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weissc@hsu-hh.de; Tel.: +49-40-6541-2779

Abstract: The family of cumulative paired φ-entropies offers a wide variety of ordinal dispersion
measures, covering many well-known dispersion measures as a special case. After a comprehensive
analysis of this family of entropies, we consider the corresponding sample versions and derive
their asymptotic distributions for stationary ordinal time series data. Based on an investigation of
their asymptotic bias, we propose a family of signed serial dependence measures, which can be
understood as weighted types of Cohen’s κ, with the weights being related to the actual choice of φ.
Again, the asymptotic distribution of the corresponding sample κφ is derived and applied to test
for serial dependence in ordinal time series. Using numerical computations and simulations, the
practical relevance of the dispersion and dependence measures is investigated. We conclude with an
environmental data example, where the novel φ-entropy-related measures are applied to an ordinal
time series on the daily level of air quality.
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1. Introduction

During the last years, ordinal data in general [1] and ordinal time series in particular [2]
received a great amount of interest in research and applications. Here, a random variable X
is said to be ordinal if X has a bounded qualitative range exhibiting a natural order among
the categories. We denote the range as S = {s0, s1, . . . , sm} with some m ∈ N = {1, 2, . . .},
and we assume that s0 < . . . < sm. The realized data are denoted as x1, . . . , xn with n ∈ N.
They are assumed to stem either from independent and identically distributed (i. i. d.)
replications of X (then, we refer to x1, . . . , xn as an ordinal random sample), or from a
stationary ordinal stochastic process (Xt)Z={...,−1,0,1,...} (then, x1, . . . , xn are said to be an
ordinal time series).

In what follows, we take up several recent works on measures of dispersion and serial
dependence in ordinal (time series) data. Regarding ordinal dispersion, the well-known
measures such as variance or mean absolute deviation cannot be used as the data are not
quantitative. Therefore, several tailor-made measures for ordinal dispersion have been
developed and investigated in the literature, see, among others, [3–15]. The unique feature
of all these measures is that they rely on the cumulative distribution function (CDF) of X,
i.e., on f = ( f0, . . . , fm−1)

> with fi = P(X ≤ si) for i = 0, . . . , m ( fm is omitted in f as
it necessarily equals one). They classify any one-point distribution on S as a scenario
of minimal dispersion, i.e., if all probability mass concentrates on one category from S
(maximal consensus):

f one ∈


1

1
...
1

,

0
1
...
1

, . . . ,

0
...
0
1

,

0
...
0
0

.

By contrast, maximal dispersion is achieved exactly in the case of the extreme two-
point distribution (polarized distribution), f two = ( 1

2 , . . . , 1
2 )
>, where we have 50 % proba-
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bility mass in each of the outermost categories (maximal dissent). Further details on ordinal
dispersion measures are presented in Section 2 below.

Building upon earlier works by Klein [16], Yager [17], it was recently shown by Klein
& Doll [18], Klein et al. [19] that the aforementioned ordinal dispersion measures can be
subsumed under the family of so-called “cumulative paired φ-entropies” (see Section 2),
abbreviated as CPEφ, which constitutes the starting point of the present article. Our first
main task is to derive the asymptotic distribution of the corresponding sample version,
ĈPEφ, for both i. i. d. and time series data, and to check the finite sample performance of
the resulting approximate distribution, see Sections 3 and 5.

In the recent paper by Weiß [20] on the asymptotics of some well-known dispersion
measures for nominal data (i.e., qualitative data without a natural ordering), it turned out
that the corresponding dispersion measures—if these are applied to time series data—are
related to specific measures of serial dependence. Therefore, our second main task is
to explore for a similar relation in the ordinal case, if considering the CPEφ-family for
measuring dispersion. Ordinal dependence measures can be defined in analogy to the
popular autocorrelation function (ACF) for quantitative time series, namely by using the
lagged bivariate CDF fij(h) = P(Xt ≤ si, Xt−h ≤ sj) for time lags h ∈ N as their base [14].
For the novel family of κφ(h) measures, which cover the existing ordinal Cohen’s κ [14,15]
as a special case, we derive the asymptotics under the null hypothesis of i. i. d. time series
data, see Section 4. This result is used in Section 5 to test for significant serial dependence,
in analogy to the application of the sample ACF to quantitative time series. In Section 6, we
discuss an illustrative real-world data example from an environmental application, namely
regarding the daily level of air quality. The article concludes in Section 7.

2. The Family of Cumulative Paired φ-Entropies

Klein & Doll [18], Klein et al. [19] proposed and investigated a family of cumulative
paired φ-entropies. Although their main focus was on continuously distributed random
variables, they also referred to the ordinal case and pointed out that many well-known
ordinal dispersion measures are included in this family. Here, we exclusively concentrate
on the ordinal case as introduced in Section 1, and we define the (normalized) cumulative
paired φ-entropy as (see Section 2.3 in Klein et al. [19])

CPEφ( f ) =
1

2 m φ(1/2)

m−1

∑
i=0

(
φ( fi) + φ(1− fi)

)
. (1)

The entropy generating function (EGF) φ is defined on [0; 1], it satisfies φ(0) = φ(1) = 0,
and it is assumed to be concave on [0; 1]. Later in Section 3, when deriving the asymptotic
distribution of the sample counterpart ĈPEφ = CPEφ

(
f̂
)
, we shall also require that φ is

(twice) differentiable. As pointed out in Sections 2.3 and 3.1 of Klein et al. [19], several
well-known measures of ordinal dispersion can be expressed by (1) with an appropriate
choice of φ.

• Leik’s ordinal variation [11] corresponds to the choice φ(z) = min {z, 1− z} (which is
not differentiable in z = 1/2) because of the equality |2 z− 1| = 1− 2 min {z, 1− z}:

LOV = 1− 1
m

m−1
∑

i=0
|2 fi − 1| = 2

m

m−1
∑

i=0
min { fi, 1− fi}. (2)

• An analogous argument applies to the whole family of ordinal variation measures,
OVq with q ≥ 1 [3,9,10,13]. Choosing φq(z) = 1−

(
1− 2 min {z, 1− z}

)q
= 1− |2 z−

1|q with φq(1/2) = 1, we have the relation

OVq = 1−
(

1
m

m−1
∑

i=0
|2 fi − 1|q

)1/q
= 1−

(
1−CPEφ( f )

)1/q
. (3)
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Note that q = 1 leads to the LOV, and the case q = 2 is known as the coefficient of
ordinal variation, COV = OV2 [4,8].

• Related to the previous case OVq with q = 2, CPEφ( f ) becomes the widely-used index
of ordinal variation [3,7,8] if choosing φ(z) = z(1− z):

IOV = 4
m

m−1
∑

i=0
fi(1− fi) = 1− 1

m

m−1
∑

i=0
(2 fi − 1)2. (4)

• The cumulative paired (Shannon) entropy [12] corresponds to the choice φ(z) =
−z ln z (with the convention 0 ln 0 = 0):

CPE = −1
m ln 2

m−1
∑

i=0

(
fi ln fi + (1− fi) ln(1− fi)

)
. (5)

• φ(z) = −z ln z can be embedded into the family of a-entropies [21,22],

φa(z) =
z− za

a− 1
with a > 0 and a 6= 1, (6)

as the boundary case a→ 1. Plugging-in (6) into (1), one obtains

CPEa = 2a−1

m (2a−1−1)

m−1
∑

i=0

(
1− f a

i − (1− fi)
a
)

. (7)

Note that both a = 2 and a = 3 in (7) lead to the IOV (4).

The EGFs φ involved in (2)–(4) are symmetric around 1/2, i.e., they satisfy φ(z) =
φ(1 − z). This is also illustrated by Figure 1, where the cases q = 2 (left) and a = 2
(right; both in bold black) agree with each other except a scaling factor. The plotted
EGFs φq(z) are maximal in 1/2 with φq(1/2) = 1. The EGF φa(z) is maximal in a1/(1−a)

with φa
(
a1/(1−a)) = aa/(1−a) for a 6= 1, whereas in the boundary case a→ 1, φa(z) takes its

maximal value 1/e at 1/e. However, since CPEφ in (1) is normalized, it is not necessary to
care for a possible rescaling of φa(z) if computing CPEφ.
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Figure 1. Plot of EGFs φ(z) against z. (Left): φq(z) = 1− |2 z− 1|q; (right): φa(z) = (z− za)/(a− 1).

Remark 1. The dotted curve in the right part of Figure 1, which connects the maxima of φa(z) for
different a, is computed by using the Lambert W function (also referred to as the product logarithm).
This can be seen as follows: φa(z) is maximal in z0 = a1/(1−a) with φa

(
z0
)
= za

0. It holds that

a · za
0 = a1+a/(1−a) = z0.
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Using that za
0 = exp(a ln z0), this implies that

(a ln z0) · exp(a ln z0) = z0 ln z0.

The Lambert W function is defined to solve the equation w exp w = z as w = W(z), so we get

a ln z0 = W(z0 ln z0) ⇔ a = W(z0 ln z0)
/

ln z0.

Thus, since φa
(
z0
)
= aa/(1−a) = a1/(1−a)/a = z0/a, the dotted curve in Figure 1 follows the

function z ln z
/

W(z ln z). More precisely, since z ln z is minimal in z = 1/e with minimal
value −1/e, we have to use the principal branch W(z) = W0(z) for z ≤ 1/e, and the secondary
branch W(z) = W−1(z) for z > 1/e.

Let us conclude this section with some examples of CPEφ measures (see Figure 2). For
all examples, we set m = 4, i.e., we have five ordinal categories like, for example, in the
case of a simple Likert scale. In the left part of Figure 2, f was computed according to the
binomial distribution Bin(4, p), which has maximal dispersion for p = 0.5. This is also
recognized by any of the plotted measures CPEφ, with their maximal dispersion values
varying around 0.6. This medium level of dispersion is plausible because Bin(4, 0.5) is
far away from the extreme two-point distribution. The right part of Figure 2, by contrast,
shows the CPEφ for the two-point distribution with f0 = p (= f1 = · · · = fm−1). So p = 0
corresponds to a one-point distribution in sm (minimal dispersion), and p = 0.5 to the
extreme two-point distribution (maximal dispersion). Accordingly, all measures reach their
extreme values 0 and 1, respectively. It is interesting to note that outside these extreme
cases, the dispersion measures judge the actual dispersion level quite differently; see the
related discussion in Kvålseth [10], Weiß [13].
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Figure 2. Plot of CPEφ against p for specific cases of φa(z) = (z − za)/(a − 1) and
φq(z) = 1− |2 z− 1|q. (Left): binomial distribution Bin(4, p); (Right): two-point distribution with
f0 = p.

3. Asymptotic Distribution of Sample CPEφ

From now on, we focus on the sample version of CPEφ from (1), i.e., on
ĈPEφ = CPEφ

(
f̂
)
, where f̂ denotes the vector of cumulative relative frequencies com-

puted from X1, . . . , Xn. To derive the asymptotic distribution of ĈPEφ, which is to be
used as an approximation to the true distribution of ĈPEφ, we recall the following results
from Weiß [14]. Provided that the data-generating process (DGP) satisfies appropriate
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mixing conditions, e.g., α-mixing with exponentially decreasing weights (which includes
the i. i. d.-case), it holds that

√
n
(

f̂ − f
) d→ N(0, Σ) with Σ =

(
σij
)

i,j=0,...,m−1, where

σij
a
= fmin {i,j} − fi f j +

∞
∑

h=1

(
fij(h) + f ji(h)− 2 fi f j

)
.

(8)

For an analogous result in the presence of missing data, see Theorem 1 in Weiß [15]. In
(8), finite (co)variances are ensured if we require that ∑∞

h=1
(

fij(h)− fi f j
)
< ∞ holds for

all i, j (“short memory”). In particular, all sums ∑∞
h=1

(
fij(h) + f ji(h)− 2 fi f j

)
vanish in the

i. i. d.-case. Otherwise, they account for the serial dependence of the DGP. This can be seen
by considering the trace of Σ, which equals

m−1
∑

i=0

(
fi(1− fi) + 2

∞
∑

h=1

(
fii(h)− f 2

i
))

=
m−1
∑

i=0
fi(1− fi)

(
1 + 2

∞
∑

h=1
κord(h)

)
.

Here, the term ∑m−1
i=0 fi(1− fi) agrees with the IOV in (4) except the normalizing factor 4

m ,
i.e., it corresponds to CPEφ with φ(z) = z(1− z). The term κord(h), in turn, is the ordinal
Cohen’s κ [14] defined by

κord(h) =
∑m−1

i=0

(
fii(h)− f 2

i
)

∑m−1
i=0 fi(1− fi)

. (9)

It is a measure of signed serial dependence, which evaluates the extent of (dis)agreement
between Xt and Xt−h by positive (negative) values.

Based on Taylor expansions of ĈPEφ = CPEφ

(
f̂
)

in f , we shall now study its asymp-
totic behavior. To establish asymptotic normality and to derive the asymptotic variance
of ĈPEφ, we need φ to be differentiable. For an asymptotic bias correction, which relies on
a second-order Taylor expansion, φ even has to be twice differentiable (then, the concavity
of φ implies that φ′′(z) < 0).

Remark 2. From the examples discussed in Section 2, the EGF corresponding to the LOV (i.e., φq
with q = 1) is not differentiable (in z = 1/2). φq is only once differentiable for 1 < q < 2, while
q ≥ 2 ensures φq to be at least twice differentiable; see Example 1 below. Accordingly, in these
cases, it is not possible to establish asymptotic normality (q = 1) or an asymptotic bias correction
(1 < q < 2), respectively. In fact, Weiß [13] was faced with the same problem when studying the
asymptotics of the sample OVq, and a solution to it was not possible. In simulations, he showed
that even modified asymptotics (using a folded-normal distribution) did not lead to an acceptable
approximation quality. We shall therefore exclude such cases from our further discussion. If, in
applications, the cases q = 1 or 1 < q < 2 appear to be relevant, a bootstrap approach might be an
option to gain insight into the sample distribution of ĈPEφ.

Assuming φ to be (twice) differentiable, the partial derivatives of CPEφ( f ) according
to (1) are

∂
∂ fk

CPEφ( f ) = 1
2 m φ(1/2)

(
φ′( fk)− φ′(1− fk)

)
=: dk,

∂2

∂2 fk
CPEφ( f ) = 1

2 m φ(1/2)

(
φ′′( fk) + φ′′(1− fk)

)
=: hkk,

∂2

∂ fk ∂ fl
CPEφ( f ) = 0 for k 6= l.

(10)

We denote the gradient (Jacobian) of CPEφ( f ) by D = (d0, . . . , dm−1), and the Hessian
equals H = diag(h00, . . . , hm−1,m−1). Note that if φ is symmetric around 1/2, i.e., if φ(z) =
φ(1− z), then dk = φ′( fk)/

(
m φ(1/2)

)
and hkk = φ′′( fk)/

(
m φ(1/2)

)
.
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Example 1. Let us compute the derivatives required in (10) for the EGF examples presented in
Section 2.

For φa(z) = z−za

a−1 , the constant factor becomes 1
2 m φa(1/2) =

2a−1 (a−1)
m (2a−1−1) , and the derivatives

are φ′a(z) =
1−a za−1

a−1 and φ′′a (z) = −a za−2. Here, φ′a(z) exists in the boundary value z = 0 only
if a > 1, and φ′′a (z) if a ≥ 2. Important special cases are

φ(z) = −z ln z ⇒ 1
2 m φ(1/2) =

1
m ln 2 , φ′(z) = −1− ln z, φ′′(z) = −1/z for a→ 1,

φ(z) = z(1− z) ⇒ 1
2 m φ(1/2) =

2
m , φ′(z) = 1− 2 z, φ′′(z) = −2 for a = 2,

and for a = 3,

φ(z) = 1
2 z (1− z2) ⇒ 1

2 m φ(1/2) =
8

3 m , φ′(z) = 1
2 (1− 3 z2), φ′′(z) = −3 z.

Note that both a = 2, 3 lead to the same expressions for dk, hkk in (10); see Table 1. This is in
accordance with the equivalence of these cases as discussed after (7).

For φq(z) = 1 −
(
1 − 2 min {z, 1− z}

)q
= 1 − |2 z − 1|q with 1

2 m φq(1/2) = 1
2 m , the

derivatives are expressed using the sign function, sgn(·), which is not continuous at 0. Note that
the following relations hold:

d
dx |x| = sgn(x) for x 6= 0, x = sgn(x) · |x|, |x| = sgn(x) · x.

For q ≥ 2, it then follows by applying the chain rule and the product rule that

φ′q(z) = −2 q |2 z− 1|q−1 sgn(2 z− 1) = −2 q (2 z− 1) |2 z− 1|q−2,

φ′′q (z) = −4 q |2 z− 1|q−2 − 4 q(q− 2) (2 z− 1) |2 z− 1|q−3 sgn(2 z− 1)
= −4 q(q− 1) |2 z− 1|q−2.

Note that these derivatives are continuous in z = 1/2 for q ≥ 2, using that 00 = 1. The final
expressions for (10) are summarized in Table 1.

Table 1. Partial derivatives (10) for EGFs discussed in Example 1.

EGF φ(z) dk hkk

(z− za)/(a− 1) 2a−1 a
m (2a−1−1)

(
(1− fk)

a−1 − f a−1
k

)
− 2a−1 a (a−1)

m (2a−1−1)

(
f a−2
k + (1− fk)

a−2
)

−z ln z 1
m ln 2

(
ln(1− fk)− ln fk

)
−1

m ln 2

(
1/ fk + 1/(1− fk)

)
z(1− z), 1

2 z (1− z2) 4
m (1− 2 fk) − 8

m

1− |2 z− 1|q − 2 q
m (2 fk − 1) |2 fk − 1|q−2 − 4 q(q−1)

m |2 fk − 1|q−2

Using (10), the second-order Taylor expansion equals

CPEφ

(
f̂
)
≈ CPEφ( f ) + ∑m−1

k=0 dk
(

f̂k − fk
)
+ 1

2 ∑m−1
k=0 hkk

(
f̂k − fk

)2. (11)

According to (8), the linear term in (11) is asymptotically normally distributed (“Delta
method”), provided that D does not vanish (see Remark 3 below). Then, we conclude from
(8) that

√
n
(

CPEφ

(
f̂
)
−CPEφ( f )

)
d→ N

(
0, D Σ D>

)
, D Σ D> =

m−1
∑

i,j=0
di dj σij. (12)
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The approximate bias correction relies on the quadratic term in (11), because E[ f̂k − fk] = 0.
Using (8), we conclude that

n E
[
CPEφ

(
f̂
)
−CPEφ( f )

]
≈ 1

2 ∑m−1
i=0 hii σii. (13)

Let us summarize the results implied by (12) and (13) in the following theorem.

Theorem 1. Under the mixing assumptions stated before (8), assuming the EGF φ to be twice
differentiable, and recalling the dk, hkk from (10) where D must not vanish, it holds that

√
n
(

CPEφ

(
f̂
)
−CPEφ( f )

)
d→ N

(
0, σ2

φ

)
, σ2

φ = σ2
φ,iid

(
1 + 2

∞
∑

h=1
ϑφ(h)

)

with σ2
φ,iid = ∑m−1

i,j=0 di dj
(

fmin {i,j} − fi f j
)

and ϑφ(h) =
∑m−1

i,j=0 di dj
(

fij(h)− fi f j
)

∑m−1
i,j=0 di dj

(
fmin {i,j} − fi f j

) .

In addition, the bias-corrected mean of CPEφ

(
f̂
)

is

E
[
CPEφ

(
f̂
)]
≈ CPEφ( f ) + 1

2 n

( m−1
∑

i=0
hii fi(1− fi)

) (
1 + 2

∞
∑

h=1
κφ(h)

)
,

where κφ(h) =
∑m−1

i=0 hii
(

fii(h)− f 2
i
)

∑m−1
i=0 hii fi(1− fi)

.

Note that the second-order derivatives are negative due to the concavity of φ, so
CPEφ

(
f̂
)

exhibits a negative bias. ϑφ(h) expresses the effect of serial dependence on σ2
φ.

For i. i. d. ordinal data, ϑφ(h) = 0, so Theorem 1 simplifies considerably in this case, namely
to σ2

φ = σ2
φ,iid. The bias of CPEφ

(
f̂
)

is affected by serial dependence via κφ(h), which is
a κ-type measure reflecting the extent of (dis)agreement between lagged observations,
recall (9). More precisely, κφ(h) can be interpreted as weighted type of κord(h), where the
weights hii depend on the particular choice of φ. It thus provides a novel family of measures
of signed serial dependence, the asymptotics of which are analyzed in Section 4 below.

Example 2. In the special case φ(z) = z(1− z) (as well as for φ(z) = 1
2 z (1− z2)), which

corresponds to the IOV in (4), hii = − 8
m is constant (see Table 1). Thus, κφ(h) = κord(h) in this

case (see (9)). Furthermore, the first factor of the bias in Theorem 1 becomes

1
2 n ∑m−1

i=0 hii fi(1− fi) = − 1
n ·

4
m ∑m−1

i=0 fi(1− fi) = − 1
n IOV.

Hence, the bias is determined by both the serial dependence and the dispersion of the process.
As another simple example, consider the choice φ(z) = −z ln z for the CPE in (5). Then,

using hii =
−1

m ln 2 (
1
fi
+ 1

1− fi
) = −1

m ln 2
1

fi(1− fi)
from Table 1, we get

1
2 n ∑m−1

i=0 hii fi(1− fi) = 1
2 n

−1
m ln 2 ∑m−1

i=0 1 = −1
(2 ln 2) n .

Thus, we have a unique i. i. d.-bias, independent of the actual marginal CDF f . Under serial
dependence, we get

κφ(h) =
∑m−1

i=0 hii
(

fii(h)− f 2
i
)

∑m−1
i=0 hii fi(1− fi)

=
1
m

m−1

∑
i=0

fii(h)− f 2
i

fi(1− fi)
=: κ∗ord(h). (14)

So, besides the pair
(
IOV, κord(h)

)
,
(
CPE, κ∗ord(h)

)
also belongs to the

(
CPEφ, κφ(h)

)
-family.

A few examples are plotted in Figure 3, where the DGP Xt = sIt assumes the rank counts It to
have Bin(4, p)-marginals. In the top panel, the DGP is i. i. d., whereas (It) follows a so-called first-
order binomial autoregressive (BAR(1)) model with dependence parameter ρ = 0.4 ([2] Section 3.3)
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in the lower panel, i.e., the DGP exhibits a medium level of positive dependence. While the resulting
dependence structure is investigated in more detail in Section 4, Figure 3 considers the asymptotic
standard error (SE) σφ and bias n

(
E
[
CPEφ

(
f̂
)]
−CPEφ( f )

)
according to Theorem 1. Obviously,

an increase of serial dependence causes an increase of both SE and bias. While most measures have
a rather stable SE for varying p (except for extremely small p, where we are close to a one-point
distribution), the EGF φa with a = 1/2 varies a lot. In particular, the bias takes rather extreme
values with decreasing p for this case, which can be explained by the strongly negative exponents at
fk, 1− fk in hkk from Table 1. Thus, choices a < 1 seem not advisable for practice. The boundary
case a = 1 has a constant bias for an i. i. d. DGP. For φq with q = 4, we note an oscillating behavior
of both bias and SE. The lowest bias and SE are achieved for the cases φa with a > 1.
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Figure 3. Plots for specific cases of φa(z) = (z− za)/(a− 1) and φq(z) = 1− |2 z− 1|q: σφ (left) and
n
(
E
[
CPEφ

(
f̂
)]
− CPEφ( f )

)
(right) against p of marginal Bin(4, p), where i. i. d. DGP in (a,b), and

BAR(1) DGP with dependence parameter ρ = 0.4 in (c,d).

The newly obtained measure κ∗ord(h) from (14) constitutes a counterpart to the nominal
measures κ∗(h), κ?(h) in Weiß [20]. It is worth pointing out that the latter measures were
derived from the nominal entropy and extropy, respectively, while the CPE in (5) can be
interpreted as a combination of cumulative entropy and extropy. It has to be noted that
κ∗ord(h) also shares a disadvantage with κ∗(h): if only one of the fi equals 0 or 1, we suffer
from a division by 0 in (14). For κord(h) according to (9), by contrast, a division by 0 only
happens in the (deterministic) case of a one-point distribution. As a workaround when
computing κ∗ord(h), it is recommended to replace the affected summands in (14) by 0.
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Remark 3. If f = f two, then all dk = 0 in (10). Therefore, the linear term in (11) vanishes.
In fact, for any two-point distribution on s0 and sm, we necessarily have f0 = . . . = fm−1 and
f̂0 = . . . = f̂m−1. Therefore, CPEφ

(
f̂
)

reduces to CPEφ

(
f̂
)
= 1

2 φ(1/2)

(
φ
(

f̂0
)
+ φ

(
1− f̂0

))
, and

the quadratic term in (11) to m
2 h00

(
f̂0 − f0

)2. Hence, in this special case,

n
(

CPEφ

(
f̂
)
−CPEφ( f )

)
a∼ m

2 h00 σ00 · χ2
1.

For example, plugging-in h00 = − 8
m for φ(z) = z(1− z) corresponding to the IOV in (4), we

obtain the result in Remark 7.1.2 in Weiß [14].

4. Asymptotic Distribution of Sample κφ(h)

The bias equation in Theorem 1 gives rise to a novel family of serial dependence
measures for ordinal time series, namely

κφ(h) =
∑m−1

i=0

(
φ′′( fi) + φ′′(1− fi)

) (
fii(h)− f 2

i
)

∑m−1
i=0

(
φ′′( fi) + φ′′(1− fi)

)
fi(1− fi)

(15)

for a given EGF φ. Some examples are plotted in the left part of Figure 4, where the
DGP Xt = sIt assumes that the rank counts It follow the BAR(1) model with marginal
distribution Bin(4, 0.3) and dependence parameter ρ; recall the discussion of Figure 3. So,
the rank counts (It)Z have the first-order ACF ρ, whereas the plotted κφ(1) have absolute
value ≤ |ρ|.
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Figure 4. Plots for specific cases of φa(z) = (z − za)/(a − 1) and φq(z) = 1 − |2 z − 1|q: κφ(1)
against BAR(1)’s dependence parameter ρ with marginal Bin(4, 0.3) (left); σκ against p of marginal
Bin(4, 0.3) (right).

In practice, the sample version of this measure, κ̂φ(h), is particularly important,
where the cumulative (bivariate) probabilities are replaced by the corresponding rela-
tive frequencies. For uncovering significant deviations from the null hypothesis of serial
independence (then, κφ(h) = 0), the asymptotic distribution of κ̂φ(h) under the null
of i. i. d. time series data is required. For its derivation, we proceed in an analogous
way as in Section 3. As the starting point, we have to extend the asymptotics of the
marginal sample CDF in (8) by also considering the bivariate sample CDF f̂ii(h). Let
f (h) =

(
f0, . . . , fm−1, f00(h), . . . , fm−1,m−1(h)

)>, and denote its sample version by f̂ (h).
Then, under the same mixing conditions as in Section 3, Weiß [14] established the asymp-
totic normality

√
n
(

f̂ (h) − f (h)
) d→ N

(
0, Σ(h)) with Σ(h) =

(
σ
(h)
i,j
)

i,j=0,...,2m−1, (16)
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and he derived general expressions for the asymptotic (co)variances σ
(h)
i,j . Analogous

results for the case of missing data can be found in Supplement S.3 of Weiß [15]. For the
present task, the asymptotics of the i. i. d.-case are sufficient. Then, fii(h) = f 2

i for all
i = 0, . . . , m− 1, and the covariances in (16) are given by

σ
(h)
i,j = σi,j = fmin {i,j} − fi f j (see (8)),

σ
(h)
i,m+j = 2 f j

(
fmin {i,j} − fi f j

)
,

σ
(h)
m+i,m+j =

(
fmin {i,j} + 3 fi f j

) (
fmin {i,j} − fi f j

) for i, j ∈ {0, . . . , m− 1}, (17)

see Weiß [14] (as well as p. 8 in Supplement S.3 of Weiß [15] if being concerned with
missing data).

Next, we derive the asymptotics of κ̂φ(h) under the i. i. d.-null, and this requires to
derive the second-order Taylor expansion for κ̂φ(h); details are postponed to Appendix A.1.
As higher-order derivatives of φ, which are initially used while deriving a bias correction
of κ̂φ(h), cancel out, the final result still relies on derivatives of φ up to order 2 only.

Theorem 2. Under the null hypothesis of i. i. d. data, i.e., if κφ(h) = 0 for all lags h ∈ N, and
assuming the EGF φ to be twice differentiable, it holds that

√
n
(

κ̂φ(h)− κφ(h)
)

d→ N
(
0, σ2

κ

)
with σ2

κ =
m−1
∑

j,k=0
uj uk

(
fmin {j,k} − f j fk

)2,

where uj =
φ′′( f j) + φ′′(1− f j)

∑m−1
i=0

(
φ′′( fi) + φ′′(1− fi)

)
fi(1− fi)

.

In addition, the bias-corrected mean of κ̂φ(h) is E
[
κ̂φ(h)

]
≈ − 1

n
.

Note that we have a unique bias correction for any of the measures κ̂φ(h), independent
of the choice of the EGF φ. Thus, for application in practice, it remains to compute the
asymptotic variance σ2

κ in Theorem 2. This only requires knowledge about φ′′(z) to evaluate
the uj, but not about higher-order derivatives of the EGF φ (see Example 3 for illustration).
Further examples are plotted in the right part of Figure 4, where σκ was computed for the
marginal distribution Bin(4, p). The oscillating behavior of σκ for φq(z) with q = 4 is quite
striking. It is also interesting to note that among the plotted κ-measures, the novel κ̂∗ord(h)
(case a = 1) has the lowest variance.

Example 3. While we have a unique bias correction for κ̂φ(h), the asymptotic variance σ2
κ according

to Theorem 2 differs for different choices of the EGF φ, as the involved uj depend on φ′′(z).
For example,

• for φa(z) = z−za

a−1 , we have φ′′a (z) = −a za−2 according to Example 1,
• while for φq(z) = 1− |2 z− 1|q with q ≥ 2, we have φ′′q (z) = −4 q(q− 1) |2 z− 1|q−2.

Important special cases are:

• For φ(z) = z(1− z), i.e., for the basic κord(h) according to (9), we have

φ′′(z) = −2, so uj =
(

∑m−1
i=0 fi(1− fi)

)−1.

Thus, we get

σ2
κ =

∑m−1
j,k=0

(
fmin {j,k} − f j fk

)2(
∑m−1

i=0 fi(1− fi)
)2 ;

see Theorem 7.2.1 in Weiß [14].
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• For φ(z) = −z ln z, i.e., for the novel κ∗ord(h) according to (14), we have

φ′′(z) = − 1
z , so uj = 1

m
1

f j(1− f j)
.

Thus, we get

σ2
κ =

1
m2

m−1

∑
j,k=0

(
fmin {j,k} − f j fk

)2

f j(1− f j) fk(1− fk)
=

1
m

+
2

m2 ∑
j<k

f j (1− fk)

fk (1− f j)
.

For any other choice of φa(z) and φq(z), σ2
κ is easily computed using the aforementioned expressions

for φ′′a (z) and φ′′q (z) from Example 1. Since the obtained closed-form formulae do not much simplify,
further details are omitted here.

5. Simulation Results

In what follows, we discuss results from a simulation study, being tabulated in
Appendix B, where 104 replications per scenario were used throughout. In view of our
previous findings, achieved when discussing the asymptotics plotted in Figures 3 and 4,
we do not further consider the choice a = 1/2 < 1 for the EGF φa, but we use a = 5/2 > 2
instead. The latter choice, in turn, was not presented before as the resulting asymptotic
curves could hardly be distinguished from the case a = 2. So, altogether, a = 1, 3/2, 2, 5/2
as well as q = 4 were taken into account for simulations. The ordinal data were gener-
ated via binomial rank counts, Xt = sIt with It ∼ Bin(m, p), which either exhibit serial
dependence caused by a BAR(1) DGP with dependence parameter ρ, or which are i. i. d.
(corresponding to ρ = 0).

Let us start with the ordinal dispersion measures ĈPEφ. Table A1 presents the simu-
lated means (upper part) and SEs (lower part) for the case of i. i. d. ordinal data, and these
are compared to the asymptotic values obtained from Theorem 1. Generally, we have an
excellent agreement between simulated and asymptotic values, i.e., the derived asymptotic
approximation to the true distribution of ĈPEφ works well in practice. This is even more
remarkable as also the low sample size n = 50 is included. There is a somewhat larger
deviation only for the mean in the case a = 1, i.e., for the CPE (5), if n ≤ 100 and p = 0.1.
In this specific case, the simulated sample distribution might be quite close to a one-point
distribution, which might cause computational issues for (5); recall that the convention
0 ln 0 = 0 has to be used. However, as the approximation quality is good throughout, a
pivotal argument for the choice of φ in practice might be that the least SEs are observed if
using φa with a = 3/2, 2, 5/2.

Table A2 considers exactly the same marginals as before, but now in the presence of
additional serial dependence (ρ = 0.4). Comparing Tables A1 and A2, it becomes clear that
the additional dependence causes increased bias and SE. However, and this is the crucial
point for practice, the asymptotic approximations from Theorem 1 work as well as they
do in the i. i. d.-case. If there are visible deviations at all, then these happen again mainly
for p = 0.1 and low sample sizes. Overall, we have an excellent approximation quality
throughout, but with least SEs again for a = 3/2, 2, 5/2.

While the CPEφ-type dispersion measures and their asymptotics perform well, essen-
tially for any choice of φ, the gap becomes wider when looking at the serial dependence
measure κ̂φ(h). The asymptotics in Theorem 2 refer to the i. i. d.-case, which is used as
the null hypothesis (H0) if testing for significant serial dependence. Thus, let us start by
investigating again the mean and SE of κ̂φ(1) for i. i. d. data (same DGPs as in Table A1); see
the results in Table A3. For the asymptotic mean, we have the unique approximation −1/n,
and this works well except for p = 0.1 and low sample sizes. In particular, for φa with
a = 1, i.e., for κ̂∗ord(1), we get notable deviations. The reason is given by the computation of
κ̂∗ord(1), where division by zero might happen (in the simulations, this was circumvented
by replacing a zero by 10−6). In a weakened form, we observe a similar issue for the case
a = 3/2; generally, we are faced with the zero problem if a < 2 because of the second-order
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derivatives of φa(z). Analogous deviations are observed for the SEs. Here, generally, the
simulated SEs tend to be larger than the asymptotic ones. As a consequence, if using the
asymptotic SEs for calculating the critical values when testing H0, we expect a tendency
to oversizing.

If looking at the simulated rejection rates in Table A4, first at the size values (ρ = 0)
being printed in italic font, we indeed see sizes being slightly larger than the nominal
5%-level, as long as n ≤ 100. For larger sample sizes, by contrast, the κ̂φ(1)-test satisfies
the given size requirement quite precisely. Here, we computed the critical values by
plugging-in the respective sample CDF f̂ into the formula for σ2

κ . In Table A4, power
values for ρ 6= 0 are also shown. Note that for a BAR(1) process, ρ can take any positive
value in (0; 1), but the attainable range of negative values is bounded from below by
max

{
− 1−p

p ,− p
1−p

}
[2]. Thus, only ρ = −0.4,−0.2 are considered in Table A4. Generally,

the κ̂φ(1)-tests are powerful regarding both positive and negative dependencies, but the
actual power performance differs a lot for different φ. The worst power is observed for φq
with q = 4, followed by φa with a = 1. Regarding the remaining φa-cases, a = 3/2 does
slightly worse than a = 2, 5/2, and we often have a slight advantage for a = 5/2, especially
for negative dependencies.

To sum up, while the whole
(
CPEφ, κφ(h)

)
-family is theoretically appealing, and while

there are hardly any noteworthy problems with the sample dispersion measures ĈPEφ,
the performance of κ̂φ(h) clearly depends on the choice of φ. It is recommended to use
the family of a-entropies (6), and there, a ≥ 2 is preferable. The measure κ̂∗ord(1) from (14),
for example, although theoretically appealing as a combination of entropy and extropy,
has a relatively bad finite-sample performance. The probably most well-known pair,(
IOV, κord(h)

)
, has a good performance, although there appears to be a slight advantage if

choosing a somewhat larger than 2, such as a = 5/2 (recall that a = 3 leads back to the case
a = 2).

6. Data Application

Ordinal time series are observed in quite diverse application areas. Economic examples
include time series on credit ratings [14] or on fear states at the stock market [20], and a
climatological example is the level of cloudiness of the sky [23]. Health-related examples
are time series of electroencephalographic (EEG) sleep states [24], the pain severity of
migraine attacks, and the level of perceived stress [15]. In this section, we are concerned
with an environmental application, namely the level of air quality. Different definitions of
air quality have been reported in the literature. In Chen & Chiu [25], the air quality index
(AQI) is used for expressing the daily air quality, with levels ranging from s0 = “good”
to s5 = “hazardous”. Another case study is reported by Liu et al. [26], who use the
classification of the Chinese government, which again distinguishes m + 1 = 6 levels,
but now ranging from s0 = “excellent” to s5 = “severely polluted”. The latter article
investigates daily time series from thirty Chinese cities for the period December 2013–July
2019, i.e., the sample size equals n = 2 068. In what follows, we use one of the time series
studied by Liu et al. [26], namely the daily air quality levels x1, . . . , xn in Shanghai, for
illustrating our novel results about cumulative paired φ-entropies.

The considered time series is plotted in the top panel of Figure 5. The bottom left
graph shows the sample version of the probability mass function (PMF) P(X = si), i.e., the
relative frequencies of the categories. It exhibits a unimodal shape with mode (=median)
in s1 = “good”. The serial dependence structure is analyzed in the bottom right graph,
where κ̂φ(h) with a-entropy having a = 5/2 is used, as this is the recommended choice
according to Section 5. All of the plotted κ̂φ(h)-values are significantly different from 0 at
the 5 %-level, where the critical values (plotted as dashed lines in Figure 5) are computed
as {−0.029, 0.028} according to Theorem 2 (and by plugging-in the sample CDF). We
recognize a medium level of dependence (κ̂φ(1) ≈ 0.378), which quickly decreases with
increasing time lag h, similar to an AR-type process.



Entropy 2022, 24, 42 13 of 22

0 500 1000 1500 2000

t

A
ir 

qu
al

ity
 le

ve
l

s0

s1

s2

s3

s4

s5

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Air quality level

P
M

F

s0 s1 s2 s3 s4 s5 x 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

k
κ φ

(k
)  

w
ith

 φ
a 

us
in

g 
a=

2.
5

h

Figure 5. Daily air quality level in Shanghai: plot of time series (xt) in top panel; plot of sample PMF
(left) and κ̂φ(h) (right) in bottom panel; κ̂φ(h) uses a-entropy with a = 5/2.

Let us now have a closer look at the dispersion properties of the Shanghai series. The
different choices of the CPEφ-measure considered so far provide slightly different results
regarding the extent of dispersion. In accordance with Figure 2, the largest point estimates
are computed for a = 1/2 (0.514) and q = 4 (0.465), followed by a = 1 with 0.394, whereas
a = 3/2 (0.349), a = 2 (0.332), and a = 5/2 (0.328) lead to similar but clearly lower values.
Comparing the sample PMF in Figure 5 to the extreme scenarios of a one-point and an
extreme two-point distribution, the PMF appears to be more close to a one-point than to a
two-point distribution, i.e., the lower ones among the above dispersion values seem to be
more realistic here.

The novel asymptotics of Theorem 1 allow to judge the estimation uncertainty for the
above point estimates. To keep the discussion simple, let us focus again on the case a = 5/2.
In the first step, we compute the i. i. d.-approximations of bias and SE, 1

2 n
(

∑m−1
i=0 hii fi

(1− fi)
)

and n−1/2 σφ,iid, respectively. By plugging-in the sample CDF, these are obtained
as −1.54 · 10−4 and 7.83 · 10−3, respectively. However, these i. i. d.-results are misleading
in the present example as the data exhibit significant serial dependence (recall Figure 5).
As we know from Theorem 1, the bias has to be increased by the factor 1 + 2 ∑∞

h=1 κφ(h),
and the SE by

(
1 + 2 ∑∞

h=1 ϑφ(h)
)1/2. These factors shall now be computed based on the

so-called “ZOBPAR model” proposed by Liu et al. [26], which constitutes a rank-count
approach, Xt = sIt . In view of the AR(1)-like dependence structure and the high frequency
for s1, namely 0.560, the conditional distribution of It|It−1, . . . is assumed to be a truncated
Poisson distribution, truncated to the range {0, . . . , 5}, with time-varying Poisson parameter
λt = 0.3489 + 0.7594 It−1 and additional one-inflation parameter 0.3463 ([26] Table III). For
this model fit, we compute

1 + 2 ∑∞
h=1 κφ(h) ≈ 1.907,

√
1 + 2 ∑∞

h=1 ϑφ(h) ≈ 1.343.

Thus, an approximate 95 %-confidence interval (CI) for CPEφ is given by ≈ (0.308; 0.349).
CIs for the remaining CPEφ-measures are computed analogously, leading to (0.487; 0.544)
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for a = 1/2, to (0.372; 0.418) for a = 1, to (0.328; 0.371) for a = 3/2, to (0.312; 0.353) for
a = 2, and to (0.439; 0.492) for q = 4.

7. Conclusions

In this article, we considered the family of cumulative paired φ-entropies. For each
appropriate choice of the EGF φ, an ordinal dispersion measure CPEφ( f ) is implied. For
example, particular choices from the families of a-entropies or q-entropies, respectively,
lead to well-known dispersion measures from the literature. The first main contribution
of this work was the derivation of the asymptotic distribution of the sample version
ĈPEφ for ordinal time series data. These asymptotics can be used to approximate the
true distribution of ĈPEφ, e.g., to compute approximate confidence intervals. Simulations
showed that these asymptotics lead to an excellent finite-sample performance. Based on
the obtained expression for the asymptotic bias of ĈPEφ, we recognized that each EGF φ
also implies a κ-type serial dependence measures, i.e., altogether, we have a matched pair(
CPEφ, κφ(h)

)
for each EGF φ. Again, we analyzed the asymptotics of the sample version

κ̂φ(h), and these can be utilized for testing for significant serial dependence in the given
ordinal time series. This time, however, the finite-sample performance clearly depends on
the choice of φ. Choosing κ̂φ(h) based on an a-entropy with a ≥ 2, such as a = 5/2, ensures
good finite-sample properties. The practical application of the measures

(
CPEφ, κφ(h)

)
and

their asymptotics was demonstrated with an ordinal time series on the daily level of air
quality in Shanghai.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 2

First, we derive the second-order Taylor expansion for κ̂φ(h). For this purpose, define
g : (0; 1)2 m → R by mapping y = (y0, . . . , y2 m−1) onto

g(y) =
∑m−1

i=0

(
φ′′(yi) + φ′′(1− yi)

) (
ym+i − y2

i
)

∑m−1
i=0

(
φ′′(yi) + φ′′(1− yi)

)
yi(1− yi)

.

So, according to (15), g
(

f (h)
)
= κφ(h) and g

(
f̂ (h)
)
= κ̂φ(h). In fact, because of the i. i. d.-

assumption, we even have g
(

f (h)
)
= 0.

For the intended Taylor expansion of κ̂φ(h), we have to compute all partial derivatives
of g(y) up to order 2, and to evaluate these derivatives in y = f (h), using that fii(h) = f 2

i for
all i = 0, . . . , m− 1 under the i. i. d.-assumption, and thus g

(
f (h)
)
= 0. We use the notations

uj :=
φ′′( f j)+φ′′(1− f j)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

, vj :=
φ′′′( f j)−φ′′′(1− f j)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

. (A1)

https://doi.org/10.1111/jtsa.12625


Entropy 2022, 24, 42 15 of 22

Note that if φ is symmetric around 1/2, i.e., if φ(z) = φ(1− z), then uj, vj simplify because
of φ′′( f j) + φ′′(1− f j) = 2 φ′′( f j) and φ′′′( f j)− φ′′′(1− f j) = 2 φ′′′( f j). Using (A1), we get
for 0 ≤ j, k ≤ m− 1 that

d(κ)j := ∂
∂yj

g
(

f (h)
)
= −2 f j uj,

d(κ)m+j := ∂
∂ym+j

g
(

f (h)
)
= uj,

h(κ)j,k := ∂2

∂yj ∂yk
g
(

f (h)
)
= 2 f j fk

(
(1− fk) uj vk + (1− f j) uk vj

)
+ 2 ( f j + fk − 4 f j fk) uj uk − 2 δj,k (uj + 2 f j vj),

h(κ)j,m+k := ∂2

∂yj ∂ym+k
g
(

f (h)
)
=
(
δj,k − f j(1− f j) uk

)
vj − (1− 2 f j) uj uk,

h(κ)m+j,m+k := ∂2

∂ym+j ∂ym+k
g
(

f (h)
)
= 0.

(A2)

The proof of Equation (A2) is provided by Appendix A.2. We denote the gradient (Jacobian)
of g

(
f (h)
)

by Dκ = (d(κ)0 , . . . , d(κ)2 m−1), and the Hessian equals Hκ = diag(h(κ)00 , . . . , h(κ)2 m−1,2 m−1).

Example A1. Let us pick up Example 1 and continue with the derivatives of the EGFs, as required
for evaluating (A1) and (A2).

For φa(z) = z−za

a−1 , we have φ′′a (z) = −a za−2, and thus φ′′′a (z) = −a(a− 2) za−3. Specific
examples are

• a→ 1 corresponding to the EGF φ(z) = −z ln z, then

φ′′(z) = − 1
z , φ′′(z) = 1

z2 , so uj = 1
m

1
f j(1− f j)

, vj = 1
m

2 f j−1
f 2
j (1− f j)2 ;

• a = 2 corresponding to the EGF φ(z) = z(1− z), then

φ′′(z) = −2, φ′′′(z) = 0, so uj =
(

∑m−1
i=0 fi(1− fi)

)−1, vj = 0;

• a = 3 corresponding to the EGF φ(z) = 1
2 z(1− z2), then

φ′′(z) = −3 z, φ′′′(z) = −3, so uj, vj are as before.

For the equivalence of the a = 2, 3, recall (7).

For φq(z) = 1−
(
1− 2 min {z, 1− z}

)q
= 1− |2 z− 1|q with q > 3, we get

φ′′q (z) = −4 q(q− 1) |2 z− 1|q−2, φ′′′q (z) = −8 q(q− 1)(q− 2) |2 z− 1|q−3 sgn(2 z− 1).

Recall that (A1) simplifies because of the symmetry of φq(z) around 1/2.

Using (A2), the second-order Taylor expansion of κ̂φ(h) equals

κ̂φ(h) ≈ κφ(h) + Dκ

(
f̂ (h) − f (h)

)
+ 1

2
(

f̂ (h) − f (h)
)>Hκ

(
f̂ (h) − f (h)

)
. (A3)

In analogy to Section 3, we now conclude that

√
n
(

κ̂φ(h)− κφ(h)
)

d→ N
(
0, σ2

κ

)
with σ2

κ = Dκ Σ(h) D>κ ,

where σ2
κ = ∑m−1

j,k=0 uj uk
(

fmin {j,k} − f j fk
)2.

(A4)

The proof of Equation (A4) is provided by Appendix A.3. σ2
κ is computed explicitly by

plugging-in (A1).
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An approximate bias correction is obtained from (A3) (see the analogous arguments
in Section 3). Using that h(κ)m+j,m+k = 0, we get that

E
[
κ̂φ(h)

]
≈ 0 + 1

2 n ∑m−1
j,k=0

(
h(κ)j,k σj,k + 2 h(κ)j,m+k σ

(h)
j,m+k

)
= − 1

n , (A5)

see the proof in Appendix A.4. Using (A4) and (A5), the derivation of Theorem 2 is complete.

Appendix A.2. Proof of Equation (A2)

For

g(y) =
∑m−1

i=0

(
φ′′(yi) + φ′′(1− yi)

) (
ym+i − y2

i
)

∑m−1
i=0

(
φ′′(yi) + φ′′(1− yi)

)
yi(1− yi)

,

we compute all partial derivatives up to order 2. For doing this, we have to require that the
EGF φ is even four times differentiable. Then,

∂
∂ym+j

g(y) =
φ′′(yj)+φ′′(1−yj)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

and ∂2

∂ym+j ∂ym+k
g(y) = 0 for all 0 ≤ j, k ≤ m− 1.

Next, using the product and chain rule,

∂
∂yj

g(y) =

∂
∂yj

(
φ′′(yj)+φ′′(1−yj)

) (
ym+j−y2

j

)
∑m−1

i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

−
g(y) ∂

∂yj

(
φ′′(yj)+φ′′(1−yj)

)
yj(1−yj)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

.

Here,

∂
∂yj

(
φ′′(yj) + φ′′(1− yj)

) (
ym+j − y2

j
)

=
(
φ′′′(yj)− φ′′′(1− yj)

) (
ym+j − y2

j
)
− 2 yj

(
φ′′(yj) + φ′′(1− yj)

)
,

and

∂
∂yj

(
φ′′(yj) + φ′′(1− yj)

)
yj(1− yj)

=
(
φ′′′(yj)− φ′′′(1− yj)

)
yj(1− yj) + (1− 2 yj)

(
φ′′(yj) + φ′′(1− yj)

)
.

Thus,

∂
∂yj

g(y) =
(

∑m−1
i=0

(
φ′′(yi) + φ′′(1− yi)

)
yi(1− yi)

)−1

·
((

φ′′′(yj)− φ′′′(1− yj)
) (

ym+j − y2
j − g(y) yj(1− yj)

)
−
(
φ′′(yj) + φ′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

))
.

Consequently,

∂2

∂yj ∂ym+k
g(y) =

δj,k

(
φ′′′(yj)−φ′′′(1−yj)

)
∑m−1

i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

−
∂

∂ym+k
g(y)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

·
((

φ′′′(yj)− φ′′′(1− yj)
)

yj(1− yj) + (1− 2 yj)
(
φ′′(yj) + φ′′(1− yj)

))
.
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Finally,

∂2

∂yj ∂yk
g(y) = −

∂
∂yj

g(y) ∂
∂yk

(
φ′′(yk)+φ′′(1−yk)

)
yk(1−yk)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

+
(

∑m−1
i=0

(
φ′′(yi) + φ′′(1− yi)

)
yi(1− yi)

)−1

· ∂
∂yk

((
φ′′′(yj)− φ′′′(1− yj)

) (
ym+j − y2

j − g(y) yj(1− yj)
)

−
(
φ′′(yj) + φ′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

))
 =: A.

Here, we have for k 6= j that

A = −
(

yj(1− yj)
(
φ′′′(yj)− φ′′′(1− yj)

)
+ (1− 2 yj)

(
φ′′(yj) + φ′′(1− yj)

))
∂

∂yk
g(y).

For k = j, we have that

A = ∂
∂yj

(
φ′′′(yj)− φ′′′(1− yj)

) (
ym+j − y2

j − g(y) yj(1− yj)
)

− ∂
∂yj

(
φ′′(yj) + φ′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

)
=

(
φ(4)(yj) + φ(4)(1− yj)

) (
ym+j − y2

j − g(y) yj(1− yj)
)

−
(
φ′′′(yj)− φ′′′(1− yj)

)
yj(1− yj)

∂
∂yj

g(y)

− 2
(
φ′′′(yj)− φ′′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

)
−
(
φ′′(yj) + φ′′(1− yj)

) (
2− 2 g(y) + (1− 2 yj)

∂
∂yj

g(y)
)
.

So, altogether,

A = −δjk

(
2
(
φ′′(yj) + φ′′(1− yj)

) (
1− g(y)

)
+ 2

(
φ′′′(yj)− φ′′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

)
−
(
φ(4)(yj) + φ(4)(1− yj)

) (
ym+j − y2

j − g(y) yj(1− yj)
))

−
(

yj(1− yj)
(
φ′′′(yj)− φ′′′(1− yj)

)
+ (1− 2 yj)

(
φ′′(yj) + φ′′(1− yj)

))
∂

∂yk
g(y).

Hence,

∂2

∂yj ∂yk
g(y) = −

(
yk(1−yk)

(
φ′′′(yk)−φ′′′(1−yk)

)
+ (1−2 yk)

(
φ′′(yk)+φ′′(1−yk)

))
∂

∂yj
g(y)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

−

(
yj(1−yj)

(
φ′′′(yj)−φ′′′(1−yj)

)
+ (1−2 yj)

(
φ′′(yj)+φ′′(1−yj)

))
∂

∂yk
g(y)

∑m−1
i=0

(
φ′′(yi)+φ′′(1−yi)

)
yi(1−yi)

− δjk

(
∑m−1

i=0

(
φ′′(yi) + φ′′(1− yi)

)
yi(1− yi)

)−1

·
(

2
(
φ′′(yj) + φ′′(1− yj)

) (
1− g(y)

)
+ 2

(
φ′′′(yj)− φ′′′(1− yj)

) (
2 yj + g(y) (1− 2 yj)

)
−
(
φ(4)(yj) + φ(4)(1− yj)

) (
ym+j − y2

j − g(y) yj(1− yj)
))

.

For the required Taylor expansion, we have to evaluate all these derivatives in y = f (h),
using that fii(h) = f 2

i for all i = 0, . . . , m− 1, and thus g
(

f (h)
)
= 0. We use the notations

introduced in (A1), i.e.,

uj :=
φ′′( f j)+φ′′(1− f j)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

, vj :=
φ′′′( f j)−φ′′′(1− f j)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

.
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Then, we get for 0 ≤ j ≤ m− 1 that

d(κ)j := ∂
∂yj

g
(

f (h)
)
=

0 − 2 f j

(
φ′′( f j)+φ′′(1− f j)

)
∑m−1

i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

= −2 f j uj,

d(κ)m+j := ∂
∂ym+j

g
(

f (h)
)
= uj.

For the second-order derivatives, we get for 0 ≤ j, k ≤ m− 1 that

h(κ)j,k := ∂2

∂yj ∂yk
g
(

f (h)
)

= −

(
fk(1− fk)

(
φ′′′( fk)−φ′′′(1− fk)

)
+ (1−2 fk)

(
φ′′( fk)+φ′′(1− fk)

))
d(κ)j

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

−

(
f j(1− f j)

(
φ′′′( f j)−φ′′′(1− f j)

)
+ (1−2 f j)

(
φ′′( f j)+φ′′(1− f j)

))
d(κ)k

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

−
δjk 2
((

φ′′( f j)+φ′′(1− f j)
)
+ 2 f j

(
φ′′′( f j)−φ′′′(1− f j)

))
∑m−1

i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

= − fk(1− fk) vk d(κ)j − (1− 2 fk) uk d(κ)j

− f j(1− f j) vj d(κ)k − (1− 2 f j) uj d(κ)k − 2 δjk uj − 4 δjk f j vj

= − fk(1− fk) (−2 f j uj) vk − (1− 2 fk) (−2 f j uj) uk

− f j(1− f j) (−2 fk uk) vj − (1− 2 f j) (−2 fk uk) uj − 2 δjk (uj + 2 f j vj)

= 2 f j fk (1− fk) uj vk + 2 f j fk (1− f j) uk vj

+ 2 f j (1− 2 fk) uj uk + 2 fk (1− 2 f j) uj uk − 2 δjk (uj + 2 f j vj)

= 2 f j fk
(
(1− fk) uj vk + (1− f j) uk vj

)
+ 2 ( f j + fk − 4 f j fk) uj uk − 2 δj,k (uj + 2 f j vj).

Similarly,

h(κ)j,m+k := ∂2

∂yj ∂ym+k
g
(

f (h)
)
=

δj,k

(
φ′′′( f j)−φ′′′(1− f j)

)
∑m−1

i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

− d(κ)m+k

(
φ′′′( f j)−φ′′′(1− f j)

)
f j(1− f j)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

− d(κ)m+k (1−2 f j)
(

φ′′( f j)+φ′′(1− f j)
)

∑m−1
i=0

(
φ′′( fi)+φ′′(1− fi)

)
fi(1− fi)

=
(
δj,k − d(κ)m+k f j(1− f j)

)
vj − d(κ)m+k (1− 2 f j) uj

=
(
δj,k − f j(1− f j) uk

)
vj − (1− 2 f j) uj uk.

Finally,
h(κ)m+j,m+k := ∂2

∂ym+j ∂ym+k
g
(

f (h)
)
= 0.

This completes the proof of (A2).

Appendix A.3. Proof of Equation (A4)

σ2
κ = Dκ Σ(h) D>κ is computed as follows:

σ2
κ = ∑m−1

j,k=0

(
d(κ)j d(κ)k σj,k + 2 d(κ)j d(κ)m+k σ

(h)
j,m+k + d(κ)m+j d(κ)m+k σ

(h)
m+j,m+k

)
(A2)
= ∑m−1

j,k=0

(
4 f j fk uj uk σj,k − 4 f j uj uk σ

(h)
j,m+k + uj uk σ

(h)
m+j,m+k

)
(17)
= ∑m−1

j,k=0

(
− 4 f j fk uj uk

(
fmin {j,k} − f j fk

)
+ uj uk

(
fmin {j,k} + 3 f j fk

) (
fmin {j,k} − f j fk

))
= ∑m−1

j,k=0 uj uk
(

fmin {j,k} − f j fk
)2.

This completes the proof of (A4).
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Appendix A.4. Proof of Equation (A5)

Using that h(κ)m+j,m+k = 0, we get that

E
[
κ̂φ(h)

]
≈ 0 + 1

2 n ∑m−1
j,k=0

(
h(κ)j,k σj,k + 2 h(κ)j,m+k σ

(h)
j,m+k

)
(17)
= 1

2 n ∑m−1
j,k=0 σj,k

(
h(κ)j,k + 4 fk h(κ)j,m+k

)
(A2)
= 1

2 n ∑m−1
j,k=0 σj,k

(
2 f j fk

(
(1− fk) uj vk + (1− f j) uk vj

)
+ 2 ( f j + fk − 4 f j fk) uj uk − 2 δj,k (uj + 2 f j vj)

+ 4 fk
(
δj,k − f j(1− f j) uk

)
vj − 4 fk (1− 2 f j) uj uk

)
= 1

2 n ∑m−1
j,k=0 σj,k

(
4 f j fk (1− f j) uk vj + 4 fk (1− 2 f j) uj uk − 2 δj,k uj − 4 δj,k f j vj

+ 4 δj,k f j vj − 4 fk f j(1− f j) uk vj − 4 fk (1− 2 f j) uj uk

)
= 1

2 n ∑m−1
j,k=0 σj,k

(
0 − 2 δj,k uj

)
= − 1

n ∑m−1
j=0 uj σj,j = − 1

n ,

where the last equality follows from (A1) by using σj,j = f j(1− f j) according to (17). This
completes the proof of (A5).

Appendix B. Tables

Table A1. Simulated vs. asymptotic mean and SE of ĈPEφ for specific cases of φa(z) = (z− za)/(a− 1)
and φq(z) = 1− |2 z− 1|q, where i. i. d. rank counts It ∼ Bin(4, p) and sample size n.

Simulated Mean Asymptotic Mean
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

0.1 50 0.305 0.282 0.273 0.272 0.336 0.301 0.282 0.273 0.272 0.337
100 0.310 0.285 0.276 0.274 0.341 0.308 0.285 0.276 0.274 0.341
250 0.313 0.287 0.278 0.276 0.343 0.312 0.287 0.278 0.276 0.343
500 0.314 0.288 0.278 0.277 0.344 0.314 0.288 0.278 0.277 0.344
1000 0.314 0.288 0.279 0.277 0.344 0.315 0.288 0.279 0.277 0.344

0.3 50 0.538 0.500 0.484 0.481 0.610 0.538 0.500 0.484 0.481 0.610
100 0.546 0.506 0.490 0.486 0.618 0.545 0.505 0.489 0.486 0.617
250 0.550 0.508 0.492 0.488 0.622 0.550 0.509 0.492 0.489 0.622
500 0.551 0.509 0.493 0.489 0.624 0.551 0.510 0.493 0.490 0.624
1000 0.552 0.510 0.494 0.490 0.625 0.552 0.510 0.494 0.490 0.625

0.5 50 0.601 0.554 0.536 0.532 0.679 0.602 0.555 0.536 0.532 0.679
100 0.609 0.560 0.541 0.537 0.687 0.609 0.561 0.541 0.537 0.688
250 0.613 0.564 0.544 0.540 0.693 0.614 0.564 0.545 0.540 0.693
500 0.616 0.566 0.546 0.542 0.696 0.615 0.565 0.546 0.542 0.695
1000 0.616 0.566 0.546 0.542 0.696 0.616 0.566 0.546 0.542 0.696

0.1 50 0.048 0.044 0.043 0.043 0.053 0.049 0.044 0.043 0.043 0.054
100 0.034 0.031 0.030 0.030 0.037 0.034 0.031 0.030 0.030 0.038
250 0.022 0.020 0.019 0.019 0.024 0.022 0.020 0.019 0.019 0.024
500 0.015 0.014 0.014 0.014 0.017 0.015 0.014 0.014 0.014 0.017
1000 0.011 0.010 0.010 0.009 0.012 0.011 0.010 0.010 0.010 0.012

0.3 50 0.053 0.051 0.051 0.050 0.059 0.053 0.051 0.051 0.051 0.058
100 0.037 0.036 0.036 0.036 0.041 0.037 0.036 0.036 0.036 0.041
250 0.024 0.023 0.023 0.023 0.026 0.024 0.023 0.023 0.023 0.026
500 0.017 0.016 0.016 0.016 0.018 0.017 0.016 0.016 0.016 0.018
1000 0.012 0.011 0.011 0.011 0.013 0.012 0.011 0.011 0.011 0.013
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Table A1. Cont.

Simulated SE Asymptotic SE
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

0.5 50 0.056 0.055 0.054 0.054 0.065 0.055 0.055 0.054 0.054 0.065
100 0.039 0.038 0.038 0.038 0.046 0.039 0.039 0.038 0.038 0.046
250 0.025 0.025 0.025 0.025 0.029 0.024 0.025 0.024 0.024 0.029
500 0.017 0.017 0.017 0.017 0.021 0.017 0.017 0.017 0.017 0.021
1000 0.012 0.012 0.012 0.012 0.015 0.012 0.012 0.012 0.012 0.015

Table A2. Simulated vs. asymptotic mean and SE of ĈPEφ for specific cases of φa(z) = (z− za)/(a− 1)
and φq(z) = 1− |2 z− 1|q, where BAR(1) rank counts It ∼ Bin(4, p) with ρ = 0.4 and sample size n.

Simulated Mean Asymptotic Mean
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

0.1 50 0.298 0.276 0.268 0.266 0.330 0.292 0.275 0.267 0.266 0.330
100 0.306 0.282 0.273 0.271 0.337 0.304 0.282 0.273 0.271 0.337
250 0.312 0.286 0.277 0.275 0.342 0.311 0.286 0.277 0.275 0.342
500 0.313 0.287 0.278 0.276 0.343 0.313 0.287 0.278 0.276 0.343
1000 0.314 0.288 0.279 0.277 0.344 0.314 0.288 0.278 0.277 0.344

0.3 50 0.529 0.491 0.476 0.473 0.598 0.528 0.491 0.476 0.472 0.597
100 0.540 0.501 0.485 0.481 0.611 0.540 0.501 0.485 0.481 0.611
250 0.547 0.506 0.490 0.487 0.620 0.548 0.507 0.490 0.487 0.620
500 0.551 0.509 0.493 0.489 0.623 0.550 0.509 0.492 0.489 0.623
1000 0.552 0.510 0.493 0.490 0.624 0.551 0.510 0.493 0.490 0.624

0.5 50 0.590 0.545 0.527 0.523 0.667 0.592 0.545 0.527 0.523 0.666
100 0.604 0.555 0.537 0.532 0.682 0.604 0.556 0.537 0.533 0.682
250 0.612 0.562 0.543 0.539 0.691 0.612 0.562 0.543 0.539 0.691
500 0.614 0.564 0.545 0.540 0.694 0.614 0.564 0.545 0.541 0.694
1000 0.615 0.565 0.546 0.542 0.695 0.615 0.566 0.546 0.542 0.695

0.1 50 0.066 0.062 0.061 0.061 0.070 0.070 0.065 0.064 0.064 0.073
100 0.047 0.045 0.044 0.044 0.050 0.049 0.046 0.045 0.045 0.052
250 0.031 0.029 0.028 0.028 0.032 0.031 0.029 0.029 0.029 0.033
500 0.022 0.020 0.020 0.020 0.023 0.022 0.021 0.020 0.020 0.023
1000 0.015 0.014 0.014 0.014 0.016 0.016 0.015 0.014 0.014 0.016

0.3 50 0.064 0.061 0.061 0.060 0.071 0.065 0.063 0.062 0.062 0.073
100 0.046 0.044 0.043 0.043 0.050 0.046 0.044 0.044 0.044 0.051
250 0.029 0.028 0.027 0.027 0.032 0.029 0.028 0.028 0.028 0.032
500 0.021 0.020 0.019 0.019 0.023 0.021 0.020 0.020 0.020 0.023
1000 0.014 0.014 0.014 0.014 0.016 0.015 0.014 0.014 0.014 0.016

0.5 50 0.065 0.063 0.062 0.062 0.074 0.064 0.064 0.064 0.064 0.076
100 0.046 0.046 0.045 0.045 0.054 0.045 0.046 0.045 0.045 0.054
250 0.029 0.029 0.029 0.029 0.034 0.029 0.029 0.029 0.028 0.034
500 0.020 0.020 0.020 0.020 0.024 0.020 0.020 0.020 0.020 0.024
1000 0.014 0.014 0.014 0.014 0.017 0.014 0.014 0.014 0.014 0.017

Table A3. Simulated vs. asymptotic mean and SE of κ̂φ(1) for specific cases of φa(z) = (z− za)/(a− 1)
and φq(z) = 1− |2 z− 1|q, where i. i. d. rank counts It ∼ Bin(4, p) and sample size n.

Simulated Mean Asymptotic Mean
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

0.1 50 −0.020 −0.019 −0.019 −0.019 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020
100 0.005 −0.008 −0.008 −0.008 −0.009 −0.010 −0.010 −0.010 −0.010 −0.010
250 0.003 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004
500 0.000 −0.001 −0.002 −0.002 −0.001 −0.002 −0.002 −0.002 −0.002 −0.002
1000 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001
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Table A3. Cont.

Simulated Mean Asymptotic Mean
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

0.3 50 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020
100 −0.010 −0.010 −0.010 −0.010 −0.011 −0.010 −0.010 −0.010 −0.010 −0.010
250 −0.003 −0.004 −0.004 −0.004 −0.003 −0.004 −0.004 −0.004 −0.004 −0.004
500 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002
1000 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

0.5 50 −0.020 −0.021 −0.021 −0.021 −0.020 −0.020 −0.020 −0.020 −0.020 −0.020
100 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010
250 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004
500 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002
1000 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

0.1 50 0.124 0.124 0.130 0.132 0.134 0.074 0.105 0.120 0.122 0.103
100 0.134 0.082 0.088 0.089 0.085 0.053 0.074 0.085 0.086 0.073
250 0.086 0.050 0.055 0.056 0.050 0.033 0.047 0.054 0.055 0.046
500 0.045 0.034 0.038 0.039 0.034 0.023 0.033 0.038 0.039 0.033
1000 0.022 0.024 0.027 0.027 0.023 0.017 0.023 0.027 0.027 0.023

0.3 50 0.098 0.097 0.101 0.101 0.101 0.079 0.089 0.096 0.097 0.088
100 0.066 0.067 0.070 0.071 0.067 0.056 0.063 0.068 0.068 0.062
250 0.040 0.040 0.043 0.043 0.040 0.035 0.040 0.043 0.043 0.040
500 0.026 0.028 0.030 0.031 0.028 0.025 0.028 0.030 0.031 0.028
1000 0.018 0.020 0.021 0.021 0.020 0.018 0.020 0.021 0.022 0.020

0.5 50 0.084 0.092 0.098 0.099 0.089 0.080 0.086 0.092 0.094 0.080
100 0.058 0.063 0.067 0.068 0.059 0.057 0.061 0.065 0.066 0.057
250 0.036 0.039 0.042 0.043 0.037 0.036 0.039 0.041 0.042 0.036
500 0.025 0.027 0.029 0.030 0.025 0.025 0.027 0.029 0.030 0.025
1000 0.018 0.019 0.021 0.021 0.018 0.018 0.019 0.021 0.021 0.018

Table A4. Simulated rejection rate (ρ = 0: size; ρ 6= 0: power) of κ̂φ(1)-test at 5 %-level (H0: ρ = 0, i.e.,
i. i. d.-case) for specific cases of φa(z) = (z− za)/(a− 1) and φq(z) = 1− |2 z− 1|q, where BAR(1)
rank counts It ∼ Bin(4, 0.3) and sample size n.

Simulated Rejection Rate Simulated Rejection Rate
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

ρ = 0.2

50 0.227 0.265 0.263 0.262 0.222
100 0.367 0.447 0.451 0.450 0.370
250 0.721 0.830 0.830 0.829 0.723
500 0.950 0.982 0.982 0.981 0.947

1000 1.000 1.000 1.000 1.000 0.999

ρ = −0.4 ρ = 0.4

50 0.484 0.565 0.585 0.588 0.312 50 0.663 0.749 0.756 0.757 0.625
100 0.807 0.878 0.891 0.893 0.672 100 0.917 0.959 0.962 0.962 0.897
250 0.989 0.999 1.000 1.000 0.987 250 1.000 1.000 1.000 1.000 0.999
500 0.997 1.000 1.000 1.000 1.000 500 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000 1.000

ρ = −0.2 ρ = 0.6

50 0.151 0.188 0.195 0.196 0.094 50 0.956 0.979 0.981 0.981 0.923
100 0.298 0.365 0.374 0.375 0.231 100 1.000 1.000 1.000 1.000 0.998
250 0.643 0.744 0.751 0.751 0.584 250 1.000 1.000 1.000 1.000 1.000
500 0.925 0.965 0.966 0.965 0.900 500 1.000 1.000 1.000 1.000 1.000

1000 0.994 1.000 1.000 1.000 0.998 1000 1.000 1.000 1.000 1.000 1.000
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Table A4. Cont.

Simulated Rejection Rate Simulated Rejection Rate
p n a = 1 a = 1.5 a = 2 a = 2.5 q = 4 a = 1 a = 1.5 a = 2 a = 2.5 q = 4

ρ = 0 ρ = 0.8

50 0.061 0.056 0.054 0.054 0.061 50 0.997 1.000 1.000 1.000 0.981
100 0.056 0.060 0.058 0.057 0.057 100 1.000 1.000 1.000 1.000 0.999
250 0.047 0.048 0.046 0.046 0.049 250 1.000 1.000 1.000 1.000 1.000
500 0.049 0.050 0.050 0.050 0.052 500 1.000 1.000 1.000 1.000 1.000

1000 0.053 0.047 0.048 0.049 0.050 1000 1.000 1.000 1.000 1.000 1.000
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