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Abstract: Background: Mycobacterium avium subspecies paratuberculosis (MAP), a member of the
mycobacteriaceae family, causes Johne’s disease in ruminants, which resembles Crohn’s disease (CD)
in humans. MAP was proposed to be one of the causes of human CD, but the evidence remains
elusive. Macrophages were reported to be the only cell where MAP proliferates in ruminants and
humans and is likely the major producer of TNFα-associated inflammation. However, whether
human dendritic cells (DCs), another major antigen-presenting cell (APC), have the ability to harbor
MAP and disseminate infection, remains unknown. Methods: Human monocyte-derived dendritic
cells (moDCs) were infected with MAP and phagocytosis and intracellular survival were quantified
by immunofluorescence (IF) and colony counts, respectively. MoDC cytokine expression was
measured via ELISA and their activation state was measured via flow cytometry. Results: We showed
that MAP can infect and replicate in human moDCs as means to evade the immune system for
successful infection, through inhibition of the phago-lysosome fusion via the secretion of protein
tyrosine phosphatase PtpA. This mechanism initially led to a state of tolerance in moDCs and
then subsequently caused a pro-inflammatory response as infection persisted, characterized by the
upregulation of IL-6 and TNFα, and downregulation of IL-10. Moreover, we showed that moDCs
have the ability to phagocytose up to 18% of MAP, when exposed at a multiplicity of infection of 1:1.
Conclusion: Infection and subsequent proliferation of MAP within moDCs could provide a unique
means for the dissemination of MAP to lymphoid tissue, while altering immune responses to facilitate
the persistence of infection of host tissues in CD.

Keywords: Mycobacterium avium subspecies paratuberculosis; dendritic cells; protein tyrosine
phosphatase; Crohn’s disease; Johne’s disease

1. Introduction

Mycobacterium avium subspecies paratuberculosis (MAP) is a member of the mycobacteriaceae family,
and is related to Mycobacterium tuberculosis (Mtb) and Mycobacterium leprae, both human pathogenic
organisms. MAP causes Johne’s disease in ruminants, which primarily involves the small intestine,
causing diarrhea, wasting, weight loss, bloody stool, and eventually death [1]. As this pathology
resembles Crohn’s disease (CD) in humans, MAP was proposed to be one of the causes of human CD [2]
but definitive evidence remains elusive, due to the difficulties in isolating and culturing live MAP from
biopsies in CD patients. However, there is some evidence linking MAP infection to the development
of CD. For example, biopsies from both the small intestine (SI) and colon of CD and irritable bowel
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syndrome (IBS) patients was shown to have detectable MAP DNA levels [3–5] and MAP was cultured
via isolation from the blood, milk [6], or serum of patients with CD [7–9]. TNFα, a cytokine found to
be a driving factor in CD (and a target of successful mAb therapies), was also studied in the context
of MAP infection, and was shown to be elevated in MAP-positive CD patients, [10] likely due to
the secretion of TNFα via macrophage [11,12]. Moreover, two single nucleotide polymorphisms
(SNPs) known to affect clinical outcomes in CD patients, TNFRSF1A:rs767455 and TNFRSF1B:rs3397,
were associated with high susceptibility to MAP infection [13].

Macrophages were reported as the only cells where MAP proliferates in ruminants and
humans [14,15]. Since macrophage and dendritic cells (DCs) are the main antigen-presenting cells
(APCs) that initiate an adaptive immune response, and are important in the production of TNFα,
several studies examined DC maturation upon MAP stimulation. A few studies demonstrated
that the MAP proteins MAP1981c [16] and malate dehydrogenase (MDH) [17], mature DCs to
produce a Th1 immunity environment, via upregulation of IL-6, TNFα, IFNγ, and IL-1ß. Another
MAP protein, the nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyl transferase CobT,
was shown to cause activation of the toll-like receptor 4 (TLR4), resulting in Th1 cell expansion [18].
Others demonstrated DC maturation impairment when DCs were incubated in supernatants from
MAP-infected macrophage [19].

MAP was shown to infect but not proliferate within the human enterocyte cell line Caco-2 [20]
and invade ileal Peyer’s Patches (IPP) to evade mucosal immune responses [21]. This suggests that
MAP is able to evade the host immune system and further drive disease.

MAP was shown to exclusively infect and replicate inside of macrophage, and to have evolved to
evade macrophage defense mechanisms by different means, such as altering phagosome acidification
for its survival [22], phagosome-lysosome fusion inhibition via secretion of mycobacterial tyrosine
phosphatase PtpA [23], and phagosome-lysosome arrest via protein kinase G (PknG), as demonstrated
in Mycobacterium tuberculosis (Mtb) [24]. These data demonstrate that MAP utilizes macrophage to
proliferate and alter host immune responses. However, macrophage are mostly resident immune cells,
whereas DCs are migratory. DC infection and subsequent proliferation of MAP could provoke a more
severe systemic immune response, which is why it is of importance to understand the role of DC
infection in MAP-related diseases. This is the first study, to our knowledge, to provide evidence that
MAP infects and replicates within human monocyte-derived DCs (moDCs), initially leading to a state
of tolerance in DCs upon infection/replication, and then subsequently leading to a pro-inflammatory
response as infection persists, as measured by the upregulation of pro-inflammatory cytokines, as well
as the T-cell priming receptors.

2. Materials and Methods

2.1. Cell and Culture

Human blood was obtained from donors through the NETCad Blood-for-Research program
(Canadian Blood Services), under an ethics protocol approved through the University of British
Columbia Clinical Research Ethics Board (H16-00927; approved on June 23, 2016).

The strain MAP k-10 (ATCC BAA-962, Manassas, VA, USA) was used in this study. Bacteria
were cultured in 7H9 broth (Becton & Dickinson, Franklin Lakes, NJ, USA) supplemented with 0.05%
Tween-80 (Fisher Scientific, Waltham, MA, USA), 10% OADC, and 2 mg/L mycobactin J (Allied Monitor,
IN, USA). OADC was prepared by mixing 25 mg of oleic acid (Sigma-Aldrich, St. Louis, MO, USA),
2.5 g bovine serum albumin (BSA, VWR, Radnor, PA, USA), 1 g dextrose (VWR), 2 mg of catalase
(Sigma-Aldrich), and 425 mg of NaCl (Fisher), in a final volume of 50 mL. Bacteria were used when the
OD at 600 nm was around 0.7.

MoDCs were generated from monocytes (collected from donors) enriched from buffy coats via
Ficoll (Sigma-Aldrich) gradient and plate adherence, for 1–2 h, as described [25]. MoDCs were fed twice
(day 1 and day 4) with RPMI media containing 10% human serum (Thermo Fisher Scientific, Waltham,
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MA, USA), 50 ng/mL IL-4 (StemCell, Vancouver, Canada), and 100 ng/mL granulocyte-macrophage
colony-stimulating factor (GM-CSF, StemCell). Cells (18,000 cells/treatment) were harvested, counted,
and cultured/stimulated with either live MAP, antibiotic-killed MAP (KMAP) using 100 µg/mL
kanamycin (Fisher) overnight at 37 ◦C [26], LPS (1 µg/mL, Sigma-Aldrich), or LPS+MAP, and the
supernatants were collected for ELISA or flow cytometry analysis, at time points 2, 24, and 48 h.
To validate the killing of MAP, cells were plated on solidified 7H9 (B&D), supplemented with 10%
OADC (B&D) and mycobactin J (Allied Monitor) and placed at 37 ◦C. MAP was considered killed
when no colonies were observed after 2 months of incubation. Prior to the stimulation, live MAP
were washed with PBS (×3) and opsonized with 10% human AB+ serum (Thermo Fisher) in RPMI for
30 min, at 37 ◦C. MoDCs were infected at a MOI of 1:1 and non-internalized bacteria were killed by
adding 50 µg/mL amikacin (Sigma-Aldrich) after 1 h post-infection. The media was replaced with
RPMI and human serum only for the next few days.

2.2. Phagocytosis Index

Live MAP were stained with 10 µg/mL Rhodamine B (Sigma-Aldrich) for 1 h, washed with PBS,
and opsonized, as detailed above [14]. MoDCs (18,000 cells/well) were infected using a multiplicity of
infection of 1:1 for 2 h. Cells were collected and dispensed on a microscope slide, covered by a cover
slip, and sealed after 24 h. The phagocytosis index was calculated as the number of infected cells/total
number of cells, per microscope field × 100. A total of 300 cells were counted for each donor.

2.3. Flow Cytometry

For flow cytometry analysis, moDCs were harvested, washed, stained, and analyzed by flow
cytometry on a Fortessa cytometer (B&D). Live moDCs were defined by sequential gating by
forward/side scatter, BV510 viability dye, single cells (SSC-A/SSC-H), and finally CD11b and CD11c
(Figure S1). The CD11c+/CD11b+ population was analyzed for CD80, CD86, CD103, and MHCII,
as described in [27]. The mean fluorescence intensity (MFI) of the aforementioned markers were
normalized to the MFI from DCs that were unstimulated. MoDCs matured overnight with LPS
(1 µg/mL) and FliC (1 µg/mL) were used as a positive control for staining for surface marker antibodies.
The following antibodies were used: CD80 (clone 2D10.4), MHCII/HLA-DR (clone LN3), CD86 (clone
IT2.2), CD11c (clone 3.9), and BV506 viability dye (Thermo Fisher), whereas CD103 (clone Ber-ACT8),
and CD11b (clone ICRF44) were from B&D. All experiments were performed in triplicate, with three to
four different blood donors.

2.4. ELISA

For the cytokine ELISAs, kits from B&D were used according to the manufacturer’s instructions.
All experiments were performed in triplicate.

2.5. MAP Colony Counting

For the colony-forming units (CFUs) counting, samples were washed with PBS (×3) and plated on
7H10 (B&D) plates supplemented with 10% OADC (B&D) and mycobactin J (2 mg/L, Alled Monitor),
after performing serial dilutions in PBS. CFUs were counted when the colonies were visible (~45 days
post-plating). All experiments were performed in triplicate with three biological replicates obtained
from different blood donors.

2.6. Immunofluorescence

Immunofluorescence analysis, including the antibodies used in the experiment, was performed as
published [14], but using moDCs isolated via the monocyte adherence step, with IL-4 and GM-CSF
supplementation, as described earlier.
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2.7. Statistical Analyses

Statistical comparisons were run using the GraphPad Prism Software v.7 (San Diego, CA, USA).
Multiple comparisons were done using nonparametric analysis (Kruskal-Wallis) or one-way or two-way
ANOVA with Tukey’s multiple comparison, as indicated. Single comparisons were done by t-test.
Data are represented as mean ± SEM, unless otherwise indicated.

3. Results

3.1. MAP Infects and Replicates Inside moDCs

Due to the difficulty in obtaining adequate numbers of viable DCs from primary human intestinal
tissue biopsies, human moDCs were differentiated from monocytes through growth in GM-CSF and
IL-4 [25]. Non-adherent cells were exposed to live MAP at an MOI of 1:1, and survival, growth, and
phagocytosis were measured by harvesting the moDCs, daily for 72 h, and subsequently plating to
count the MAP CFUs. We measured the ability of kanamycin-treated KMAP or live MAP to kill moDCs
upon infection, by measuring cell viability via flow cytometry on the CD11c+CD11b+ population,
which was ~96% homogenous in our experiments [27] (Figure S1). We found that MAP, but not KMAP,
caused a small but statistically significant decrease in cell viability (85.9% for T = 0 and 24 h, and
89.3% for T = 48 h), compared to the untreated moDCs (Figure S2). Nonetheless, we found that MAP
survived and likely replicated in moDCs over time, starting with 4 × 104 CFU at T = 0 and increasing
to 7 × 104 CFU at T = 72 h post infection (Figure 1A). Moreover, MAP was phagocytosed up to 18%
(mean of 13.25%) by moDCs (Figure 1C), suggesting a mechanism through which live MAP could enter
moDCs for a successful infection.
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respectively), as well as untreated vs. MAP+LPS treated moDCs (1.35 ± 0.12 fold increase; Figure 2). 
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Figure 1. Mycobacterium avium subspecies paratuberculosis (MAP) infects and replicates in human
monocyte derived dendritic cells and expresses PtpA. (A) Human moDCs were exposed to MAP
and harvested at 24 h intervals for 72 h. Cell lysates were plated on MAP culture media and the
colony-forming units (CFUs) were counted, after 8 weeks of growth. Error bars are the mean ± SEM of
n = 3 DC blood donors analyzed in triplicate. (B) moDCs were processed and imaged for the protein
phosphatase PtpA (green) and MAP (red), at 24 and 48 h post-exposure to MAP. Images representative
of experiments using n = 3 independent DC blood donors. (C) Phagocytosis index expressed in
percentages of n = 300. Scale bar = 20 µm
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The mycobacterial protein phosphatase PtpA was secreted within macrophages upon infection
with MAP and Mtb [14,23]. PtpA inhibited the phago-lysosome fusion and phagosome acidification
functions in macrophages [23,28]. To determine whether MAP secreted PtpA in infected moDCs,
an immunofluorescence co-localization was performed (Figure 1B) in the cells, post-MAP infection,
at 24 h and 48 h. Results indicated that PtpA (in green) co-localized at 24 h and 48 h post-infection
with MAP (in red), suggesting that MAP used similar PtpA secretion mechanisms in moDCs, as in the
MAP and Mtb-infected macrophage.

3.2. MAP Infection Delays moDC Maturation

Since MAP produces the proteins MAP1981c [16] and MDH [17], which were shown to mature
DCs, we hypothesized that infection of MAP in moDCs would also mature DCs in a similar fashion.
To assess moDC maturation status upon MAP infection, we examined the expression of T-cell priming
receptors CD80/86, as well as MHCII for antigen presentation, and CD103, which was expressed on
tolerogenic DCs [29], via flow cytometry at 2 h, 24 h, and 48 h post-infection of untreated immature
moDCs, gating on the live, CD11c+/CD11b+ population. A representative experiment of T = 24 h MFI
shifts are shown in Figure S3. Upon initial infection, we found a small but non-significant increase in
CD80 with live MAP or KMAP, which increased significantly at 24 h and 48 h. CD86 expression was
also significantly increased 24 h and 48 h after infection with live MAP or KMAP. Upon initial infection,
we measured a significant increase in the CD103 expression in live MAP infected moDCs vs. untreated
and KMAP conditions (1.36 ± 0.12 and 1.51 ± 0.24 fold change, respectively), as well as untreated
vs. MAP+LPS treated moDCs (1.35 ± 0.12 fold increase; Figure 2). In contrast, LPS or KMAP did
not significantly increase CD103 expression, compared to untreated moDCs. As infection proceeded,
CD103 began to significantly down-regulate only in MAP-infected moDCs. Interestingly, MHCII
expression was significantly increased in only moDCs treated with KMAP at 24 h (2.2 ± 0.15-fold
increase vs. unstimulated), as well as KMAP and LPS+MAP (1.6 ± 0.10 and 1.7 ± 0.18-fold increase
vs. unstimulated, respectively) at 48 h, but not live MAP alone, which was consistent with bovine
macrophage infection with MAP [30]. We also measured expression of the DC integrins CD11b and
CD11c, and demonstrated that CD11b, but not CD11c, was significantly down-regulated over time
with live or killed MAP.
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Figure 2. MAP infection delays maturation of moDCs. moDCs (1.8 × 104 cells) were untreated or
infected/treated with the same number of opsonized MAP, antibiotic-killed MAP (KMAP), MAP+LPS,
or LPS alone for T = 0 (2 h), T = 24 h, and T = 48 h. MoDCs were stained for CD80, CD86, CD11b, CD11c,
CD103, and MHCII and the mean fluorescence intensity (MFI) of CD80, CD86, MHCII, CD103, CD11b,
and CD11c within the CD11c+CD11b+ population was calculated, and normalized to the MFI, from
cells in the same experiment that were untreated. * significance vs. untreated: * p < 0.05; ** p < 0.01;
*** p < 0.001; p < 0.0001 ****. # significance vs. MAP: # p < 0.05; ## p < 0.01. † Significance vs. KMAP:
†† p < 0.01 (one-way ANOVA with multiple comparisons). Shown is the average ± SEM of n = 3–4 DC
blood donors analyzed in triplicates.



Microorganisms 2020, 8, 994 6 of 11

Overall, the similar moDC responses to live MAP, KMAP, and LPS suggest that it is likely
that surface pattern recognition receptors (PRRs) on MAP acting through TLR pathways lead to
alterations of the moDC function. The only exception was with MHCII, where live MAP caused less
of an upregulation in MHCII, consistent with inhibition of phago-lysosome maturation caused by
MAP virulence factors. This in turn could reduce immune surveillance by reducing MAP antigen
presentation on moDCs.

3.3. MAP Infection of moDCs Causes Transient Cytokine Production

MoDC cytokine secretion was measured in parallel with replication experiments, to better
understand the cytokine milieu during infection (Figure 3). Live and KMAP caused rapid and similar
production of IL-6 and IL-10, although less than the positive control, LPS. IL-10 production rapidly
decreased over 24–48 h in all conditions, while IL-6 remained stable or increased in all conditions
other than the live MAP infection. In contrast, TNFα production was detected rapidly only with
combined LPS and MAP stimulation, but was increased at 48 h, in all conditions. Addition of MAP
to LPS enhanced early production of all three cytokines. At 48 h, live MAP caused significantly less
IL-6 and TNFα production than KMAP, suggesting a potential anti-inflammatory activity of live MAP
on moDCs, unless LPS was concomitantly present. These data suggest that MAP infected moDCs
displayed an initial tolerogenic state, possibly to hide from the immune system, then subsequently
increased their pro-inflammatory potential over time.Microorganisms 2019, 7, x FOR PEER REVIEW 7 of 11 
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Figure 3. MAP-infected moDCs display a downregulated pro-inflammatory phenotype. MoDCs
(1.8 × 104 cells) were untreated or infected/treated with the same number of opsonized MAP, killed
MAP (KMAP), or LPS alone for T = 0 (2 h), T = 24 h, and T = 48 h. Supernatants were collected and
ELISA for IL-6, IL-10, and TNFα was performed. * p < 0.05; ** p < 0.01; *** p < 0.001; p < 0.0001 **** as
calculated using two-way ANOVA with multiple comparisons; † p < 0.05, t-test. Shown is the average
± SEM of n = 3–4 DC blood donors analyzed in triplicate.

4. Discussion

MAP is the etiological agent of Johne’s disease in ruminants and there is a growing body of
evidence that suggests that MAP might play a role in the development of IBD [2,31] as well as
exacerbating dextran-sulfate sodium (DSS) induced colitis in mouse models [32,33]. MAP is an
intracellular pathogenic organism that might live for up to a year in the environment, after passing via
infected animals [34,35], and can survive in milk [36,37] and its derivatives [38,39] with a potential
transmission to humans via contamination of dairy products. Macrophage were reported as the
only cells where MAP proliferated in ruminants and humans [14,15], and likely are the key APC
driving the production of TNFα in MAP-positive patients [13]. However, since macrophage are mainly
tissue resident immune cells, it is important to understand if DCs can be used as a vehicle of MAP
replication/dissemination, since DCs are migratory and would lead to a potentially more widespread
systemic immune response. The only prior studies to examine MAP in the context of DC immune
responses only measured PRR stimulation via MAP proteins [16–18] and showed that MAP-stimulated
DCs produce a Th1-like environment.
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Our study was the first to show that MAP can infect and replicate in human-derived moDCs to
evade the immune system for successful infection. We found that MAP survived and proliferated
in moDCs over at least 72 h. This was associated with co-localization of PtpA, which was shown to
inhibit phago-lysosome fusion and neutralization of phagosome acidification in macrophage [14,23,28].
The potential role of PtpA and other virulence factors in DC infection and survival remain uncertain.

Infection of moDCs via MAP might be driven by DC-SIGN, which was shown to be the potential
receptor for Mtb [40], although we have not investigated the responsible receptor for MAP uptake in this
current study. One would expect that infection of DCs via MAP would likely result in the upregulation
of chemokine receptors, allowing the migration of MAP-infected DCs to home to secondary lymphoid
organs, to further spread the infection. However, a recent study demonstrated that Mtb infection of
primary human DCs altered DC adhesion molecules and subsequent migration, via a downregulation
of CD18, CD11a, and CD11b [41], which was in agreement with our data that demonstrated a significant
decrease in CD11b, but not CD11c. This suggests that MAP prioritizes replication initially by delaying
the initial adaptive immune responses. We showed that MAP infection and proliferation led to a delay
in moDC maturation, as shown by an increase of anti-inflammatory cytokine IL-10 and CD103—a
tolerogenic marker—at the time of infection, which we speculated might be caused by MAP’s ability
to inhibit phago-lysosome fusion. As infection persisted, we observed an increase in the cytokine
TNFα; a decrease in the cytokine IL-6; an increase in T-cell priming co-receptors CD80/86, and MHCII;
and a decrease in CD103 and IL-10. Taken together, these data suggest that while moDCs recognize
inflammatory pathogen-associated molecular patterns (PAMPs) on MAP, the live microorganisms
might inhibit the inflammatory response. This could be a virulence mechanism through which
MAP could evade antigen presentation, while allowing for spread to lymph nodes and other tissues,
upon infection of DCs. We were also able to measure the percentage of moDCs infected with MAP
by performing a phagocytosis assay. Our data resembled prior studies that demonstrated a 20%
macrophage infection rate with MAP [42–44], where the moDCs in our study phagocytosed up to
18%. However, a new study [44] that used an MOI of 5:1 and 20:1, demonstrated a 16.25% and 38.78%
infection rate, respectively. Our infection rates were comparable to those of a 5:1 MOI, as seen in
the macrophage, which suggest that moDCs might have an increased ability to phagocytose bacteria
compared to macrophage. As the infection rate was modest, we were therefore likely underestimating
the magnitude of the moDC response in individually infected cells by looking at population MFIs of
the surface markers. Nonetheless, we were able to measure robust inflammatory responses in the
overall MAP-infected population.

One limitation to our study was the option to use moDCs over whole blood or gut tissue isolated
DCs, to measure infection, proliferation, and phagocytosis. However, moDCs are widely used and
provide a very useful model in the functional studies of immunology and infection [27,45–47], whereas
human DCs isolated from whole blood are too rare to provide enough cells to test our hypothesis, and
it is extremely difficult to obtain substantial numbers of tissue-resident DCs from intestinal biopsies.
Another limitation is the inability to separate infected from uninfected moDCs in our assays, meaning
that some of the cytokine and surface marker changes we observed could be due to the paracrine
effects of the factors released from the MAP-infected cells on the uninfected cells. Nonetheless, our
findings suggest that live MAP might have direct inhibitory effects on moDC inflammatory responses,
which needs to be verified in future, larger studies.

5. Conclusions

We demonstrated that MAP infects and replicates inside of moDCs. This leads to an initial
anti-inflammatory phenotype, which allows MAP to replicate, and then subsequently leads to a
pro-inflammatory phenotype of CD80/86 expression and cytokine production, which would increase
the moDCs’ ability to activate T-cells and present potential MAP antigens for subsequent MAP specific
T-cell clonal expansion. The net result of this would be initial infection, persistence, and systemic



Microorganisms 2020, 8, 994 8 of 11

dissemination of MAP, along with the later development of potentially damaging T-cell responses that
could drive inflammatory injury in the gut of patients with CD who carry MAP.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/8/7/994/s1.
Figure S1. Flow cytometry gating strategy. Human moDCs at T = 0, 24, or 48 h after MAP infection were stained,
as described in the Methods, and gated sequentially on forward/side scatter, single cells (SSC-A/SSC-H), viability,
and finally CD11b+ and CD11c+ cells, prior to calculation of MFIs for CD80, CD86, MHCII, CD103, CD11b, and
CD11c. Figure S2. Cell viability post MAP infection. The percentage of live moDCs untreated or post MAP/KMAP
infection was calculated following forward/side scatter, CD11b+ and CD11c+, and gated on SSC-A and BV510
(viability dye). * p < 0.05 as calculated using a two-way ANOVA with multiple comparisons, shown is the average
± SEM of n = 4 DC blood donors in triplicates. Figure S3. Flow cytometry MFI shifts. Human MoDCs at T = 0, 24,
or 48 h after the MAP infection were stained, as described in Methods, and gated sequentially on forward/side
scatter, single cells (SSC-A/SSC-H), viability, and finally CD11b+ and CD11c+ cells. MFI shifts of a representative
experiment at T = 24 are shown.
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