.190 (2)
O7	0.7664 (4)	0.5984 (5)	0.1599 (3)	0.190 (3)
08	0.3807 (3)	0.7868 (2)	0.3676 (2)	0.0951 (9)
C1	0.6743 (3)	0.7966 (3)	0.27025 (19)	0.0552 (8)
H1A	0.6667	0.7578	0.2365	0.066*
H1B	0.5830	0.8198	0.2906	0.066*
C2	0.7194 (3)	0.8937 (3)	0.2221 (2)	0.0540 (8)
C3	0.7893 (4)	0.8939 (4)	0.1541 (2)	0.0749 (11)
Н3	0.8134	0.8331	0.1398	0.090*
C4	0.8242 (6)	0.9860 (6)	0.1063 (3)	0.122 (2)
H4	0.8721	0.9865	0.0603	0.147*
C5	0.7882 (7)	1.0740 (6)	0.1274 (6)	0.152 (4)
Н5	0.8101	1.1354	0.0950	0.183*
C6	0.7216 (7)	1.0744 (4)	0.1938 (5)	0.129 (2)
Н6	0.6995	1.1357	0.2075	0.155*
C7	0.6850 (5)	0.9851 (3)	0.2426 (3)	0.0867 (13)
H7	0.6379	0.9863	0.2886	0.104*
C8	0.7901 (4)	0.7712 (3)	0.42106 (19)	0.0606 (9)
C9	0.9078 (5)	0.7808 (4)	0.4455 (2)	0.0905 (14)
Н9	0.9937	0.7507	0.4277	0.109*
C10	0.8984 (8)	0.8365 (6)	0.4974 (3)	0.130 (2)
H10	0.9781	0.8449	0.5133	0.156*
C11	0.7763 (10)	0.8775 (6)	0.5244 (3)	0.133 (2)
H11	0.7719	0.9134	0.5595	0.160*
C12	0.6574 (8)	0.8679 (6)	0.5014 (3)	0.138 (3)
H12	0.5726	0.8974	0.5205	0.166*
C13	0.6636 (5)	0.8135 (5)	0.4492 (3)	0.1033 (17)
H13	0.5832	0.8060	0.4336	0.124*
C14	0.9621 (3)	0.6633 (3)	0.31777 (19)	0.0557 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	1.0440 (4)	0.7335 (3)	0.2902 (2)	0.0623 (9)
H15	1.0087	0.8041	0.2880	0.075*
C16	1.1773 (4)	0.6984 (4)	0.2661 (2)	0.0709 (10)
H16	1.2330	0.7447	0.2495	0.085*
C17	1.2275 (4)	0.5957 (4)	0.2666 (2)	0.0825 (12)
H17	1.3168	0.5727	0.2494	0.099*
C18	1.1472 (5)	0.5264 (4)	0.2923 (3)	0.0894 (13)
H18	1.1823	0.4566	0.2926	0.107*
C19	1.0149 (4)	0.5594 (3)	0.3177 (3)	0.0760 (11)
H19	0.9608	0.5120	0.3349	0.091*
C20	0.7226 (3)	0.5925 (3)	0.39688 (19)	0.0554 (8)
C21	0.7725 (4)	0.5226 (4)	0.4711 (2)	0.0810 (12)
H21	0.8367	0.5360	0.4970	0.097*
C22	0.7246 (5)	0.4330 (4)	0.5054 (3)	0.0917 (15)
H22	0.7571	0.3862	0.5547	0.110*
C23	0.6308 (5)	0.4131 (3)	0.4677 (3)	0.0820 (13)
H23	0.6006	0.3523	0.4908	0.098*
C24	0.5816 (4)	0.4814 (3)	0.3967 (2)	0.0714 (10)
H24	0.5161	0.4679	0.3717	0.086*
C25	0.6269 (4)	0.5711 (3)	0.3606 (2)	0.0590 (8)
H25	0.5925	0.6171	0.3115	0.071*
C26	0.0749 (4)	0.3622 (3)	0.06520 (19)	0.0562 (8)
H26A	0.0360	0.4268	0.0781	0.067*
H26B	0.1468	0.3749	0.0271	0.067*
C27	-0.0372 (3)	0.3416 (2)	0.02821 (18)	0.0512 (8)
C28	-0.1743 (4)	0.3715 (3)	0.0479 (2)	0.0628 (9)
H28	-0.1990	0.4019	0.0870	0.075*
C29	-0.2753 (4)	0.3568 (3)	0.0101 (2)	0.0731 (11)
H29	-0.3677	0.3783	0.0233	0.088*
C30	-0.2404 (4)	0.3103 (3)	-0.0472 (2)	0.0757 (11)
H30	-0.3084	0.2999	-0.0724	0.091*
C31	-0.1051 (5)	0.2801 (4)	-0.0662 (2)	0.0838 (12)
H31	-0.0809	0.2496	-0.1052	0.101*
C32	-0.0035 (4)	0.2938 (3)	-0.0288 (2)	0.0698 (10)
H32	0.0886	0.2709	-0.0417	0.084*
C33	0.2236 (3)	0.1339 (2)	0.13166 (18)	0.0489 (7)
C34	0.1405 (4)	0.0721 (3)	0.1291 (2)	0.0665 (9)
H34	0.0462	0.0928	0.1387	0.080*
C35	0.1983 (5)	-0.0215 (3)	0.1121 (3)	0.0847 (12)
H35	0.1432	-0.0647	0.1120	0.102*
C36	0.3346 (6)	-0.0497 (4)	0.0957 (3)	0.0930 (15)
Н36	0.3720	-0.1120	0.0838	0.112*
C37	0.4177 (5)	0.0113 (4)	0.0964 (3)	0.0917 (15)
H37	0.5112	-0.0094	0.0850	0.110*
C38	0.3631 (4)	0.1051 (3)	0.1140 (2)	0.0705 (10)
H38	0.4193	0.1477	0.1140	0.085*
C39	0.2891 (3)	0.2915 (3)	0.18479 (19)	0.0527 (8)
C40	0.3374 (4)	0.3763 (3)	0.1383 (2)	0.0707 (10)
H40	0.3000	0.4159	0.0886	0.085*

C41	0.4405 (4)	0.4020 (4)	0.1654 (3)	0.0766 (11)
H41	0.4723	0.4593	0.1340	0.092*
C42	0.4957 (4)	0.3453 (4)	0.2366 (3)	0.0829 (12)
H42	0.5657	0.3633	0.2542	0.099*
C43	0.4493 (5)	0.2603 (4)	0.2841 (3)	0.1044 (16)
H43	0.4878	0.2213	0.3336	0.125*
C44	0.3452 (5)	0.2332 (4)	0.2579 (2)	0.0835 (12)
H44	0.3137	0.1759	0.2896	0.100*
C45	0.0268 (3)	0.2423 (2)	0.22866 (18)	0.0488 (7)
C46	-0.0568 (4)	0.3353 (3)	0.2398 (2)	0.0644 (9)
H46	-0.0501	0.4017	0.2065	0.077*
C47	-0.1488 (4)	0.3286 (4)	0.3002 (3)	0.0777 (12)
H47	-0.2051	0.3905	0.3075	0.093*
C48	-0.1582 (4)	0.2316 (4)	0.3495 (2)	0.0825 (13)
H48	-0.2206	0.2277	0.3905	0.099*
C49	-0.0760 (4)	0.1392 (4)	0.3391 (2)	0.0806 (12)
H49	-0.0838	0.0733	0.3726	0.097*
C50	0.0186 (4)	0.1442 (3)	0.2786 (2)	0.0649 (9)
H50	0.0756	0.0820	0.2720	0.078*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0651 (6)	0.0486 (5)	0.0899 (7)	-0.0150 (4)	0.0148 (5)	-0.0140 (5)
Cl2	0.0601 (5)	0.0640 (5)	0.0710 (6)	-0.0234 (4)	0.0099 (4)	-0.0318 (4)
P1	0.0498 (5)	0.0578 (5)	0.0429 (4)	-0.0128 (4)	-0.0004 (3)	-0.0176 (4)
P2	0.0456 (4)	0.0445 (4)	0.0463 (4)	-0.0120 (3)	-0.0011 (3)	-0.0151 (3)
01	0.264 (6)	0.110 (3)	0.104 (3)	-0.054 (3)	0.062 (3)	-0.046 (2)
O2	0.096 (2)	0.0658 (18)	0.127 (3)	-0.0368 (16)	0.0062 (19)	-0.0054 (17)
O3	0.071 (2)	0.083 (2)	0.282 (6)	-0.0226 (18)	-0.009 (3)	-0.042 (3)
O4	0.129 (3)	0.391 (8)	0.104 (3)	-0.143 (5)	0.050 (3)	-0.118 (4)
O5	0.181 (4)	0.223 (5)	0.132 (3)	-0.067 (4)	0.037 (3)	-0.127 (4)
O6	0.203 (5)	0.078 (3)	0.278 (7)	-0.031 (3)	-0.013 (5)	-0.047 (4)
07	0.087 (3)	0.207 (5)	0.190 (5)	0.000 (3)	-0.034 (3)	0.015 (4)
O8	0.091 (2)	0.0691 (18)	0.115 (2)	-0.0128 (15)	0.0239 (18)	-0.0320 (17)
C1	0.057 (2)	0.059 (2)	0.0480 (18)	-0.0189 (16)	-0.0023 (15)	-0.0130 (15)
C2	0.0462 (18)	0.0493 (18)	0.0586 (19)	-0.0103 (14)	-0.0053 (15)	-0.0094 (15)
C3	0.060 (2)	0.094 (3)	0.053 (2)	-0.022 (2)	0.0016 (17)	-0.002 (2)
C4	0.079 (3)	0.145 (6)	0.090 (4)	-0.041 (4)	-0.006 (3)	0.035 (4)
C5	0.086 (4)	0.096 (5)	0.205 (9)	-0.046 (4)	-0.047 (5)	0.064 (5)
C6	0.102 (4)	0.056 (3)	0.213 (8)	-0.024 (3)	-0.040 (5)	-0.015 (4)
C7	0.076 (3)	0.063 (3)	0.117 (4)	-0.010 (2)	-0.011 (2)	-0.031 (3)
C8	0.063 (2)	0.076 (2)	0.0439 (17)	-0.0122 (18)	-0.0019 (15)	-0.0258 (17)
C9	0.082 (3)	0.140 (4)	0.073 (3)	-0.036 (3)	0.001 (2)	-0.059 (3)
C10	0.153 (6)	0.200 (7)	0.095 (4)	-0.084 (5)	0.016 (4)	-0.096 (5)
C11	0.210 (8)	0.136 (5)	0.085 (4)	-0.052 (5)	0.008 (5)	-0.073 (4)
C12	0.155 (6)	0.154 (6)	0.094 (4)	0.019 (5)	0.005 (4)	-0.079 (4)
C13	0.082 (3)	0.151 (5)	0.082 (3)	0.000 (3)	0.002 (2)	-0.071 (3)

C14	0.0532 (19)	0.067 (2)	0.0485 (18)	-0.0123 (16)	-0.0010 (14)	-0.0246 (16)
C15	0.060 (2)	0.072 (2)	0.055 (2)	-0.0162 (18)	-0.0025 (16)	-0.0214 (18)
C16	0.060 (2)	0.096 (3)	0.062 (2)	-0.030 (2)	0.0039 (18)	-0.025 (2)
C17	0.056 (2)	0.114 (4)	0.076 (3)	-0.011 (2)	0.008 (2)	-0.042 (3)
C18	0.075 (3)	0.086 (3)	0.114 (4)	-0.012 (2)	0.022 (3)	-0.055 (3)
C19	0.069 (2)	0.082 (3)	0.093 (3)	-0.027 (2)	0.019 (2)	-0.049 (2)
C20	0.0523 (19)	0.0539 (19)	0.0472 (17)	-0.0061 (15)	0.0060 (14)	-0.0095 (15)
C21	0.070 (3)	0.087 (3)	0.062 (2)	-0.011 (2)	-0.0063 (19)	-0.002 (2)
C22	0.083 (3)	0.074 (3)	0.069 (3)	-0.002 (2)	0.010 (2)	0.018 (2)
C23	0.083 (3)	0.052 (2)	0.091 (3)	-0.013 (2)	0.031 (3)	-0.011 (2)
C24	0.080 (3)	0.055 (2)	0.079 (3)	-0.0220 (19)	0.020 (2)	-0.025 (2)
C25	0.069 (2)	0.0526 (19)	0.0527 (19)	-0.0155 (17)	0.0056 (16)	-0.0166 (16)
C26	0.065 (2)	0.0484 (18)	0.0510 (18)	-0.0173 (16)	-0.0062 (15)	-0.0091 (15)
C27	0.0562 (19)	0.0437 (17)	0.0445 (17)	-0.0099 (14)	-0.0061 (14)	-0.0050 (13)
C28	0.062 (2)	0.059 (2)	0.057 (2)	-0.0007 (17)	-0.0044 (17)	-0.0189 (17)
C29	0.052 (2)	0.081 (3)	0.070 (2)	-0.0072 (19)	-0.0079 (18)	-0.014 (2)
C30	0.072 (3)	0.079 (3)	0.074 (3)	-0.020 (2)	-0.025 (2)	-0.017 (2)
C31	0.086 (3)	0.110 (3)	0.068 (3)	-0.021 (3)	-0.010 (2)	-0.047 (2)
C32	0.059 (2)	0.097 (3)	0.054 (2)	-0.013 (2)	0.0014 (17)	-0.034 (2)
C33	0.0496 (18)	0.0500 (17)	0.0473 (17)	-0.0107 (14)	-0.0012 (13)	-0.0186 (14)
C34	0.063 (2)	0.060 (2)	0.084 (3)	-0.0208 (18)	0.0059 (19)	-0.0319 (19)
C35	0.098 (3)	0.067 (3)	0.105 (3)	-0.028 (2)	0.002 (3)	-0.044 (2)
C36	0.099 (4)	0.072 (3)	0.105 (3)	0.015 (3)	-0.026 (3)	-0.052 (3)
C37	0.060 (2)	0.114 (4)	0.106 (3)	0.015 (2)	-0.013 (2)	-0.071 (3)
C38	0.0455 (19)	0.090 (3)	0.086 (3)	-0.0079 (18)	-0.0018 (18)	-0.049 (2)
C39	0.0507 (18)	0.0539 (19)	0.0576 (19)	-0.0124 (15)	-0.0020 (15)	-0.0248 (16)
C40	0.077 (3)	0.079 (3)	0.063 (2)	-0.040 (2)	-0.0002 (19)	-0.017 (2)
C41	0.076 (3)	0.085 (3)	0.085 (3)	-0.041 (2)	0.001 (2)	-0.033 (2)
C42	0.064 (2)	0.094 (3)	0.110 (4)	-0.026 (2)	-0.011 (2)	-0.051 (3)
C43	0.103 (4)	0.111 (4)	0.094 (3)	-0.038 (3)	-0.047 (3)	-0.009 (3)
C44	0.090 (3)	0.082 (3)	0.077 (3)	-0.040 (2)	-0.026 (2)	-0.004 (2)
C45	0.0440 (17)	0.0532 (18)	0.0451 (16)	-0.0082 (14)	-0.0045 (13)	-0.0147 (14)
C46	0.060 (2)	0.067 (2)	0.066 (2)	-0.0085 (17)	0.0042 (17)	-0.0300 (18)
C47	0.060 (2)	0.099 (3)	0.076 (3)	-0.005 (2)	0.007 (2)	-0.046 (3)
C48	0.061 (2)	0.128 (4)	0.059 (2)	-0.023 (3)	0.0150 (19)	-0.038 (3)
C49	0.080 (3)	0.093 (3)	0.058 (2)	-0.029 (2)	0.008 (2)	-0.009 (2)
C50	0.064 (2)	0.061 (2)	0.055 (2)	-0.0069 (17)	0.0026 (17)	-0.0105 (17)

Geometric parameters (Å, °)

Cl1—O1	1.394 (4)	C21—H21	0.9300
Cl1—O3	1.401 (4)	C22—C23	1.361 (7)
Cl1—O2	1.405 (3)	C22—H22	0.9300
Cl1—O8	1.422 (3)	C23—C24	1.349 (6)
C12—O4	1.354 (4)	С23—Н23	0.9300
Cl2—O7	1.373 (4)	C24—C25	1.380 (5)
Cl2—O6	1.380 (4)	C24—H24	0.9300
Cl2—O5	1.386 (4)	C25—H25	0.9300
P1	1.799 (3)	C26—C27	1.510 (5)

P1—C14	1.802 (3)	C26—H26A	0.9700
P1—C20	1.803 (4)	C26—H26B	0.9700
P1—C1	1.811 (3)	C27—C28	1.378 (5)
P2—C33	1.791 (3)	C27—C32	1.386 (5)
P2—C39	1.794 (3)	C28—C29	1.380 (5)
P2—C45	1.798 (3)	C28—H28	0.9300
P2—C26	1.813 (3)	C29—C30	1.379 (6)
C1—C2	1.503 (5)	С29—Н29	0.9300
C1—H1A	0.9700	C30—C31	1.359 (6)
C1—H1B	0.9700	С30—Н30	0.9300
C2—C3	1.371 (5)	C31—C32	1.373 (5)
C2—C7	1.388 (5)	C31—H31	0.9300
C3—C4	1.399 (7)	С32—Н32	0.9300
С3—Н3	0.9300	C33—C34	1.377 (5)
C4—C5	1.348 (11)	C33—C38	1.389 (5)
C4—H4	0.9300	C34—C35	1.391 (5)
C5—C6	1.333 (11)	С34—Н34	0.9300
С5—Н5	0.9300	C35—C36	1.354 (6)
C6—C7	1.382 (8)	С35—Н35	0.9300
С6—Н6	0.9300	C36—C37	1.358 (7)
С7—Н7	0.9300	С36—Н36	0.9300
C8—C9	1.364 (5)	C37—C38	1.396 (5)
C8—C13	1.377 (5)	С37—Н37	0.9300
C9—C10	1.399 (7)	С38—Н38	0.9300
С9—Н9	0.9300	C39—C44	1.371 (5)
C10-C11	1.327 (9)	C39—C40	1.383 (5)
C10—H10	0.9300	C40—C41	1.375 (5)
C11—C12	1.362 (9)	C40—H40	0.9300
C11—H11	0.9300	C41—C42	1.337 (6)
C12—C13	1.394 (7)	C41—H41	0.9300
C12—H12	0.9300	C42—C43	1.381 (6)
C13—H13	0.9300	C42—H42	0.9300
C14—C19	1.387 (5)	C43—C44	1.385 (6)
C14—C15	1.392 (5)	C43—H43	0.9300
C15—C16	1.381 (5)	C44—H44	0.9300
C15—H15	0.9300	C45—C50	1.374 (5)
C16—C17	1.366 (6)	C45—C46	1.395 (4)
C16—H16	0.9300	C46—C47	1.372 (5)
C17—C18	1.370 (6)	С46—Н46	0.9300
С17—Н17	0.9300	C47—C48	1.362 (6)
C18—C19	1.375 (5)	С47—Н47	0.9300
C18—H18	0.9300	C48—C49	1.378 (6)
С19—Н19	0.9300	C48—H48	0.9300
C20—C25	1.371 (5)	C49—C50	1.389 (5)
C20—C21	1.401 (5)	С49—Н49	0.9300
C21—C22	1.390 (6)	С50—Н50	0.9300
O1—Cl1—O3	108.3 (3)	C23—C22—C21	120.6 (4)
O1—Cl1—O2	108.6 (3)	С23—С22—Н22	119.7
O3—Cl1—O2	111.0 (2)	C21—C22—H22	119.7

O1—Cl1—O8	107.3 (3)	C24—C23—C22	120.1 (4)
O3—Cl1—O8	110.1 (2)	C24—C23—H23	120.0
O2—C11—O8	111.4 (2)	С22—С23—Н23	120.0
O4—Cl2—O7	115.8 (3)	C23—C24—C25	121.0 (4)
O4—Cl2—O6	103.7 (4)	C23—C24—H24	119.5
O7—Cl2—O6	100.5 (4)	С25—С24—Н24	119.5
O4—Cl2—O5	112.0 (3)	C20—C25—C24	120.2 (3)
O7—Cl2—O5	118.6 (4)	С20—С25—Н25	119.9
O6—Cl2—O5	103.3 (4)	C24—C25—H25	119.9
C8—P1—C14	109.83 (16)	C27—C26—P2	114.9 (2)
C8—P1—C20	109.12 (16)	C27—C26—H26A	108.5
C14—P1—C20	109.48 (16)	P2—C26—H26A	108.5
C8—P1—C1	109.95 (17)	С27—С26—Н26В	108.5
C14—P1—C1	110.92 (15)	Р2—С26—Н26В	108.5
C20—P1—C1	107.50 (16)	H26A—C26—H26B	107.5
C33—P2—C39	109.73 (15)	C28—C27—C32	118.3 (3)
C33—P2—C45	111.81 (15)	C28—C27—C26	121.8 (3)
C39—P2—C45	107.62 (15)	C32—C27—C26	119.8 (3)
C33—P2—C26	109.90 (15)	C27—C28—C29	120.5 (3)
C39—P2—C26	108.29 (16)	C27—C28—H28	119.8
C45—P2—C26	109.41 (15)	C29—C28—H28	119.8
C2—C1—P1	114.7 (2)	C30—C29—C28	120.5 (4)
C2—C1—H1A	108.6	С30—С29—Н29	119.8
P1—C1—H1A	108.6	С28—С29—Н29	119.8
C2—C1—H1B	108.6	C31—C30—C29	119.0 (4)
P1—C1—H1B	108.6	С31—С30—Н30	120.5
H1A—C1—H1B	107.6	С29—С30—Н30	120.5
C3—C2—C7	119.2 (4)	C30—C31—C32	121.1 (4)
C3—C2—C1	119.2 (3)	С30—С31—Н31	119.5
C7—C2—C1	121.5 (3)	С32—С31—Н31	119.5
C2—C3—C4	119.8 (5)	C31—C32—C27	120.6 (4)
С2—С3—Н3	120.1	С31—С32—Н32	119.7
С4—С3—Н3	120.1	С27—С32—Н32	119.7
C5—C4—C3	119.6 (6)	C34—C33—C38	120.0 (3)
C5—C4—H4	120.2	C34—C33—P2	121.1 (3)
C3—C4—H4	120.2	C38—C33—P2	118.8 (3)
C6—C5—C4	121.1 (6)	C33—C34—C35	119.6 (4)
С6—С5—Н5	119.4	С33—С34—Н34	120.2
С4—С5—Н5	119.4	С35—С34—Н34	120.2
C5—C6—C7	121.0 (7)	C36—C35—C34	120.1 (4)
С5—С6—Н6	119.5	С36—С35—Н35	119.9
С7—С6—Н6	119.5	С34—С35—Н35	119.9
C6—C7—C2	119.2 (5)	C35—C36—C37	121.1 (4)
С6—С7—Н7	120.4	С35—С36—Н36	119.4
С2—С7—Н7	120.4	С37—С36—Н36	119.4
C9—C8—C13	120.0 (4)	C36—C37—C38	120.1 (4)
C9—C8—P1	123.3 (3)	С36—С37—Н37	119.9
C13—C8—P1	116.7 (3)	С38—С37—Н37	119.9
C8—C9—C10	119.4 (5)	C33—C38—C37	119.0 (4)

С8—С9—Н9	120.3		С33—С38—Н38		120.5	
С10—С9—Н9	120.3		С37—С38—Н38		120.5	
C11—C10—C9	120.5 (6)		C44—C39—C40		119.5 (3)	
C11—C10—H10	119.8		C44—C39—P2		118.6 (3)	
С9—С10—Н10	119.8		C40—C39—P2		121.9 (3)	
C10-C11-C12	121.2 (5)		C41—C40—C39		120.1 (4)	
C10-C11-H11	119.4		C41-C40-H40		120.0	
C12—C11—H11	119.4		C39—C40—H40		120.0	
C11—C12—C13	119.6 (6)		C42—C41—C40		120.6 (4)	
C11—C12—H12	120.2		C42—C41—H41		119.7	
C13—C12—H12	120.2		C40—C41—H41		119.7	
C8—C13—C12	119.4 (5)		C41—C42—C43		120.4 (4)	
C8—C13—H13	120.3		C41—C42—H42		119.8	
C12—C13—H13	120.3		C43—C42—H42		119.8	
C19—C14—C15	118.9 (3)		C42—C43—C44		119.9 (4)	
C19—C14—P1	120.1 (3)		С42—С43—Н43		120.1	
C15—C14—P1	121.0 (3)		С44—С43—Н43		120.1	
C16-C15-C14	120.1 (4)		C39—C44—C43		119.5 (4)	
C16—C15—H15	119.9		С39—С44—Н44		120.2	
C14—C15—H15	119.9		С43—С44—Н44		120.2	
C17—C16—C15	120.0 (4)		C50—C45—C46		120.2 (3)	
C17—C16—H16	120.0		C50—C45—P2		121.8 (2)	
C15—C16—H16	120.0		C46—C45—P2		117.8 (3)	
C16—C17—C18	120.4 (4)		C47—C46—C45		119.7 (4)	
С16—С17—Н17	119.8		С47—С46—Н46		120.1	
C18—C17—H17	119.8		С45—С46—Н46		120.1	
C17—C18—C19	120.4 (4)		C48—C47—C46		120.4 (4)	
C17—C18—H18	119.8		С48—С47—Н47		119.8	
C19-C18-H18	119.8		С46—С47—Н47		119.8	
C18—C19—C14	120.1 (4)		C47—C48—C49		120.4 (4)	
C18—C19—H19	120.0		С47—С48—Н48		119.8	
С14—С19—Н19	120.0		С49—С48—Н48		119.8	
C25—C20—C21	119.0 (3)		C48—C49—C50		120.2 (4)	
C25-C20-P1	122.0 (3)		С48—С49—Н49		119.9	
C21—C20—P1	118.9 (3)		С50—С49—Н49		119.9	
C22—C21—C20	119.0 (4)		C45—C50—C49		119.2 (4)	
C22—C21—H21	120.5		С45—С50—Н50		120.4	
C20—C21—H21	120.5		С49—С50—Н50		120.4	
Hydrogen-bond geometry (Å, °)						
Cg is the centroid of the C27–C32 ring.						
D—H···A	0	D—H	$H \cdots A$	$D \cdots A$	D—H··· A	
C5—H5···Cg ⁱ		0.93	2.83	3.757 (9)	176	

Symmetry codes: (i) x+1, y+1, z.

