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Abstract: Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe
disease that can lead to permanent neurological complications or death and the incidence of TBEV
infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other
flaviviruses, but has advanced recently with the publication of a high-resolution structure of the
TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus
assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the
virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV
biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics.
In this review, we summarise the current structural knowledge on TBEV, bringing attention to the
current gaps in our understanding, and propose further research that is needed to truly understand
the structural-functional relationship of the virus and its hosts.
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1. Introduction

Tick-borne encephalitis virus (TBEV) is a major tick-borne viral pathogen of humans. Most TBEV
infections are asymptomatic, but the symptomatic cases typically have neurological manifestations,
such as meningitis, encephalitis, and meningoencephalitis and, together, are referred to as tick-borne
encephalitis (TBE) [1,2]. TBE is a severe disease that often results in life-long neurological complications
and can lead to death [1,2]. The morbidity and mortality of TBE varies depending on the viral
subtype, these are the European, the Siberian, and the Far-Eastern (TBEV-Eu, TBEV-Sib, and TBEV-FE,
respectively) [1–4]. TBEV-Eu is associated with neurological sequelae in up to 10% of patients, with a
0.5–2% mortality rate, and TBEV-Sib patients are prone to develop prolonged infections with a 2–3%
mortality rate, whereas TBEV-FE is associated with high rates of neurological sequelae, and up to 40%
of cases are fatal [1,2]. Interestingly, the amino acid sequence variation in the polyprotein is low: up to
2.2% within and up to 5.6% between subtypes [5]. Thus, the determinants of virulence could be limited
to a handful of amino acid residues in the viral proteins and/or to variable non-coding regions in the
viral genome, but have not been investigated in detail [6,7]. Infection with any subtype is serious,
but TBEV-FE infection is the most severe.

TBEV is endemic to Northern Eurasia and it has been estimated that there are at least 10,000
clinical cases annually, with probable underreporting [2,8,9]. The virus is usually transmitted by ticks
of the Ixodideae family, but TBEV infections can also occur via the consumption of unpasteurized
contaminated dairy products [1,10,11]. Despite the availability of efficient vaccines for disease
prevention, the incidence of TBE is on the rise as vaccine coverage is insufficient for many risk
groups [2,12,13]. Another significant factor behind the TBE rise is global climate change, increasing the
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ticks’ abundance and expanding their habitats [14,15]. It is, therefore, likely that we will observe
further emergence of TBEV in the upcoming decades, which calls for the development of specific
antivirals for TBEV, to complement the palliative care now available [1,2].

The three TBEV subtypes are members of the genus Flavivirus in the family Flaviviridae along with
other important human pathogens, such as Zika virus (ZIKV), dengue virus (DENV), West Nile virus
(WNV), and Japanese encephalitis virus (JEV) [3,4,16,17]. The latter are transmitted by mosquitoes and
have been extensively studied due to their significant health care threat. Tick-borne flaviviral pathogens,
such as TBEV, Omsk haemorrhagic fever virus (OHFV), Powassan virus, and the emerging Alkhurma
virus, have received significantly less attention compared to their mosquito-borne counterparts.
Even though TBEV has been studied more than the other tick-borne flaviviruses, many of its
characteristics are poorly understood. In particular, our understanding of structural details of TBEV
infection is mostly based on extrapolations from the better-characterised mosquito-borne species.

The field has advanced recently with the publication of a high-resolution structure of TBEV virion
alone and in complex with a neutralizing antibody, but our understanding of the details of TBEV
structure and function still needs improvement [18]. In this review, we summarize current structural
knowledge on TBEV, and highlight further avenues for research.

2. The Structure of TBEV Particles

TBEV has a ~11 kilobase-long positive-strand RNA (+RNA) genome that encodes a single
polyprotein (UniProt: Q01299, P14336, and P07720) that is processed co- and post-transcriptionally into
three structural proteins (SP) and seven non-structural proteins (nSP) [19]. Flaviviruses undergo
maturation during their production, and infected cells produce at least three types of particles:
immature non-infectious particles, partially-mature, and mature infectious particles (Figure 1A) [18–20].
The mature TBEV particles are smooth and have a diameter of 50 nm like other flaviviruses [18,21–25].
The virion consists of a nucleocapsid (NC) surrounded by a membrane composed of host-derived
lipids in which the viral envelope (E) and membrane (M) proteins are embedded (Figure 1B) [18].
The transmembrane domains of the E and M proteins distort the lipid envelope making it slightly
angular [18]. This is a common flavivirus characteristic [18,21–26]. The NC is made up of
multiple copies of the capsid protein (C) and a single copy of the genome [19]. Just as with the
icosahedrally-symmetric cryo-EM reconstructions of other flaviviruses, the TBEV NC is not resolved
as it does not follow this symmetry, but the E and M protein are seen to ‘coat’ the lipid bilayer in
an organised fashion [18,21–25,27]. They form heterodimers and three E-M dimers constitute the
asymmetric unit of the icosahedrally-symmetric TBEV virion [18,21–25] (Figure 1C). The main building
block of the virion is an E-M-M-E heterotetramer that is formed by head-to-tail dimerization of two
E-M heterodimers (Figures 1D and 2A) [18].
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Figure 1. Structure of the TBEV virion. (A) Electron cryo-micrograph of TBEV particles purified from 
infected cells. Smooth mature particles (black arrowheads) are presented together with immature 
(white arrows), partially mature (white arrowhead), and damaged (black arrows) particles. The scale 
bar is 100 nm. The image is courtesy of Dr. T. Füzik et al. [14] and is reproduced under a Creative 
Commons Attribution 4.0 International License. (B) Schematic representation of the TBEV virion. 
Viral genome (lilac) is encapsulated by multiple copies of the C protein (green). The nucleocapsid is 
surrounded by a lipid membrane (light blue), in which E and M proteins (yellow and grey, 
respectively) are embedded; (C) Surface representation of the TBEV virion (wwPDB: 5O6A). An 
icosahedral asymmetric unit is outlined in black. The three E proteins within each asymmetric unit 
are shown in blue, red, and yellow. Symmetry axes are indicated by the black pentagon (five-fold), 
the triangles (three-fold), and the ellipse (two-fold); (D) Three E-M-M-E heterotetramers on the TBEV 
surface. Three domains of E are highlighted in red (I), yellow (II), and blue (III), and the fusion loop 
is highlighted in turquoise. E protein domain IV and M protein are not visible on the virion surface. 

 
Figure 2. Ribbon representation of the E and M proteins as they are found in the TBEV virion. (A) 
Heterotetramer of two E and two M proteins. E proteins are coloured according to domain: red (I), 
yellow (II), blue (III), and light blue (IV), and M proteins are shown in grey. Zoom-in caption shows 
the stick representation of an Asn154 glycosylation site (pink) with an N-acetylglucosamine attached 
(violet). (B) The structure of the E protein monomer coloured according to domains. The five helices 
of transmembrane domain IV are indicated. (C) The structure of the M protein monomer. The 
peripheral membrane helix and two transmembrane helices are indicated. 

Figure 1. Structure of the TBEV virion. (A) Electron cryo-micrograph of TBEV particles purified from
infected cells. Smooth mature particles (black arrowheads) are presented together with immature (white
arrows), partially mature (white arrowhead), and damaged (black arrows) particles. The scale bar is
100 nm. The image is courtesy of Dr. T. Füzik et al. [14] and is reproduced under a Creative Commons
Attribution 4.0 International License. (B) Schematic representation of the TBEV virion. Viral genome
(lilac) is encapsulated by multiple copies of the C protein (green). The nucleocapsid is surrounded by a
lipid membrane (light blue), in which E and M proteins (yellow and grey, respectively) are embedded;
(C) Surface representation of the TBEV virion (wwPDB: 5O6A). An icosahedral asymmetric unit is
outlined in black. The three E proteins within each asymmetric unit are shown in blue, red, and yellow.
Symmetry axes are indicated by the black pentagon (five-fold), the triangles (three-fold), and the
ellipse (two-fold); (D) Three E-M-M-E heterotetramers on the TBEV surface. Three domains of E
are highlighted in red (I), yellow (II), and blue (III), and the fusion loop is highlighted in turquoise.
E protein domain IV and M protein are not visible on the virion surface.
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Figure 2. Ribbon representation of the E and M proteins as they are found in the TBEV virion.
(A) Heterotetramer of two E and two M proteins. E proteins are coloured according to domain: red (I),
yellow (II), blue (III), and light blue (IV), and M proteins are shown in grey. Zoom-in caption shows
the stick representation of an Asn154 glycosylation site (pink) with an N-acetylglucosamine attached
(violet). (B) The structure of the E protein monomer coloured according to domains. The five helices of
transmembrane domain IV are indicated. (C) The structure of the M protein monomer. The peripheral
membrane helix and two transmembrane helices are indicated.
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2.1. Envelope Proteins

The E glycoprotein (496 residues) is the major component of the mature TBEV particle and the
X-ray structure of its ectodomains was the first flavivirus envelope protein structure solved. E consists
of four domains, which are all visible in the cryo-EM reconstruction (Figure 2B) [18,28]. The N-terminal
domain I forms a β-barrel structure that is central to the protein [18,28]. Domain II is elongated
and consists of two areas of β-strands connected by loops and two short helices. It is the site of the
dimerization interface, with a buried surface area of 14.9 nm2 at the interface [18,28]. Additionally,
it contains the only glycosylation site of the mature virus (Asn154), which has a role in egress from
mammalian cells, as well as neurovirulence (Figure 2A) [29,30]. In the cryo-EM reconstruction,
a density corresponding to N-acetyl-D-glucosamine was observed attached to this residue [18]. At its
tip, domain II also contains the highly-conserved fusion loop that is responsible for the fusion of the
viral and host membranes in the final stages of TBEV entry (Figure 2A) [18,28,31]. The hydrophobic
fusion loop (residues 100–109) is hidden from the aqueous environment in the hinge region between
domains I and III of the other E protein in the dimer, as well as by the carbohydrate moiety of
residue 154 [18,28]. Domain III of the E protein has an immunoglobulin-like fold [18,23–25,28,32–35].
This domain has been proposed to function in the binding to host receptors, but no residues directly
responsible for entry have been identified [28,36]. Domain IV includes a stem region of three peripheral
membrane helices (h1–h3) and a transmembrane region made up of two helices (h4 and h5) [18]. As the
X-ray structure was of a cleaved ectodomain of E, domain IV was missing [28].

The M protein is made up of 75 residues and is therefore much smaller than the E protein.
Correspondingly, it has a minor role compared to E in the mature particle, [18]. The M protein has
one peripheral membrane helix (h1), two transmembrane helices (h2 and h3), and an N-terminal
loop region that interacts with both E proteins in an E-M-M-E heterotetramer (Figure 2C) [18]. M is
completely buried in the E-E interface, and presumably works as a ‘cement’ protein, strengthening
the interaction of the E proteins [18,23]. It probably also prevents the E proteins from moving into the
fusogenic conformation before the virus encounters the low-pH environment of the endosome [18,23].
The M protein is a remnant of its precursor prM (162 residues) that has a major role in the maturation
of the TBEV particles (UniProt: Q01299, P14336, and P07720).

2.2. Nucleocapsid

The flavivirus NCs do not follow the icosahedral symmetry of the E and M proteins so the signal
is averaged out in the reconstruction process [27]. Therefore, the structure of the TBEV NC has not
yet been determined [18,21–26]. It has been estimated that the molar ratio of E to C in a mature TBEV
particle is close to 1:3, which would mean some 540 copies of C per virion [37]. The properties of the
C protein have been investigated more thoroughly than the complete NC, and the structure of the
C protein has been solved for three flaviviruses, DENV, ZIKV, and a variant of WNV, Kunjin virus
(KUNV) [38–40]. These proteins share the same fold despite low sequence identity (Figure 3A) [38–41].
Using the ZIKV C protein (wwPDB: 5YGH) as a template, we generated a homology model of TBEV C
using the I-TASSER server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/), which predicted a
similar overall fold with a reliable confidence score (C-score = −0.77) (Figure 3B,C) [42–44].

The C protein of TBEV consists of 96 amino acid residues (UniProt: Q01299, P14336, and P07720)
and it is most likely organized into four α-helices, α1–α4 (Figure 3B,C) [38–40]. The C protein forms
antiparallel dimers with dimerization occurring between the corresponding α2 and α4 helices of the two
subunits [38–40]. In each monomer, the helices α1–α3 are arranged in a bundle, and the two bundles
of the dimer form a hydrophobic surface that is believed to interact with host membranes [38–40].
In KUNV and DENV the α1 helices differ in orientation to each other. In contrast, the N-terminus
of ZIKV C is an extended loop resulting in a much shorter α1 [38–40]. The two α4 helices of the
dimer form a surface that is rich in basic amino acids [38–40]. This is most likely the RNA-binding
domain of the dimer, and it is believed that RNA-C binding occurs via non-specific electrostatic
interactions [38–40]. When crystallized, the C protein dimers were arranged in oligomeric structures:
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dimers of dimers in KUNV, and trimers of dimers in ZIKV [39,40]. In both cases, the authors observed
channels in the middle of oligomers with RNA-binding α4 helices facing towards the channel interior.
Therefore, they proposed that the formation of C oligomers can facilitate RNA packaging into the
NC [39,40]. However, as the environment of the protein crystal is different to the complex milieu
of the cell or virion, it may be that the crystal packing is not biologically relevant. Additionally,
no oligomerisation of the DENV C protein dimers was observed, which may be a result of a different
method of structure determination (nuclear magnetic spectroscopy versus X-ray crystallography) [38].
Alternatively, the solution structure of the DENV C dimer may reflect a different functional state than
RNA packing, as the C protein has other roles during flavivirus infection [46–49].Viruses 2018, 10, x  5 of 20 
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Figure 3. Comparison of the sequence and tertiary structure of flavivirus C proteins. (A) Sequence
alignment of C proteins from TBEV, ZIKV and KUNV. UniProt accession numbers are shown in
brackets. The alignment has been done using the Espript 3.0 web server (http://espript.ibcp.fr, [45]).
White characters in red boxes highlight identical residues, red characters in blue boxes indicate residues
with equivalent physico-chemical properties. Residues forming α-helices (based on the KUNV C
structure) are indicated above the sequences. (B) Ribbon representation of a TBEV C dimer homology
model (residues 24–96) built using the I-TASSER web server (C-score =−0.77) with the ZIKV C structure
(wwPDB: 5YGH) as a template. The predicted positions of the α-helices are indicated. (C) Comparison
of C-protein structures from ZIKV (green, wwPDB ID: 5YGH) and KUNV (violet, wwPDB ID: 1SFK).
Positions of α-helices are indicated.

3. Life Cycle

As is the case for other flaviviruses, the assembly of TBEV particles is complex and involves
multiple maturation steps [19]. Some aspects of the process, like virion maturation, are structurally
quite well characterised for many mosquito-borne flaviviruses but few data are available for
TBEV [50–57]. Especially, the early events of particle production remain to be elucidated. In addition,
the TBEV life cycle has been mostly studied in mammalian cells, even though the tick is a central part
of the biology of the virus. An overview of the TBEV life cycle is presented in Figure 4.
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Figure 4. An overview of the TBEV life cycle. The virion interacts with a receptor on the cell surface
and enters the cell via the endocytic pathway. The low pH in the late endosome triggers fusion of
viral and endosomal membranes which leads to virion uncoating. Viral proteins are synthesized by
the ribosomes of the rough endoplasmic reticulum (ER). Genome replication occurs in virus-induced
invaginations of the endoplasmic reticulum (ER) and newly synthesized genomes are captured by C
protein on the cytoplasmic side of the ER. The nucleocapsid complex acquires the structural proteins E
and M and a lipid envelope by budding into the ER lumen through the membrane. The spiky immature
particles are transported through the Golgi network and maturate in the acidic trans-Golgi environment
after a conformational change in prM and its subsequent processing by furin. The smooth mature
particles egress from the infected cell along with partially mature and immature particles. The mature
and partially mature particles can start a new infection cycle but the fully immature particles are
incapable of fusion and, therefore, are non-infectious.

3.1. Entry

The entry process of flaviviruses occurs mainly via receptor-mediated endocytosis, but entry
via micropinocytosis is also possible [58–60]. There are two major receptor candidates for TBEV in
mammalian cells, laminin-binding protein (LBP) and the αVβ3 integrin but no receptor candidates
in tick cells have been identified so far [61–63]. Studies using anti-idiotypic antibodies suggested
that there could be other receptor candidates of as yet unknown identity [61,64,65]. In addition,
under certain conditions it is possible to fuse TBEV with liposomes, hence, lipids could also be
involved in binding [66,67]. For other flaviviruses, various receptor candidates have been proposed,
which could be also be relevant for TBEV (reviewed in [68]).

In addition to entry receptors, sensu stricto, it has been proposed that TBEV utilizes attachment
factors that bind the virus on the cell surface without initiating endocytosis. The most prominent
of these is heparan sulphate, a glycosaminoglycan that works as an attachment factor for multiple
viruses [69–74]. Even though utilisation of heparan sulphate is a commonly seen cell culture adaptation
of TBEV, it is also present in some wild-type isolates. The binding between heparan sulphate and
TBEV particles occurs via the E protein, and cell culture-associated adaptations mainly manifest as
mutations that increase the positive charge of the E protein [71,73,75].

The carbohydrate moiety of the E protein has been shown to be dispensable for TBEV entry
in cell culture [30,76]. However, the lack of E glycosylation leads to reduced neuroinvasiveness in
mice, which may indicate that interaction with a carbohydrate-binding protein has a role in TBEV
attachment to neurons [30]. This is further supported by the observation that in a closely related
tick-borne flavivirus, Louping ill virus, a mutation in the glycosylation site reduced neurovirulence [77].
The binding of DENV to its attachment factor, dendritic cell-specific ICAM3 grabbing nonintegrin,
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is mediated by the interaction of the carbohydrate recognition domain and the E protein Asn67
carbohydrate moieties of the virus [78]. Even though this residue is not glycosylated in TBEV, a similar
interaction may occur using the glycosylated Asn154 instead.

TBEV can be endocytosed and cause infection, when bound by non-neutralising quantities of
antibodies [79]. This phenomenon is known as antibody-dependent enhancement (ADE) and it has
been shown in vitro for multiple flaviviruses (reviewed in [80]) and recently on the epidemiological
level for DENV [81]. ADE is mediated by the binding of the virus-antibody complexes to Fcγ
receptors in the host cell surfaces but, recently, a new ADE mechanism was identified for TBEV.
This mode of entry is independent of Fcγ receptors and other cell surface proteins and is proposed to
be mediated by antibody-mediated exposure of the E protein fusion loop which then binds directly to
host membranes [82].

After the TBEV particles have entered the cells, the virions are localised inside endocytic vesicles.
In the endosome, the pH progressively drops, which leads to major rearrangements in the virion.
Mutagenesis studies of TBEV E proteins have implicated the protonation of His323 (and possibly
His146) as the main pH detection mechanism, but the cryo-EM reconstruction of the virus implies that
other histidines have pH-related roles as well. From a structural perspective, it seems likely that the
protonation of histidines in the E and M proteins would cause them to repel each other, destabilising the
heterotetramer and exposing the fusion loops. The residues implicated for this are His216 and His248 of
the E protein and His7 and His17 of the M protein (Figure 5A) [18,23,83]. The fusion loops embed into
the membrane of the endosome, possibly with the help of the detachment of the peripheral membrane
helices of E from the viral envelope [84–86]. After binding to the membrane, E proteins trimerize via
the interaction of the fusion loops [84,87]. In the current model, this pre-fusion trimer undergoes a
hairpin-like conformational change that brings the membranes of the endosome and the virus into close
contact forming a post-fusion trimer (Figure 5B) [88,89]. The post-fusion trimers are then stabilized
by interactions between domains I and II, as well as the peripheral and transmembrane helices of
the different subunits [90–93]. The conformational change from a pre-fusion to a post-fusion trimer
allows the fusion of the viral and endosomal membranes via a hemifusion intermediate. This leads
to the release of the NC into the cytosol [89,94]. Membrane fusion is dependent on the correct lipid
composition, and cholesterol strongly enhances it [66,67,87]. After the NC has entered the cytosol,
it disintegrates and releases the viral RNA. The events responsible to the uncoating of the TBEV RNA
have not been elucidated, but for DENV, it has been shown that the dissociation of the NC requires
non-degradative ubiquitination [95].
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The E protein is shown in grey, the M protein is shown in light blue, the fusion loop is shown in green,
and the pH-sensing histidine residues are shown in orange. The lipid bilayer is shown schematically.
(B) Post-fusion E trimer conformation (wwPDB: 1URZ). The E proteins are shown in grey and fusion
loops are shown in green. The lipid membrane is schematically shown. Domain IV of the E protein
and protein M are not shown.
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3.2. Replication and Translation

In infected cells, the TBEV genome is translated at the endoplasmic reticulum (ER) as a single
polyprotein. The polyprotein is cleaved by viral and host enzymes to yield SPs that form the virion
and nSPs that are responsible for genome replication, polyprotein processing and modulation of
cellular functions (Figure 6) [19]. TBEV SPs have been studied in detail, but the current knowledge on
flavivirus nSPs mostly comes from studies of mosquito-borne species. Most of the TBEV proteins are
proposed to be either integral membrane proteins or to have membrane anchors, some of which are
cleaved during polyprotein processing (UniProt: Q01299, P14336, and P07720) [19].
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Structural proteins are shown in shades of green and non-structural proteins are shown in shades
of blue, shades of violet, and in pink. Black arrows indicate viral serine protease cleavage sites,
triangles indicate host signal peptidase cleavage sites, the question mark indicates the cleavage site
of an unknown host protease, and the red arrow indicates a furin cleavage site. The ER membrane is
shown in grey and the ER lumen and the cytoplasm are indicated.

The mature C is a soluble cytoplasmic protein as its membrane anchor is cleaved but the prM and
E proteins localise in the lumen of the ER, where they remain bound to the membrane by double-helical
anchors that are typical to flaviviruses [19]. The cleavage of the C-terminal membrane anchor first
from C and then from prM is sequential and strictly controlled. In Murray Valley encephalitis virus,
YFV, and WNV, the perturbation of the cleavage order results in excessive formation of NC-deficient
particles [96–99]. For TBEV, however, the uncoupling of these events only affects particle production
in tick cells [97].

The first translated nSP in flaviviruses is the NS1 protein that localises in the lumen of the ER
(reviewed in [100]). It is a multi-functional protein that exists in dimeric and hexameric forms. As a
dimer, NS1 has a role in replication whereas as a hexamer it is co-secreted with TBEV particles and
modulates the complement system of the mammalian host. The immunomodulatory activity of NS1
results in reduced formation of membrane attack complexes and, therefore, prevents the destruction
of infected cells [100]. It also reduces the inactivation of extracellular viruses by binding to the C4
component of the complement system [101]. NS2A and NS2B are both integral membrane proteins
with roles in particle assembly. NS2A functions in replication and immunomodulation whereas NS2B
is a co-factor for the NS3 protease [102–106]. The NS2B-NS3 complex has both protease and helicase
activities and it is responsible for the viral enzyme-mediated cleavage of the polyprotein (reviewed
in [107]). The helicase domain of NS3 has an ATPase activity that is regulated by the integral membrane
protein NS4A [108]. NS4A is separated from NS4B by a signal sequence called the 2k peptide that
directs NS4B to the ER membrane and is later cleaved off by the host signal peptidase. After 2k
cleavage, NS4B remains integrated in the ER membrane where it performs multiple functions from
replication complex formation to immunomodulation (reviewed in [109]). The flaviviral genome is
replicated by the RNA-dependent RNA polymerase NS5, which has an immunomodulatory role as
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well (reviewed in [110,111]). In addition to the nSPs, the C proteins of flaviviruses have multiple
regulatory roles during the infection, including immunomodulation and the prevention of nucleosome
formation [46–49]. No TBEV nSP structures have been solved. The nSP structures available for other
flaviviruses have been studied using X-ray crystallography of purified proteins, which makes it difficult
to provide a full structural picture of flaviviral replication in the context of the infected cell [112–114].

The replication of TBEV occurs in a close contact with the ER membrane, which is extensively
rearranged by NS1, NS2B, NS4A, and NS4B [100,104,115–123]. In tick-borne flaviviruses these
rearranged ER membranes are observed in both tick and mammalian cells, but in tick cells the
membrane rearrangements are less prominent. Corresponding to a slower rate of replication in the
tick cells, fewer particles are also observed than in mammalian cells [117,124]. The replication of
the TBEV genomes occurs via a dsRNA intermediate in ER invaginations. The invaginations have
‘necks’ that connect to the cytosol, presumably allowing nucleotides to enter and the RNA genomes to
exit [19,115,117,120,121,123].

3.3. Assembly and Budding

The newly-synthesized viral genomes are encompassed by multiple copies of the C protein
to form NCs. Based on the structures of the C proteins, it seems that the NCs are formed by
electrostatic interactions between the C-terminal α4 helices of C and viral RNA [38–40]. This suggestion
is corroborated by data showing C proteins of ZIKV and DENV bind various types of nucleic
acids regardless of the sequence [40,125]. Furthermore, recombinant DENV C protein dimers
bind double-stranded DNA of various lengths, forming capsid-like particles (CLP) [125]. Overall,
the packaging of flaviviral genomes is a robust process, as the C proteins can remain functional despite
large-scale deletions [41,126–128]. In a YFV-based reporter system, it was even noticed that assembly
required either the α4 helix or the N-terminal basic residues, but not both [41,128]. The TBEV C protein
is similar to other flaviviruses: it can remain functional despite internal deletions, it binds various
nucleic acids without signal specificity, and CLPs can be produced from purified C protein and nucleic
acids [126,129]. This suggests that the assembly of TBEV NCs is analogous to other flaviviruses.

As the C proteins can package RNA regardless of sequence, a spatial and temporal coupling
of replication, translation, assembly, and budding has been proposed to explain how flaviviruses
manage to specifically pack their genomes (reviewed in [130]). Several lines of evidence support
this hypothesis: in DENV-infected cells budding into the ER lumen occurs directly opposite to
or in close contact with the vesicular structures where the genome is replicated. In KUNV only
actively-transcribed RNA is packaged [131–133]. Furthermore, many of the nSPs that localize at the
sites of replication have also been implicated in particle assembly. Functional NS2A is required for the
assembly of KUNV, DENV, and YFV particles, the transmembrane domains of NS2B and its binding
partner are required for JEV particle formation, and NS3 has been implicated in particle assembly
in YFV and KUNV [104,105,134–139]. It is also possible that even though RNA-C protein binding is
sequence-independent, the specificity of RNA packaging is mediated by genomic assembly signals
that target one or multiple nSPs instead of C. However, the binding of nSPs to the only candidate for a
flaviviral packaging signal, CCR1, has not been studied. Furthermore, the data supporting its role in
assembly is indirect [140].

The particle and NC assembly processes do not solely rely on viral proteins. In JEV-infected cells,
transmembrane domains of NS2B interact with the host factor SPCS1 to secure particle production
and in DENV infections, the interaction of C protein and nucleolin is essential for formation of
virions [141,142]. Additionally, WNV particle production requires the presence of the host helicase
DDX56 at the viral assembly sites [143,144]. However, the host factors required by TBEV particle
formation are not known. In contrast, it has been recently shown that the host protein viperin prevents
TBEV assembly by promoting the production of non-infectious particles containing solely C protein
and a membrane [145]. The detailed characterisation of other antiviral host factors in TBEV infection is
outside the scope of this article and has been reviewed elsewhere [146].
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Once the NCs have been assembled, they acquire their lipid envelopes by budding into the
ER lumen. The budding, however, can occur without the presence of the NC, as the production of
NC-deficient subviral particles is a normal part of flavivirus infections [20]. Fusion-competent subviral
particles can also be produced by recombinantly expressing prM and E in cells, which implies that the
budding process is mediated by the lateral interactions of these proteins [66,147,148]. The structural
details of budding have not been elucidated, but it seems that the interaction of the prM and E protein
transmembrane helices is required [149]. Although budding can occur without the assembly of NCs,
the events need to be coupled as flavivirus-infected cells rarely produce mainly empty particles and
naked NCs are generally not observed in infected cells [19,120,121,123,124].

3.4. Particle Maturation and Egress

The immature flavivirus particles formed by budding through the ER differ greatly from their
mature, infectious forms. Even though the immature TBEV particle has not been structurally
characterized, it is presumed to be similar to the flaviviruses for which the structure of this intermediate
form is available [50,52,56,57] (Figure 7). In the immature particles, the pr peptide has not been cleaved
from M yet, and the particles consist of heterodimers of prM and E. The cryo-EM reconstructions
of both naturally occurring and artificially induced immature flavivirus particles consistently reach
lower resolution than those of mature virions. This implies flexibility that is not present in the mature
virions [24,52,56,57]. The immature particles are larger than the mature forms, which is due to the
organisation of the prM-E dimers into trimeric spikes [50,52,56,57]. In the immature particles, the pr
peptides coat the fusogenic loops of the E proteins, preventing premature fusion [50,52,56,57,150].
In DENV and ZIKV, the prM is glycosylated in the area directly on top of the fusion loop (Asn69),
which increases the hydrophilicity of the spike tip, presumably to prevent interaction with the ER
membrane [53,57]. In TBEV the glycosylated residue is Asn25 (UniProt: Q01299, P14336, and P07720).
In the DENV and ZIKV pr structures, residues 25 and 69 are close together, indicating that the
glycosylation of either could have a similar effect, which suggests that pr glycosylation in TBEV has
the same role as in DENV and ZIKV [53,57]. Each spike is stabilised by the interaction of the pr
proteins at the tip and by the interactions between domains II and III of neighbouring E proteins.
These connections, however, are not very strong, which may contribute to the lability of the immature
particle [53,56]. In most reconstructions of immature flavivirus particles, the NC density remains poorly
resolved, but in the immature ZIKV particle, a density corresponding to C protein was observed under
the trimeric spikes, suggesting partial organisation of the NC [50,52,56,57]. Since this ordered density
is not visible in the mature virion, it implies that during the maturation process the NC undergoes a
conformational change [24,57].Viruses 2018, 10, x  11 of 20 
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The current model for flavivirus maturation was first established with TBEV using biochemical
and molecular biology methods [151–155]. Later, this model was supported via structural studies
of mosquito-borne flaviviruses [53,54,56]. After the immature particles form by budding into the
ER, they pass through the Golgi apparatus and the trans-Golgi network (TGN) [19]. In the TGN,
the particles are exposed to low pH, which causes a major conformational change in the (prM-E)3

spikes. The spiky immature particles change into smooth ‘pre-mature’ particles as the trimeric spikes
dissociate, and the prM-E dimers further dimerize, forming a structure similar to the mature particle.
The only difference is the presence of the pr peptide, which is still localised on top of the fusion
peptide [53,54,56]. The rearrangement of the spikes begins in one or more independent nucleation
centres instead of occurring simultaneously across the particle, as this would lead to steric clashes [55].
Interestingly, this conformational change is reversible in DENV and irreversible in TBEV, indicating
possible differences between the maturation of mosquito-borne and tick-borne flaviviruses [54,153].

No specific pH-sensing residues have been implicated for maturation in TBEV but it is tempting to
speculate that the same histidines that are needed for the conformational changes leading to membrane
fusion would have a role in this process as well [18,83]. Indeed, His244 in E and His98 in prM are
needed for the formation of pre-mature DENV particles and they are presumably protonated during
the maturation process [156,157]. In TBEV, there are histidines in comparable positions in E and
prM (His248 and His95, respectively) and it is, therefore, likely that they have similar roles in TBEV
maturation (UniProt: Q01299, P14336, and P07720). Based on the structure of the mature TBEV particle,
these residues may also function as pH sensors during fusion (His95 of prM is in position 7 in M after
pr is cleaved) [18].

After the conformational change, the maturation is completed by the cleavage of the pr peptide
from prM by the host protease, furin. In the immature particle, the prM furin cleavage site is
inaccessible. After the pH-mediated conformational change, it is exposed and the pr peptide is
cleaved. However, it still remains bound to the E-M-M-E heterotetramer at the acidic pH of the TGN.
Therefore, it still obscures the fusion loop, preventing premature fusion with the TGN membranes.
The pr peptides can only dissociate from the virion after it exits the cell via endocytosis and reaches
the neutral extracellular milieu. The pr dissociation primes the virion for fusion, thus rendering it
infectious [53,54,156,157].

The maturation process in flaviviruses is not always complete, which leads to the production
of immature and partially mature particles by the infected cells. The fully immature particles are
non-infectious because they are incapable of fusion, but the partially mature particles can infect
new cells [152,153]. The partially mature particles are structurally and antigenically heterogenous.
Their production has been suggested to act as an immune evasion strategy (reviewed in [158]) and as a
way to increase the range of tissue tropisms (reviewed in [159]).

For TBEV, the process of maturation and egress has mainly been studied in mammalian cells,
but limited evidence shows there may be differences between the mammalian and tick systems.
The glycosylation of E protein is required for egress in mammalian, but not in tick, cells [29,30,76].
Additionally, in tick cells blocking the transport from the ER to the Golgi apparatus did not reduce
virus production [30]. In some electron microscopy studies, it has been reported that the entire
process of flavivirus assembly and maturation in tick and mosquito cells differs from mammalian
cells. In these reports, pre-formed NCs have been observed associated with various host cell structures
like phagosomes to acquire their membranes via budding through the plasma membrane [117,160].
These findings have not, however, been confirmed with other approaches.

4. Future Perspectives

It is clear that many aspects of TBEV biology remain unknown, even though there have been
considerable advances in flavivirus research in recent years. The TBEV life cycle is complex, and we
can better understand viral assembly, maturation, and entry by the structural characterisation of the
different intermediate forms of the virus particles. The TBEV NC is a tempting target for study: it is
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difficult to approach but can provide important knowledge about uncoating and assembly, the two
most enigmatic stages of the flavivirus life cycle. Understanding NC assembly may help to answer the
question of how TBEV specifically packages its genome despite the apparent sequence-agnosticism of
the C protein.

The multi-functional nSPs of TBEV are critical for infection and could be determinants of virulence,
which makes them important targets for structural and functional studies. They would provide
essential information about TBEV genome replication, particle assembly, virus-host interactions,
and immune evasion. We can decipher the nSPs’ mechanistic roles in infection by combining structural
and in situ approaches. These studies could also yield novel drug targets, as exemplified by the current
development of nucleoside analogues that block the function of the NS5 protein and reduce TBEV
neurovirulence in vivo [161,162].

The virulence factors responsible for the different TBEV subtype pathologies have not yet been
comprehensibly examined. Tissue tropism could explain the clinical differences between the TBEV
subtypes. Therefore, this variation may be investigated by studying TBEV entry into different cell
types. A number of residues that vary across TBEV subtypes have been localised to the E protein,
which is responsible for receptor interaction [5]. Hence, by identifying the TBEV receptor(s) and
studying interactions with the virus we may better explain TBEV pathogenicity.

Finally, despite its obvious importance to TBEV biology, the virus has been poorly studied in ticks.
Although research in mammalian systems is warranted, it needs to be combined with investigations in
tick systems for a more complete understanding of TBEV biology and emergence.
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