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Introduction

Maternal hyperglycemia is an important risk factor for 
developing metabolic syndrome in children. Type 1 diabetes 
mellitus (T1DM), and increasingly type 2 diabetes mellitus 
(T2DM), in pregnancy continue to cause significant mater-
nal as well as perinatal morbidity and mortality1–4 with inci-
dence as high as 5%–8% of all pregnancies in the United 
States and in Europe; and 15%–20% in some developing 
countries.5 Maternal glycemic status can influence fetal and 
postnatal gastrointestinal development and vasculature.6–8

Vascular endothelial growth factor (VEGF) is a mito-
gen for vascular endothelial cells derived from arteries, 
veins, and lymphatics, induced by hypoxia. It elicits a pro-
nounced angiogenic response9,10 and is important for 
migration and proliferation of endothelial cells during vas-
culogenesis and angiogenesis.11 The action of VEGF is 
mediated by its two membrane receptors, vascular 
endothelial growth factor receptor-1 (VEGFR-1) and vas-
cular endothelial growth factor receptor-2 (VEGFR-2). 
The soluble form of VEGFR-1 (sVEGFR-1) has been 

identified in amniotic fluid and in serum of pregnant 
women, where it binds to circulating VEGF acting as an 
endogenous inhibitor.12–14 VEGF is highly induced in 
hypoxia, and by high levels of glucose and advanced gly-
cation end products.15–22 Hypoxia also induces erythropoi-
etin (Epo), a 34 kDa glycoprotein hormone mainly 
involved in the regulation of red blood cell production 
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during physiological and pathological conditions. Like 
VEGF, Epo is induced in utero via activation of hypoxia-
inducible factor (HIF).23 High amniotic fluid levels of Epo 
was shown to be associated with fetal hypoxia and intrau-
terine growth restriction.24

Insulin-like growth factor-1 (IGF-I) is maternally-derived 
and is important in the regulation of placental growth. The 
placenta also produces IGF-I which initiates its biological 
effects by binding to insulin-like growth factor-1 receptor 
(IGF-IR). IGF-I is important for regulating placental and fetal 
growth and development; trophoblast proliferation, differen-
tiation, and invasion; as well as placental nutrient transport.25 
Studies show that inhibition of prostaglandin (PG) E2 sup-
presses VEGF-induced angiogenesis, confirming a link 
between PGE2 and VEGF signaling.26 PGE2 is the main pros-
tanoid in the intestines induced primarily by cyclooxygenase 
(COX)-2. At physiological levels COX-2 contributes to intes-
tinal homeostasis and barrier maintenance.27 At high levels, 
COX-2 induces inflammation, and promotes angiogenesis, 
enterocyte proliferation, gut barrier failure, inflammatory 
bowel disease, necrotizing enterocolitis, angiogenesis, and 
nitric oxide (NO).28–32 NO modulates insulin sensitivity,33 and 
like PGE2, interacts with VEGF to promote endothelial cell 
proliferation, migration, differentiation, and interaction with 
the extracellular matrix.34

Although it is well-known that infants of diabetic mothers 
are prone to obesity and type 2 diabetes in later life,35–38 no 
previous studies have assessed the effects of maternal hyper-
glycemia on fetal and pre-adolescent factors that influence 
growth, hypoxia, and angiogenesis. We therefore tested the 
hypothesis that the maternal hyperglycemia alters fetal 
growth factors and predisposes the pre-adolescent offspring 
to obesity and subsequent hyperglycemia. Our hypothesis 
was tested with the following objectives: (1) to examine 
whether maternal hyperglycemia influences growth factors 
in the fetal compartment, and large bowels of fetuses and 
pre-adolescent offspring; and (2) to determine whether 
maternal hyperglycemia control with insulin mitigates the 
responses in the fetal and adolescent offspring. Our primary 
outcome was maternal and offspring glucose levels, and our 
secondary outcomes were fetal growth parameters and bio-
markers of growth, hypoxia, and angiogenesis.

Material and methods

All experiments were approved by the State University of 
New York, Downstate Medical Center Animal Care and 
Use Committee (protocol # 09-393-08). Animals were 
cared for according to the guidelines of the United States 
Department of Agriculture, and the Guide for the Care and 
Use of Laboratory Animals.

Experimental design

Certified infection-free Sprague Dawley timed pregnant 
rats were purchased from Charles River Laboratories 

(Wilmington, MD) at 15 days gestation. Rats were fed 
commercially available pelleted diet with free access to 
food and water. Fetuses (embryonic day 20, E20) and ado-
lescent offspring (postnatal day 14, P14) from three groups 
of pregnant rats (n = 4 pregnant rats/group) were studied: 
(1) normal untreated controls (CTL); (2) hyperglycemic 
with placebo treatment (HPT); and (3) hyperglycemic with 
insulin treatment (HIT). Baseline values glucose and 
ketones were determined in the urine and blood samples 
(tail vein) in all groups. For groups 2 and 3, hyperglycemia 
was induced on embryonic day (E)16 by injection of a sin-
gle dose of 65 mg/kg streptozocin (Sigma-Millipore, St. 
Louis, MO, USA) into the tail vein. Streptozocin destroys 
beta cells of the pancreas and is most commonly used to 
induce hyperglycemia in animal models.39 Hyperglycemia 
was confirmed on E18 with daily monitoring of urinary 
glucose and ketosis using appropriate urine strips. Once 
diabetes was confirmed, the rats from groups 2 and 3 were 
implanted with placebo (group 2) or insulin (group 3) pel-
lets purchased from LinShin Canada, Inc., Toronto, 
Canada. Upon implantation, gradual erosion of the implant 
starts immediately with the effects of released insulin (1 U/
day) on blood glucose detected <1 h post implantation. 
The placebo control implants were made from palmitic 
acid micro crystals of the same dimensions.

Implantation procedure

Once diabetes was confirmed, the rats from groups 2 and 3 
were anesthetized with ketamine (40 mg/kg) and xylazine 
(10 mg/kg) for subcutaneous implantation of placebo (group 
2) or insulin pellets (group 3). Prior to implantation, the 
upper abdominal area of the rats was shaved and cleansed 
with 10% povidone-iodine solution. Implantation was made 
with the use of a trocar inserted subcutaneously.

Harvesting of fetuses

Two pregnant rats from each group were anesthetized with 
ketamine (40 mg/kg) and xylazine (10 mg/kg) at E20. A 
C-section was performed and the two uterine horns were iso-
lated under sterile conditions. The amniotic fluid was aspi-
rated using a 19-gauge needle attached to a 3.0 cc syringe, 
following which the fetuses and placentas were expelled and 
weighed. The fetal organs were removed and weighed, and 
the large bowels collected. Placentas and fetal membranes 
and large bowels were rinsed in ice-cold phosphate buffered 
saline (PBS) on ice, snap frozen in liquid nitrogen, and stored 
at −80°C until analysis. Amniotic fluid was placed in sterile 
Eppendorf tubes and frozen at −20°C until analysis. Samples 
contaminated with blood were discarded.

Pre-adolescent pups

All pups from group 2 (hyperglycemic, placebo-treated) 
died in utero. To determine outcomes in the adolescent 
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pups, the rat pups born at term from groups 1 and 3 were 
left with their mothers until P14. At P14, the pups were 
weighed and euthanized for glucose levels and harvesting 
and weighing of their organs.

Blood and urine glucose and ketone levels

Each day post diabetes induction, the rats were placed in 
a decapicone and urine samples were collected. Rats 
usually void urine frequently when handled. Urinary 
glucose and ketones were measured using a dipstick. For 
urinary ketones, levels <20 mg/dL were considered low; 
levels of 30–40 mg/dL were considered moderate; and 
levels >80 mg/dL were considered high. Maternal blood 
glucose levels were determined from the tail vein, and 
fetal and adolescent blood glucose was determined at the 
time of euthanasia. Glucose levels were determined 
immediately upon withdrawal using an Accu-Check glu-
cose meter.

Food and water intake

Food intake was measured by weighing the food before, 
and every 24 h. For the P14 groups, this process was 
repeated every 5 days. Total water intake was calculated by 
measuring the volume of water in a graduated cylinder at 
the beginning, and every 24 h. The amount of food con-
sumed and the total water intake during the experiment 
were determined by subtracting the remainder from the 
amounts given. The average number of days for the E20 
groups was 5 (embryonic day 16 (E16)–embryonic day 20 
(E20)) and the average number of days for the P14 groups 
is 15 (P0-P14).

Growth factors

Levels of growth factors (IGF-I, VEGF, sVEGFR-1, 
Epo, and nitric oxide stable metabolites, nitrate and 
nitrite, NOx) were determined in the fetal compartment 
(placenta, amniotic fluid, and fetal membranes). In the 
large bowels of fetuses and pre-adolescent rats at P14, 
VEGF, sVEGF-1, NOx, and PGE2 were determined. All 
samples were analyzed on the same day. The samples 
were homogenized using the Fast-Prep system (MP 
Biomedicals, Santa Ana, CA, USA), and the homogen-
ates were centrifuged at 4°C at 10,000 rpm for 20 min. 
The supernatant was filtered, and the filtrate was used 
for the assays. A portion of the filtrate was used for total 
cellular protein levels. IGF-I, VEGF, sVEGF-1, Epo, 
and NOx (R&D Systems, Minneapolis, MN, USA), and 
PGE2 (Enzo Life Sciences, Farmingdale, NY, USA) lev-
els were determined using commercially available assay 
kits. All samples were processed and assayed according 
to the manufacturer’s protocol and standardized using 
total cellular protein levels.

Total cellular protein levels

A 10 µL portion of the tissue homogenates was utilized for 
total cellular protein levels using the Bradford method 
(Bio-Rad, Hercules, CA) with bovine serum albumin as a 
standard. The protein assay was carried out on the same 
day as the assays for growth factors.

Real-time PCR

Large bowels were harvested in situ, washed in ice-cold 
PBS on ice, snap frozen in liquid nitrogen, and stored at 
−80°C until analysis. Total ribonucleic acid (RNA) was 
extracted as previously described.34 To identify genes that 
are affected by diabetes with and without insulin treat-
ment, real-time polymerase chain reaction (PCR) was car-
ried out using the rat angiogenesis arrays (Qiagen, USA) 
using a BioRad IQ5 real-time instrument (BioRad, 
Hercules, CA) per manufacturer’s instructions.

Statistical analyses

One-way analysis of variance (ANOVA) was used to 
determine differences among the groups for normally-dis-
tributed data, and Kruskal-Wallis test was used for non-
normally-distributed data following Bartlett’s test for 
equality of variances. Post hoc analysis was performed 
using the Tukey and Student-Newman-Keuls tests for sig-
nificance. Unpaired t-test was used for comparison 
between the two groups, following Levene’s test for equal-
ity of variances. For non-normally distributed data, the 
Mann-Whitney U test was used. Significance was set at 
p < 0.05 and data are reported as mean ± SEM, where 
applicable. All analyses were two-tailed and performed 
using the IBM Statistical Package for Social Sciences 
(SPSS, Inc., Chicago, IL).

Results

Maternal

The general maternal outcomes are presented in Table 1. In 
addition to blood glucose, urine glucose and ketones, daily 
food and water intake were monitored at baseline, implan-
tation and at the time of fetal harvesting at E20 or sponta-
neous delivery at P0. Food and water intake were averaged 
over 5 days (from E16 to E20) for fetal groups and over 
15 days (P0–P14) for pre-adolescent groups. Data showed 
comparable food and water intake over the 5-day period 
for the fetal groups. In contrast, animals in the HIT groups 
ate significantly more than the CTL group. Blood glucose 
levels were similar at baseline and diabetes was confirmed 
at the time of implantation (E18) in the two hyperglycemic 
groups. Despite insulin treatment, blood glucose levels 
remained elevated at the time of fetal harvesting and at 
P14 compared to the corresponding CTL group. Urinary 
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glucose and ketones remained elevated in the hyperglyce-
mic groups at the time of implantation, but by E20 or P14, 
were negative in the HIT group.

Fetal and pre-adolescent

Table 2 presents growth parameters for the fetal and pre-
adolescent offspring. Among the fetal groups, placental 
weights were lower in the hyperglycemic groups than con-
trols. However, total body weight was lower and liver 
weights were higher in both hyperglycemic groups. 
Conversely, kidney weights were lower in the HPT and 
higher in the HIT group than controls. As expected, fetal 
blood glucose levels were higher in the hyperglycemic 
groups regardless of insulin treatment, although the HIT 
group had lower insulin levels than the HPT group. 

Between the adolescent groups, mean total body weight at 
birth was 8.3 ± 0.13 (CTL) and 9.2 ± 0.08, p < 0.01 (HIT). 
Total body weight, blood glucose levels, as well as lung, 
liver and kidney weights at P14 were higher in the HIT 
compared to CTL group. It was not possible to collect pla-
cental weight in these groups because the dams consumed 
the placentas during spontaneous delivery of the pups. 
Furthermore, no P14 data were collected for the HPT 
group because all of the pups died in utero.

Fetal growth factors

IGF-I levels (Figure 1) were lower in the placenta (panel 
A), amniotic fluid (panel B), and fetal membranes (panel 
C) from both diabetes groups, despite of insulin treatment. 
VEGF levels in the fetal compartment is presented in 

Table 1. Maternal data.

CTL-E20 HPT-E20 HIT-E20 CTL-P14 HIT-P14

Average daily food intake (g) 55 ± 11 39 ± 8 76 ± 15 45 ± 12 54 ± 18
Average daily water intake (mL) 68 ± 20 117 ± 24 76 ± 15 60 ± 23 186 ± 45#

Blood glucose (mg/dL)
 Baseline 107 ± 3.2 133 ± 5.4 101 ± 5.6 97 ± 6.9 120 ± 5.0
 Implantation – >2000** >2000** – 377 ± 30.5##

 E20/P14 90 ± 5.0 >2000** 362 ± 43.3** 108 ± 10.0 232 ± 33.6##

Urine glucose (mg/dL)
 Baseline Neg Neg Neg Neg Neg
 Implantation Neg >1000** >1000** Neg >2000##

 E20/P14 Neg >2000** Neg Neg Neg
Urine ketones
 Baseline Neg Neg Neg Neg Neg
 Implantation Neg 80 ± 31.3** 160 ± 23.8** Neg 160 ± 33.5##

 E20/P14 Neg 160 ± 25.6** Neg 160 ± 25.3## Neg

Food and water intake are averaged over 5 days (E16–E20) for fetal groups, and over 15 days (P0–P14) for pre-adolescent groups.
For fetal groups, data are analyzed using one-way ANOVA, and for pre-adolescent groups, data are analyzed using unpaired t-test.
CTL: normal controls, untreated; HPT: hyperglycemic, placebo-treated; HIT: hyperglycemic, insulin-treated; E20: embryonic day 20; P14: postnatal 
day 14.
**p < 0.01 versus CTL-E20. ##p < 0.05. ##p < 0.01 versus CTL-P14.

Table 2. Fetal and pre-adolescent data.

CTL-E20 (n = 22) HPT-E20 (n = 10) HIT-E20 (n = 20) CTL-P14 (n = 21) HIT-P14 (n = 16)

Placental Wt. (g) 0.60 ± 0.03 0.52 ± 0.01 0.51 ± 0.01** – –
Body Wt. (g) 2.8 ± 0.06 2.1 ± 0.03** 2.5 ± 0.07** 27.7 ± 0.49 40.7 ± 0.22##

Brain Wt. (g) 0.14 ± 0.006 0.13 ± 0.002 0.13 ± 0.003 1.2 ± 0.02 1.2 ± 0.05
Heart Wt. (g) 0.18 ± 0.001 0.016 ± 0.0007 0.017 ± 0.0006 0.17 ± 0.006 0.2 ± 0.02
Lungs Wt. (g) 0.11 ± 0.007 0.12 ± 0.006 0.13 ± 0.007 0.54 ± 0.02 0.6 ± 0.02#

Liver Wt. (g) 0.24 ± 0.01 0.29 ± 0.011** 0.31 ± 0.01** 0.84 ± 0.02 1.0 ± 0.04##

Kidneys Wt. (g) 0.02 ± 0.002 0.016 ± 0.001** 0.027 ± 0.0007** 0.4 ± 0.01 0.55 ± 0.22##

Glucose levels (mg/dL) 30.8 ± 0.06 468.4 ± 20.9** 369.1 ± 35.7** 145.0 ± 3.7 170.4 ± 3.1##

P14 data are compared using unpaired t-test. Placental weights were not determined for the P14 groups due to maternal consumption of placenta 
during delivery of the pups.
CTL: normal control, untreated; HPT: hyperglycemic, placebo-treated; HIT: hyperglycemic, insulin-treated; E20: embryonic day 20; P14: postnatal 
day 14; E20 data are compared using on-way ANOVA.
**p < 0.01 versus CTL-E20. #p < 0.05. ##p < 0.01 versus CTL-P14.
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Figure 2. VEGF levels in the placenta (panel A) and fetal 
membranes (panel C) were lower in the hyperglycemic 
groups. However, in the amniotic fluid (panel B), VEGF 
levels were higher in the HPT group and lower in the HIT 
group. Similarly, sVEGFR-1 levels (Figure 3) were lower 
in the placenta (panel A) from hyperglycemic pregnancies. 
In contrast, levels were higher in the amniotic fluid (B) and 
fetal membranes (C) in the HPT, and lower in the amniotic 
fluid and fetal membranes from the HIT group compared 
to CTL. Epo levels in the fetal compartment is presented in 
Figure 4. Epo was lower in the placenta (panel A), amni-
otic fluid (panel B), and fetal membranes (panel C) from 
the HIT group, and higher in the placenta and amniotic 
fluid from the HPT group, than CTL. NOx levels are pre-
sented in Figure 5. NOx was higher in all fetal samples 
from the HPT group and lower in the placenta (panel A) 
and fetal membranes (panel C) from the HIT group.

Large bowel growth factors

Growth factors in the large bowel homogenates from fetal 
and pre-adolescent (P14) rat offspring of hyperglycemic 
mothers are shown in Figure 6, panels A to D. A marked 

elevation in VEGF was noted the HPT fetuses, and HIT 
pre-adolescent groups compared to their respective con-
trols (panel A). A similar response was noted for fetal 
sVEGFR-1, but a reduction in sVEGFR-1 was seen in the 
pre-adolescent HIT group (panel B). NOx was also reduced 
in the pre-adolescent HIT group compared to controls 
(panel C), and PGE2 levels were elevated in both fetal and 
pre-adolescent HIT groups (panel D).

Gene expression of growth factors in large 
bowels

Of the 88 genes in angiogenesis PCR arrays, we found that in 
the fetal large bowels, glucose-6-phosphate dehydrogenase 
(G-6-PD) was upregulated in the HIT versus HPT groups 
(24.3-fold vs 5.2-fold). In contrast, glucagon (15-fold vs 
11.3-fold), insulin (28.5-fold vs 2.7-fold), interleukin (IL)-10 
(25.2-fold vs 2.5-fold), leptin (17.3-fold vs 1.1-fold), and 
VEGF (8.0-fold vs −1.3-fold) were upregulated in the HPT 
group. At P14, G-6-PD (−2.0-fold), glucagon (−8.0-fold), 
and VEGF (−1.1-fold) were downregulated in the HIT ver-
sus CTL groups while insulin (6.0-fold), interleukin-10 (IL-
10) (6.3-fold), and leptin (2.8-fold) were upregulated.

Figure 1. Effects of maternal hyperglycemia with and without insulin treatment on IGF-I levels in the fetal compartment (A: 
placenta; B: amniotic fluid; C: fetal membranes) at embryonic day 20 (E20). Maternal hyperglycemia was induced with streptozocin 
at E16, implantation of insulin or placebo occurred at E18, and fetuses were harvested at E20. The control (CTL) group was 
normal, untreated. The HPT (hyperglycemic, placebo-treated) group receive placebo implants, and the HIT (hyperglycemic, insulin-
treated) group received insulin implants delivering 1 U/day. Data are expressed as mean ± SEM. n = 8 samples/group.
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Discussion

Our findings showed that within 2 days of streptozocin 
treatment, the rats developed severe hyperglycemia and 
while insulin treatment successfully reduced urinary glu-
cose and ketones, it was not adequate for complete reduc-
tion of maternal blood glucose to be comparable with 
controls. This was reflective of the increased thirst 
response. The data showed that maternal hyperglycemia 
has long-lasting effects on blood glucose, growth, and 
growth factors in the pre-adolescent offspring resulting in 
hyperglycemia and obesity, thus proving our hypothesis, 
and confirming previous reports.35–38,40 Furthermore, these 
data showed that uncontrolled hyperglycemia and fetal 
mortality was associated with hypoxia, evidenced by 
inductions in amniotic fluid VEGF, sVEGFR-1, NOx, and 
Epo, all of which were lowered with insulin treatment, 
subsequently resulting in improved survival. These find-
ings suggest that the effect of maternal hyperglycemia on 
growth factors in the fetal compartment may be an inde-
pendent risk factor for the reported obesity and metabolic 
consequences in the offspring.

This study found that despite insulin treatment, maternal 
hyperglycemia caused reductions in fetal body and kidney 

weights, as well as placental weights, while the liver weights 
were elevated. In contrast, body weight was elevated in the 
HIT group compared to CTL at normal birth. These findings 
suggest that the time from implantation of insulin to fetal 
harvesting at E20 was insufficient to reverse the negative 
effects of hyperglycemia on fetal growth. This was also rep-
resented by lower IGF-I levels which, during pregnancy, is 
important for normal fetal growth. Higher body weights at 
normal birth in the HIT group compared to CTL and was 
consistent with previous reports.41,42

Alternatively, factors other than glucose may participate 
in this process. The liver plays an important role in control of 
blood glucose as insulin released from the pancreas passes 
via the portal vein directly into the liver. The fetal liver also 
controls distribution of nutrients from the placenta and regu-
lates fetal growth.43,44 Therefore, larger fetal size is associ-
ated with higher umbilical venous liver flow. Studies show 
that diabetes induces fetal liver size,45 consistent with our 
findings. Our data of lower fetal body weight and increased 
liver size in both hyperglycemic groups suggest compro-
mised nutrient supply from the placenta.

IGF-I plays an important role in fetal growth and devel-
opment, and it is secreted by the placenta. Lower fetal 

Figure 2. Effects of maternal hyperglycemia with and without insulin treatment on VEGF levels in the fetal compartment (A: 
placenta; B: amniotic fluid; C: fetal membranes) at E20. Groups are as described in Figure 1. Data are expressed as mean ± SEM. 
n = 8 samples/group.
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IGF-I was associated with lower fetal birth weight and pla-
cental weight (Table 2). It was interesting to note that 
despite insulin treatment, IGF-I levels were also lower in 
the fetal hyperglycemic groups. This finding contrasts 
with previous reports of higher IGF-I in human gestational 
diabetes.46 In that report, levels were lower very early in 
gestation at <15 weeks. The differences may be due to dif-
ferences in the length of gestation. Insulin is the primary 
driver of fetal IGF-I, therefore, lower fetal IGF-I could be 
attributable to lower fetal insulin in the hyperglycemic 
groups. Whether IGF-I administration improves fetal out-
comes in maternal hyperglycemia remains to be deter-
mined. However, studies show that IGF-I is deficient in 
preterm infants at risk for many morbidities, and its 
replacement has potential benefits.47

Our study was also consistent with previous reports 
which showed that diabetes increases the risk of fetal 
death,48 which may be associated with placental dysfunction 
and/or hypoxia.49 Factors associated with hypoxia and 
endothelial dysfunction in maternal hyperglycemia include 
VEGF, Epo, and NO.50 Placental angiogenesis affects pla-
cental blood flow and normal angiogenesis is essential for 
successful pregnancy outcomes. However, in hypoxia, 
hypoxia inducible factor (HIF) is activated which causes 

upregulation of a number of genes, including VEGF and 
Epo. Soluble VEGFR-1 (sVEGFR-1) is a splice variant of 
the membrane type, and is present in amniotic fluid. It is 
secreted by the placenta to regulate VEGF as it acts by bind-
ing VEGF and preventing its signaling to the receptor.11,12 
Its overexpression has been implicated in placental abnor-
malities.51 Our study showed decreased VEGF in the pla-
centa and fetal membranes in both hyperglycemic groups, 
but higher amniotic fluid levels in the HPT group, and was 
correlated with higher amniotic fluid and fetal membranes 
sVEGFR-1 levels. Higher VEGF with correspondingly 
higher soluble VEGFR-1 suggests not only indicate a 
hypoxia response, but reduced VEGF action, as sVEGFR-1 
is a known VEGF “trap.” Studies also show that VEGF is 
induced by high levels of glucose and advanced glycation 
end products,15,16 and in our study, high levels persisted in 
the large bowels of the HPT fetuses, further confirming tis-
sue hypoxia and vascular compromise.

Similarly, elevations in Epo were noted in the placenta 
and amniotic fluid, also confirming a hypoxia response, 
since Epo is a potent biomarker for intrauterine hypoxia.52 It 
does not cross the placenta and is fetal-derived. Studies show 
doubling of amniotic fluid Epo in severe fetal hypoxia, with 
the fetal membranes being the primary source.53 In our study, 

Figure 3. Effects of maternal hyperglycemia with and without insulin treatment on sVEGFR-1 levels in the fetal compartment (A: 
placenta; B: amniotic fluid; C: fetal membranes) at E20. Groups are as described in Figure 1. Data are expressed as mean ± SEM. 
n = 8 samples/group.
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Epo was reduced with insulin treatment, suggesting a rela-
tionship between insulin and Epo. Studies in streptozocin-
induced hyperglycemia in rats showed that Epo treatment 
increased glucose utilization and reduced hyperglycemia.54 It 
is likely that insulin also has indirect effects on Epo, by 
reducing hypoxia and glucose. Although in normal preg-
nancy NO is generally increased, excessive NO produced via 
inducible nitric oxide synthase (NOS) is involved in inflam-
mation, maternal hyperglycemia, and nitrosative stress in 
diabetes, and its principal target is the placenta. Indeed, in 
our study, we noted high NOx levels in the placenta, amni-
otic fluid, and fetal membranes but not in the large bowels. 
These high NO levels further support an inflammatory 
response to hyperglycemia and also contribute to fetal mor-
tality in this group.

In the fetal large bowels, we also measured PGE2 lev-
els, which is predominantly formed by COX-2. Both 
COX-2 and PGE2 have been linked to VEGF induction 
and angiogenesis,55 and is involved in inflammation and 
diabetes.56 High levels noted in our study may be reflective 
of low insulin and hyperglycemia. In the fetal large bow-
els, the genes that were mostly upregulated with maternal 
hyperglycemia were VEGF, glucose-6-phosphate dehy-
drogenase (G-6-PD), glucagon, insulin, IL-10, and leptin. 
G-6-PD is important for glucose metabolism and energy 

production.57,58 Studies show that patients with diabetes 
and G-6-PD deficiency have poor outcomes.59 Insulin 
induction of G-6-PD could lead to increased cellular 
energy and fetal survival. IL-10, an anti-inflammatory 
cytokine, its high levels in the HPT group suggest an 
inflammatory response. Leptin is produced by the adipose 
tissue and has a key role in energy balance and obesity 
control.60 Elevated leptin levels are associated with insulin 
resistance and diabetes.61 The high leptin levels in the HPT 
group may contribute to the low fetal body weight. In the 
pre-adolescent large bowels upregulation insulin and lep-
tin genes correlate with hyperglycemia and obesity.

While our findings provide novel information regard-
ing the influence of diabetes on fetal and adolescent growth 
and growth factors, there are some limitations. First, the 
subcutaneous insulin pellet did not reduce maternal glu-
cose to comparable levels with controls, although urinary 
glucose or ketones were negative. Although fetal body 
weight was lower, birth weight was higher with insulin 
treatment, and overweight persisted until pre-adolescence. 
Second, we did not determine levels of IGFBP-1 for 
assessing bioavailability of free IGF-I, nor did we measure 
IGF-I levels at birth in the two surviving groups. We 
focused on IGF-I because it is a positive predictor of birth-
weight and postnatal growth,62,63 and because insulin 

Figure 4. Effects of maternal hyperglycemia with and without insulin treatment on erythropoietin (Epo) levels in the fetal 
compartment (A: placenta; B: amniotic fluid; C: fetal membranes) at E20. Groups are as described in Figure 1. Data are expressed as 
mean ± SEM. n = 8 samples/group.
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Figure 5. Effects of maternal hyperglycemia with and without insulin treatment on nitric oxide stable metabolites, nitrate and 
nitrite (NOx) levels in the fetal compartment (A: placenta; B: amniotic fluid; C: fetal membranes) at E20. Groups are as described 
in Figure 1. Data are expressed as mean ± SEM. n = 8 samples/group.

Figure 6. Effects of maternal hyperglycemia with and without insulin treatment on VEGF (panel A), sVEGFR-1 (panel B), NOx 
(panel C), and PGE2 (panel D) levels in the large bowels from fetuses at E20 and pre-adolescent offspring at P14. All of the fetuses 
in the HPT group died in utero. Groups are as described in Figure 1. Data are expressed as mean ± SEM. n = 8 samples/group.
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inhibits IGFBP-1 secretion.64 Nevertheless, our findings 
have clinical implications regarding the possible mecha-
nisms associated with fetal growth, hypoxia, and fetal 
mortality associated with maternal hyperglycemia. 
Furthermore, although maternal insulin treatment 
improved birth weight and fetal survival, the long-term 
impact of maternal hyperglycemia on pre-adolescent glu-
cose and body weight was not a consequence of maternal 
overnutrition. This suggests an independent link between 
maternal hyperglycemia and offspring obesity which may 
affect their metabolic health in later life.
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