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Abstract: Systemic sclerosis (SSc) is characterized by excessive collagen deposition in the skin and
internal organs. Activated fibroblasts are the key effector cells for the overproduction of type I
collagen, which comprises the α1(I) and α2(I) chains encoded by COL1A1 and COL1A2, respectively.
In this study, we examined the expression patterns of α1(I) and α2(I) collagen in SSc fibroblasts, as
well as their co-regulation with each other. The relative expression ratio of COL1A1 to COL1A2 in SSc
fibroblasts was significantly higher than that in control fibroblasts. The same result was observed
for type I collagen protein levels, indicating that α2(I) collagen is more elevated than α2(I) collagen.
Inhibition or overexpression of α1(I) collagen in control fibroblasts affected the α2(I) collagen levels,
suggesting that α1(I) collagen might act as an upstream regulator of α2(I) collagen. The local injection
of COL1A1 small interfering RNA in a bleomycin-induced SSc mouse model was found to attenuate
skin fibrosis. Overall, our data indicate that α2(I) collagen is a potent regulator of type I collagen
in SSc; further investigations of the overall regulatory mechanisms of type I collagen may help
understand the aberrant collagen metabolism in SSc.
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1. Introduction

Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by ex-
cessive extracellular matrix (ECM) protein deposition in the skin and internal organs [1].
The pathogenesis of fibrosis in SSc includes inflammation, aberrant immune activation,
and endothelial cell injury, resulting in fibroblast activation to increase ECM production,
mainly type I collagen [2,3]. Transforming growth factor-β (TGF-β) is one of the major
profibrotic cytokines and the most important factor involved in fibroblast activation [4,5].
TGF-β is also known to play an important role in excessive ECM production in SSc [6].
However, the mechanisms underlying excessive type I collagen production have not been
fully elucidated.

Type I collagen, the main product of abnormal collagen metabolism in SSc [3], is
typically a heterotrimeric protein comprising two α1(I) collagen (encoded by COL1A1
gene) polypeptides and one α2(I) collagen (encoded by COL1A2 gene) polypeptide [7,8].
Although COL1A1 and COL1A2 gene expression is thought to be regulated in concert, their
regulatory factors are complex and remain unclear [9]. Electron microscopy studies have
shown that immature collagen fibrils with uniform diameters are observed in the lower
dermis of SSc [10]. The irregularity of collagen fibers in SSc suggests an abnormality in
collagen amounts as well as in the properties of collagen [10–12].
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The excessive accumulation of type I collagen in SSc is well known, but little is known
regarding the ratio of α1(I) and α2(I) collagen and how they regulate each other in this
disease. The blockade of type I collagen-related signaling, mainly TGF-β, has received
attention as an anti-fibrosis treatment in SSc [13,14], but there has been little research
focused on the direct inhibition of α1(I) and α2(I) collagen. Therefore, in this study, we
evaluated the possibility that α1(I) and α2(I) collagen levels are altered in SSc fibroblasts
and examined whether the direct inhibition of type I collagen expression using small
interfering RNA (siRNA) has anti-fibrotic effects in a bleomycin-induced SSc mouse model.

2. Results
2.1. The Ratio of α1(I) and α2(I) Collagen Is Increased in SSc Dermal Fibroblasts

In an initial experiment to evaluate the expression patterns of type I procollagen, we
extracted total RNA and protein from SSc and control dermal fibroblasts, with and without
TGF-β stimulation. The relative ratio of COL1A1 to COL1A2 mRNA in SSc fibroblasts and
control fibroblasts with TGF-β stimulation was significantly higher than that in control
fibroblasts without TGF-β stimulation (Figure 1A). The relative ratio of α1(I) to α2(I)
collagen protein expression determined by immunoblotting also showed the same tendency
(Figure 1B). These results indicate that α1(1) collagen is predominantly expressed in SSc
dermal fibroblasts, and this imbalance in type I procollagen expression may be attributed
to stimulation of SSc fibroblasts with intrinsic TGF-β, as described in the introduction.
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Figure 1. Relative ratio of type 1 procollagen in control and systemic sclerosis (SSc) dermal fibroblasts.
(A) Relative ratios of COL1A1 to COL1A2 mRNA were determined using real-time PCR in control,
and SSc fibroblasts stimulated with or without TGF-β (n = 3 per group). (B) Control and SSc fibroblast
lysates were subjected to immunoblotting. The graph shows the relative ratio of the type I collagen
α1 chain to the α2 chain between control and SSc fibroblasts using densitometry (n = 4 per group).
Each graph presents the mean ± standard deviation. The mean value in the control group was set
as 1. * p < 0.05.
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2.2. Forced Expression of α1(I) Collagen Affects α2(I) Collagen Expression in Control
Dermal Fibroblasts

Little evidence is available regarding whether α1(I) and α2(I) collagen affect the
expression of each other. Therefore, we performed experiments using control fibroblasts
transfected with siRNAs targeting COL1A1 and COL1A2 expression. The depletion of
COL1A1 in the control fibroblasts reduced the expression of COL1A2, whereas silencing
COL1A2 did not affect COL1A1 gene expression (Figure 2A). A similar trend was observed
at the protein level (Figure 2B). To determine whether the down-regulation of COL1A2 by
COL1A1 silencing occurred at the transcriptional level, we performed a stability assay of
COL1A2 mRNA using COL1A1-silenced control fibroblasts with actinomycin D stimulation.
The relative decrease in COL1A2 levels upon incubation with actinomycin D over time was
not altered in the presence or absence of COL1A1 siRNA (Figure 2C). This result indicated
that COL1A2 expression was decreased by COL1A1 silencing without changing the stability
of COL1A2 mRNA. Therefore, we hypothesized that the α1(I) collagen level might act as
an upstream regulator of α2(I) collagen expression.
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Figure 2. COL1A1 silencing affects COL1A2 transcript levels in fibroblasts. (A) Relative mRNA
levels of type 1 procollagen in control fibroblasts transfected with COL1A1 or COL1A2 siRNA were
determined using real-time PCR. The mean values in the control siRNA treatment were set as
1 (n = 3 per group). * p < 0.05 versus the control. (B) Protein levels of type I collagen in control
fibroblasts transfected with COL1A1 or COL1A2 siRNA are shown. The graph shows the mean
relative type I collagen levels. The mean value in control siRNA was set as 1 (n = 3 per group).
* p < 0.05 versus the control. (C) Control fibroblasts transfected with COL1A1 or control siRNA were
incubated for 12 h after treatment with 2.5 µg/mL actinomycin D. COL1A2 mRNA expression was
analyzed using real-time PCR (and normalized to GAPDH). The values in untreated fibroblasts were
set as 100% (n = 3 per group). * p < 0.05.
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To further test our hypothesis, we overexpressed COL1A1 by lentiviral transfection
in the control fibroblasts. As expected, the overexpression of COL1A1 induced COL1A2
mRNA expression (Figure 3A). Figure 3B shows the same tendency in protein expression
levels. As shown in Figure 2C, we compared the stability of COL1A2 mRNA between
COL1A1-overexpressing and control fibroblasts. However, there was no significant differ-
ence in the stability of COL1A2 mRNA between the two groups (Figure 3C). Based on
these results, we hypothesized that COL1A1 expression influences the transcriptional levels
of COL1A2.
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2.3. Local Administration of COL1A1 siRNA Attenuates Skin Fibrosis in a Bleomycin-Induced
SSc Mouse Model

Considering the importance of α1(I) collagen, we examined whether the suppres-
sion of α1(I) collagen alone improves skin fibrosis in vivo. Prior to the in vivo experi-
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ments, we validated the effect of COL1A1 siRNA using mouse fibroblasts (NIH3T3 cells).
The mRNA expression of both COL1A1 and COL1A2 was significantly knocked down in
COL1A1-silenced NIH3T3 cells (Figure 4A), indicating a similar tendency as in human con-
trol fibroblasts transfected with COL1A1 siRNA. Furthermore, administration of COL1A1
siRNA decreased the mRNA expression of both COL1A1 and COL1A2 in mouse skin
compared with that of the control siRNA administration (Figure 4B).

Figure 4. COL1A1 silencing ameliorates skin fibrosis in a bleomycin-induced SSc mouse model.
(A) Relative mRNA levels of type 1 procollagen in NIH3T3 cells transfected with COL1A1 or COL1A2
siRNA were determined using real-time PCR. The mean values of the control siRNA treatment were
set as 1 (n = 3 per group). * p < 0.05 versus the control. (B) Relative mRNA levels of procollagen in
mice skin injected with COL1A1 or control siRNA were determined using real-time PCR. The mean
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values in the control siRNA treatment were set as 1 (n = 5 per group). * p < 0.05 versus the control.
(C) The protocol for (D) to (F) is shown. Bleomycin or PBS were injected intradermally into the
back skin of C57BL/6 mice every other day for three weeks. COL1A1 or control siRNA mixed with
atelocollagen were also injected into the back skin once weekly (for a total of three times). The back
skin was obtained on the day after final bleomycin injection (D). Mouse skin sections were stained
with hematoxylin and eosin. Representative results are shown. Scale bar = 200 µm. (E) Graph
showing the results of dermal thickness (n = 5 per group) (F) Collagen content in mouse skin was
measured using a hydroxyproline assay. Values are normalized relative to the PBS control group
(n = 5 per group). * p < 0.05.

Finally, we evaluated the anti-fibrotic effects of COL1A1 siRNA in a bleomycin-induced
SSc mouse model. Skin fibrosis induced using bleomycin injection in mice is a well-known
model of SSc. Bleomycin was locally injected into the backs of C57BL/6 mice every
other day for 3 weeks. Simultaneously, the control siRNA or COL1A1 siRNA mixed with
atelocollagen was injected into the back skin once weekly (Figure 4C). Bleomycin-induced
mouse skin showed dermal fibrosis, with an increased number of thickened collagen
bundles (Figure 4D). COL1A1 siRNA significantly decreased dermal thickness and collagen
content in the back skin of bleomycin-treated mice (Figure 4E,F). Collectively, these data
indicate that COL1A1 inhibition attenuates skin fibrosis in an in vivo model of SSc.

3. Discussion

Fibrosis is a key feature of SSc, resulting in fibroblast activation and ECM accumula-
tion, especially type I collagen, which comprises two α1(I) and one α2(I) collagen chains.
Type I collagen is usually produced at a 2:1 ratio of α1(I) and α2(I) collagen. We first
demonstrated that the relative ratio of α1(I) to α2(I) collagen was higher in SSc fibroblasts
than that in control fibroblasts, suggesting that α1(I) collagen is predominantly expressed in
SSc fibroblasts. Previous studies have also reported that the ratio of α1(I) to α2(I) collagen
is high in SSc fibroblasts [15–18]. The same tendency was observed in control fibroblasts
stimulated with TGF-β. These results suggest that the biased increase in α1(I) collagen
compared with that in α2(I) collagen may result from activated endogenous TGF-β signal-
ing. TGF-β also acts as a pro-fibrotic cytokine in chronic graft-versus-host disease (GVHD),
an autoimmune disease characterized by inflammation and fibrosis of the dermis and
subcutaneous tissue. The aberrant expression of α1 and α2 collagens has also been reported
in other diseases. The imbalance of α1(I) and α2(I) collagen owing to the lack of COL1A2
has been reported in some orthopedic disorders and carcinomas [19–21]. Further, the loss
of COL1A2 results in the homotrimers of three α1(I) collagen polypeptides and is reported
to induce alteration of collagen structure [22], strength [23], and molecular stability owing
to collagenase resistance [24,25]. The details of this mechanism have not been elucidated in
this study, and future studies are needed to clarify this point.

Although the COL1A1 and COL1A2 genes are located on separate chromosomes, their
expression is regulated coordinately [9]. In this study, COL1A2 expression was found to be
altered with forced changes in COL1A1 expression, suggesting that COL1A1 expression acts
as an upstream regulator of COL1A2. Additionally, an actinomycin D assay suggested that
COL1A1 influences the transcriptional level of COL1A2 gene expression. We hypothesized
that this could involve TGF-β because the biased expression of α1(I) collagen was found in
the control fibroblasts upon TGF-β stimulation. Moreover, Dzobo et al. [26] reported that
ECM components regulate the feedback pathway of COL1A2 gene expression. Alterations
in α1(I) collagen expression may affect the regulation of collagen synthesis via a similar
pathway. Further, the ratio of COL1A1 to COL1A2 has been reported to be altered by
microRNA-29 [27]; thus, post-transcriptional mechanisms could also be involved in this
regulation. Further studies are needed to clarify these points.

Finally, we tried to determine the effect of administering COL1A1 siRNA on skin
fibrosis in a mouse model of SSc. siRNA technology has been widely studied for treating
various diseases [28–30] and has attracted attention as a new approach for gene therapy in
SSc [14,16,31]. Although previous reports have indicated the therapeutic effect of siRNA
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by knocking down the TGF-β signaling pathway, to the best of our knowledge, this is the
first report describing the anti-fibrotic effect of COL1A1 siRNA by directly knocking down
the expression of type I collagen in mouse skin. The anti-fibrotic effect of COL1A1 siRNA is
assumed to have a direct as well as indirect inhibitory effect on type I collagen gene expres-
sion. For example, Vollmann et al. [32] indicated that COL1A1 siRNA significantly reduced
PDGFRβ mRNA levels in a mouse model of liver fibrosis because of the feedback loop
between ECM accumulation and PDGFRβ. Our data also suggest a possible therapeutic
application of COL1A1 siRNA in patients with SSc; however, we could not elucidate its
detailed anti-fibrotic mechanisms in this study.

In summary, this is the first report indicating the existence of a biased increase in α1(I)
collagen compared with that in α2(I) collagen in SSc fibroblasts. There are only limited
treatment options for patients with SSc. We demonstrated the potential of α1(I) collagen
expression to affect α2(I) collagen levels. Therefore, inhibiting α1(I) collagen expression
could be an efficient therapeutic strategy in SSc fibrosis. Although collagen metabolism
in SSc remains unclear, further investigations regarding the regulation of type I collagen
may facilitate a better understanding of SSc pathogenesis and provide new therapeutic
approaches for this disease.

4. Materials and Methods
4.1. Reagents

Antibodies against type I collagen (1:1000, Cat.#1310-01) and β-actin (1:1000, Cat.#sc-
47778) were purchased from Southern Biotechnologies (Birmingham, AL, USA) and Santa
Cruz Biotechnology (Dallas, TX, USA), respectively. Recombinant human TGF-β1 (2 ng/mL,
Cat.#240-B-002) was obtained from R&D Systems (Minneapolis, MN, USA). Actinomycin
D (Cat.#018-21264) was purchased from Wako (Osaka, Japan).

4.2. Cell Cultures

SSc fibroblasts were obtained by skin biopsies from the affected areas (dorsal fore-
arm) of three patients with diffuse cutaneous SSc and <2 years of skin thickening, as
described previously [33]. Control fibroblasts obtained by skin biopsies from three healthy
donors were purchased from the American Type Culture Collection (ATCC, Manassas,
VA, USA) and Lonza (Walkersville, MD, USA). Mouse NIH3T3 cells were obtained from
ATCC. Monolayer cultures of fibroblasts were maintained at 37 ◦C with 5% CO2. Cells
were serum-starved for 12–24 h before all experiments [34]. All biopsies were performed
according to the Declaration of Helsinki, with approval from the institutional review board,
and written informed consent was obtained.

4.3. RNA Extraction, Reverse Transcription, and PCR Analysis of RNA Expression

The total RNA was extracted from cultured cells using ISOGEN (Nippon Gene,
Tokyo, Japan). First-strand cDNA was synthesized using a PrimeScriptTM RT reagent
kit (Takara Bio, Shiga, Japan). For quantitative real-time analysis, cDNA and primers
were mixed with SYBR Premix Ex TaqTM II (Takara Bio, Shiga, Japan). Primer sets for
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA (18SrRNA)
were purchased from QIAGEN (Valencia, CA, USA) and Thermo Fisher Scientific (Waltham,
MA, USA), respectively. Primer sets for human and mouse α1(I) and α2(I) collagen were
obtained from Takara. The DNA was amplified over 40 cycles of denaturation for 5 s at
95 ◦C and annealing for 30 s at 60 ◦C, and relative expression was calculated using the
∆∆Ct method [35].

4.4. Immunoblotting

The cultured human or mouse dermal fibroblasts were washed with PBS and lysed in
RIPA buffer (Nacalai Tesque, Kyoto, Japan). Protein concentrations were quantified using a
BCA Protein Assay kit (Thermo Fisher Scientific). Aliquots of cell lysates were separated by
electrophoresis on 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes,
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which were blocked in blocking One P buffer (Nacalai Tesque) for 1 h and incubated
overnight at 4 ◦C with primary antibody. The membranes were washed with TBS and
0.1% TBST, probed with HRP-conjugated secondary Ab for 1 h, and then washed with
TBST again [36]. Immunoreactive bands were visualized using the ChemiDoc XRS system
(Bio-Rad, Hercules, CA, USA).

4.5. Transient Transfection

Human COL1A1 siRNA (ON-TARGETplus SMART pool), COL1A2 siRNA (ON-
TARGETplus SMART pool), and control siRNA (ON-TARGETplus nontargeting control
pool) were obtained from Dharmacon (Lafayette, CO, USA). Mouse COL1A1 siRNAs
(5′-UGGCCUUGGAGGAAACUUU-3′ and 5′-AAAGUUUCCUCCAAGGCCA-3′) and con-
trol siRNA were purchased from Nippon Gene (Tokyo, Japan). For transfection, siRNAs
(20 nM) mixed with Lipofectamine RNAiMAX (Thermo Fisher Scientific) were added to
cells in 24-well culture dishes, followed by incubation for 24–72 h at 37 ◦C in 5% CO2 [36].

4.6. Lentiviral Gene Transfer

Lentiviral vector-mediated gene transfer was performed using CSII-EF-RfA, pCMV-
VSV-G-RSV-Rev, and pHIVgp, which were kindly donated by Dr. Hiroyuki Miyoshi
(RIKEN, Wako, Japan) [37,38]. cDNA fragments of the full-length human COL1A1 gene
were generated and amplified by PCR using SuperScriptTM II Reverse Transcriptase (Invit-
rogen, Carlsbad, CA, USA) and PrimeSTAR® HS DNA Polymerase with GC Buffer (Takara),
followed by cloning into CSII-EF-RfA [39]. Substitution mutations were generated using
the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, Santa
Clara, CA, USA) and were confirmed by sequencing [40].

4.7. Mice

To deliver mouse COL1A1 siRNA into mouse skin, mixtures of siRNA and AteloGene®

Local Use (Koken, Tokyo, Japan) were prepared according to the manufacturer’s instructions.
The COL1A1 siRNA oligo was obtained from Koken:5′-UGGCCUUGGAGGAAACUUU-3′

and 5′- AAAGUUUCCUCCAAGGCCA-3′. An irrelevant control siRNA was also obtained
from Koken:5′-AUCCGCGCGAUAGUACGUA-3′ and 5′-UACGUACUAUCGCGCGGAU-
3′. The samples were then annealed with one another. Then, 100 µL of the mixtures
(siRNA concentration, 5 µM) were administered into the dermis of six-week-old male
C57BL/6 mice (CLEA Japan, Tokyo, Japan) once weekly [41]. All of the mouse experiments
were performed in accordance with the guidelines of the Institutional Animal Commit-
tee of Kumamoto University and approved by the Committee on Animal Research at
Kumamoto University.

4.8. Bleomycin Treatment in Mice

Bleomycin (Nippon Kayaku, Tokyo, Japan) was dissolved in PBS at a concentration of
0.5 mg/mL and sterilized by filtration as described previously [42,43]. Bleomycin (100 µL)
was then injected intradermally into the shaved backs of 6-week-old male C57BL/6 mice
(CLEA Japan, Tokyo, Japan) every alternate day for 3 weeks. The back skin was removed
on the day after the final bleomycin injection, and fibrosis was evaluated by histological
analysis and a total collagen assay. The control mice were injected with equal volumes of
PBS. The dermal thickness was evaluated by measuring the distance between the epidermal-
dermal junction and dermal-fat junction in hematoxylin-eosin sections.

4.9. Measurement of Collagen Production in Mouse Skin

The collagen deposition in 8-mm mouse skin punch biopsy samples was measured
using a Total Collagen Assay kit (QuickZyme Biosciences, Leiden, Netherlands) following
the manufacturer’s protocol. Briefly, mouse skin samples were hydrolyzed using 12 mol/L
of hydrochloric acid for 20 h at 95 ◦C. The samples were then added to the microplate
wells, and dilution assay buffer was added to each well. After incubation for 20 min
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at room temperature, the detection reagent was added to each well. The samples were
incubated for 60 min at 60 ◦C, and the absorbance of each sample was read at 570 nm using
a spectrophotometer. The results are expressed as the relative hydroxyproline content [44].

4.10. Statistical Analysis

The values are presented as the mean ± standard deviation. Statistical analyses
were performed using the Mann–Whitney U-test for a comparison of the two groups.
One-way analysis of variance (ANOVA) with Tukey’s post-hoc test was used for multiple
comparisons. All of the analyses were performed using Statcel4 software (OMS, Kurume,
Japan). The statistical significance was defined as p < 0.05.
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