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Abstract

Newly-translated glycoproteins in the endoplasmic reticulum (ER) often undergo cycles of

chaperone binding and release in order to assist in folding. Quality control is required to dis-

tinguish between proteins that have completed native folding, those that have yet to fold,

and those that have misfolded. Using quantitative modeling, we explore how the design of

the quality-control pathway modulates its efficiency. Our results show that an energy-con-

suming cyclic quality-control process, similar to the observed physiological system, outper-

forms alternative designs. The kinetic parameters that optimize the performance of this

system drastically change with protein production levels, while remaining relatively insensi-

tive to the protein folding rate. Adjusting only the degradation rate, while fixing other parame-

ters, allows the pathway to adapt across a range of protein production levels, aligning with in

vivo measurements that implicate the release of degradation-associated enzymes as a

rapid-response system for perturbations in protein homeostasis. The quantitative models

developed here elucidate design principles for effective glycoprotein quality control in the

ER, improving our mechanistic understanding of a system crucial to maintaining cellular

health.

Author summary

We explore the architecture and limitations of the quality-control pathway responsible for

efficient folding of secretory proteins. Newly-synthesized proteins are tagged by the

attachment of a ‘glycan’ sugar chain which facilitates their binding to a chaperone that

assists protein folding. Removal of a specific sugar group on the glycan ends the interac-

tion with the chaperone, and not-yet-folded proteins can be re-tagged for another round

of chaperone binding. A degradation pathway acts in parallel with the folding cycle, to

remove those proteins that have remained unfolded for a sufficiently long time. We

develop and solve a mathematical model of this quality-control system, showing that the

cyclical design found in living cells is uniquely able to maximize folded protein through-

put while avoiding accumulation of unfolded proteins. Although this physiological model

provides the best performance, its parameters must be adjusted to perform optimally

under different protein production loads, and any single fixed set of parameters leads to

poor performance when production rate is altered. We find that a single adjustable
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parameter, the protein degradation rate, is sufficient to allow optimal performance across

a range of conditions. Interestingly, observations of living cells suggest that the degrada-

tion speed is indeed rapidly adjusted.

Introduction

The general principle of quality control is of critical importance to the maintenance, function,

and growth of biological cells. Autophagy and the ubiquitin-proteasome system selectively

remove damaged proteins and organelles to maintain the quality of cellular components [1, 2].

Fidelity is aided by proofreading processes during DNA copying [3], immune signaling [4],

and external sensing [5]. Quality control is particularly important for proteins, with a high

fraction of proteome mass across the kingdoms of life devoted to protein homeostasis and

folding [6]. Unfolded and misfolded proteins often form aggregates, which can impede cellular

processes and are associated with a variety of human diseases [7–10].

Protein quality control begins with transcriptional proofreading by RNA polymerase [11]

and continues with proofreading of tRNA matching to mRNA codons during translation [12]

to reduce errors in the polypeptide sequence. Quality control continues beyond production,

throughout the lifetime of a protein [13–15]. We focus on post-translational quality control

pathways that ensure nascent polypeptides fold into the correct or ‘native’ three-dimensional

conformation, rather than roaming the cell in a misfolded state [13–15].

Nearly one-third of eukaryotic proteins, or *8000 proteins in humans, are synthesized

through the secretory pathway and begin as nascent polypetides in the endoplasmic reticulum

(ER) [16]. The majority of ER-manufactured proteins acquire branched carbohydrate chains,

via N-linked glycosylation [17]. While these glycan chains can be important for protein func-

tion [18] and stabilization [19], the specific sugar residues in the glycan serve as a tunable

barcode to direct the interactions that lead to further protein folding attempts or protein deg-

radation [16]. Accordingly, glycans play a key role in the folding quality control of secretory

proteins.

The quality control pathway, in deciding which proteins to degrade and which to continue

folding, attempts to distinguish between three groups of proteins: natively folded, as yet

unfolded, and terminally misfolded. Natively folded proteins can be distinguished by the lack

of exposed hydrophobic residues and free thiols [20, 21], and are permitted to leave the ER to

continue through the secretory pathway. It is less straightforward to distinguish between as yet

unfolded proteins, which should be provided more time to fold; and terminally misfolded pro-

teins, which should be targeted for degradation [22]. Newly-synthesized proteins and unfolded

proteins are flagged by a monoglucosylated glycan chain, which facilitates chaperone binding

to attempt folding. Proteins dissociate from the chaperone upon removal of this glucose moi-

ety, which is not added back to proteins that have reached their native conformation. Proteins

that fail to reach a native conformation will eventually experience trimming of other glycan

moieties, leading to degradation via the ER-associated degradation (ERAD) pathway [16].

In this work we investigate how the design of the glycoprotein folding quality-control path-

way facilitates decisions of whether nascent proteins may continue trying to fold, and how spe-

cific pathway features impact performance. Specifically, we seek to understand the advantages

provided by the cyclic structure of the quality control pathway. We describe how the nonequi-

librium driving of the chaperone binding cycle enables improved performance, reinforcing

previous descriptions [15, 23, 24] of this process as kinetic proofreading [3, 25]. Overall, we
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find that the consensus physiological model outperforms other designs, and describe how its

kinetic parameters can be tuned to maintain performance across a broad range of conditions.

Model

Upon translation, glycoproteins enter the quality control pathway marked with a single glu-

cose moiety [16, 26]. These monoglucosylated proteins can bind calnexin and calreticulin [27],

chaperone proteins that assist protein folding. The interaction of a glycoprotein with a chaper-

one ends with trimming of the glucose by glucosidase II [22, 28–30]. A monoglucosylated pro-

tein dynamically binds to and unbinds from a chaperone, with glucosidase II likely trimming

the glucose when the protein is unbound due to steric limitations [31–34]. We consider the

monoglucosylated protein as remaining effectively in a state of association with the chaperone

until it is deglucosylated [28, 29, 35]. This treatment of dynamic on/off binding as a single

composite state follows previous modeling of proteins binding DNA [36] and molecular

motors on their tracks [37].

Proteins that have reached a native conformation are eligible to be exported from the ER

and to proceed down the secretory pathway [38]. However, not all proteins that are released

from the chaperone are successfully folded. Uridine diphosphate-glucose:glycoprotein gluco-

syltransferase (UGGT) can reglucosylate incompletely folded glycoproteins to enable another

round of chaperone binding that further facilitates folding [29, 39]. UGGT does not reglucosy-

late proteins that have reached a native conformation, and is thought to use indicators such as

the availability of the entire glycan chain and hydrophobic patches to detect non-native con-

formations [16, 29, 39, 40]. There is some evidence that UGGT may prefer to reglucosylate

unfolded glycoproteins rather than those that have misfolded into an incorrect conformation,

but overall it is unclear if UGGT can distinguish between these two groups of non-natively

folded proteins [22, 39, 40].

Glycoprotein interaction with chaperones, glucosidase II, and UGGT thus forms a cycle: a

monoglucosylated protein binds a chaperone (calnexin or calreticulin) for folding assistance,

the glucose is trimmed by glucosidase II to end the chaperone interaction, and UGGT restores

the glucose to non-natively folded proteins to direct chaperone rebinding [39]. Folding time in

the ER can vary from a few minutes to several hours [41], with some proteins natively folded

after one round of chaperone binding, and others requiring multiple rounds of chaperone

interaction [29].

In addition to departing the cycle by folding, proteins can be selected for ER-associated

degradation (ERAD), a pathway involving removal from the ER followed by proteasomal deg-

radation [29]. Commitment of a protein to the ERAD pathway for degradation can involve

interaction with various enzymes, some of which irreversibly trim additional moieties off the

glycan chains [16, 17, 22, 27, 42–50]. Unglucosylated glycans, which do not allow chaperone

binding, are thought to be specifically vulnerable to the modifications that commit a protein to

ERAD [49, 51, 52].

We represent the glycoprotein quality control cycle with three discrete states, along with an

additional discrete state for chaperone-bound natively folded proteins (see Fig 1). Proteins

enter the cycle in a monoglucosylated state (whose concentration is represented by Pg) with a

production rate kp. Monoglucosylated proteins bind to chaperones as a bimolecular reaction

with rate constant kc. The available chaperone concentration is represented by CA and the con-

centration of chaperone-bound unfolded proteins by Pc. Proteins bound to the chaperone fold

into their native conformation with rate constant kf, and Pcf represents the concentration of

folded proteins bound to the chaperone. Chaperone-bound proteins (both natively folded and

not) end their chaperone interactions through glucose trimming with rate constant kr, with
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natively folded proteins then exiting the cycle. In a subsequent section, we address an alternate

model where monoglucosylated protein unbinding would instead return the protein to state

Pg, wherein it has no memory of prior chaperone interaction. We refer to this variant as the

‘No tag memory’ model. Glucose-trimmed proteins that are not natively folded (at concentra-

tion P) are lacking a glucose moiety, and can be reglucosylated with a rate constant kg. Mono-

glucosylated proteins not bound to a chaperone can have their glucose removed with rate

constant k-g, serving as a “safety-valve” pathway when the concentration of proteins to be

folded overwhelms the available chaperones. Deglucosylated proteins are vulnerable to degra-

dation via ERAD [49, 51, 52]. Specifically, the sugar moiety to which the glucose attaches can

be removed, irreversibly committing the protein to degradation via the ERAD pathway [16,

17, 41, 49, 50, 53–55]. We treat ERAD commitment and protein degradation as a single irre-

versible process with rate constant kd.

For completeness we also consider termination of the chaperone interaction of monogluco-

sylated proteins without glucose trimming (rate constant k-c) and rebinding of deglucosylated

proteins back to the chaperone (rate constant k-r). Because such a putative rebinding pathway

does not rely on a glucosylation signal to recognize proteins in need of folding, it is assumed to

be non-specific and to allow the general binding of some ‘background’ proteins onto the chap-

erones. Such background proteins could include ER-resident proteins, or folded proteins that

have not yet been exported. The concentration of these additional background proteins is rep-

resented by Pb (for free background proteins) and Pcb for background proteins bound to the

chaperone. We assume each chaperone can bind only one protein at a time.

Overall, the dynamics of the chaperone binding cycle are described by

dPg

dt
¼ kgP þ k� cPc � ðkcCA þ k� gÞPg þ kp ; ð1aÞ

dPc

dt
¼ ðkcPg þ k� rPÞCA � ðkr þ k� c þ kfÞPc ; ð1bÞ

dP
dt
¼ krPc þ k� gPg � ðkg þ k� rCA � kdÞP ; ð1cÞ

Fig 1. Model of glycoprotein quality control via the chaperone binding cycle. Pg represents the monoglucosylated

proteins, Pc the unfolded chaperone-bound proteins, Pcf the folded chaperone-bound proteins, P the proteins lacking a

glucose tag, Pb the background proteins, and Pcb the chaperone-bound background proteins.

https://doi.org/10.1371/journal.pcbi.1008654.g001

PLOS COMPUTATIONAL BIOLOGY Design principles for the glycoprotein quality control pathway

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008654 February 1, 2021 4 / 24

https://doi.org/10.1371/journal.pcbi.1008654.g001
https://doi.org/10.1371/journal.pcbi.1008654


dPcf

dt
¼ kfPc � ðkr þ k� cÞPcf ; ð1dÞ

dPcb

dt
¼ k� rCAPb � krPcb : ð1eÞ

Some proteins entering the chaperone binding cycle are unable to natively fold, as a result

of translation errors or mutations [56]. Heat and oxidative stress can also cause proteins to

enter states that cannot fold [56], and these stressors may have a differential impact on differ-

ent proteins. We label these terminally misfolded, unfoldable proteins as simply ‘misfolded’.

Their dynamics are described by equations similar to Eqs 1a–1c, with analogous protein quan-

tities P�g , P�c , and P�. The misfolded protein production rate is defined as k�p and the folding rate

is set to zero (k�f ¼ 0). All other rate constants are assumed to be identical for foldable and mis-

folded proteins.

Both the background proteins (Pb) and misfolded proteins (P�i ) represent proteins capable

of binding to and occupying the limited supply of total chaperone (Ctot) available in the cell.

The concentration of available chaperones is then given by CA ¼ Ctot � Pc � Pcf � P�c � Pcb. In

our model, background proteins represent those proteins that can bind weakly to the chaper-

one in the absence of a glucose moiety flagging them as newly-made proteins requiring fold-

ing. These can represent, for example, already folded proteins. They are not subject to the

glucosylation and deglucosylation processes of the quality-control cycle. By contrast, ‘mis-

folded’ proteins represent those that move through the quality control cycle with the same rate

constants as normal proteins but are ultimately incapable of folding. In other words, the

enzymes of the quality control cycle cannot distinguish these unfoldable proteins from native

proteins [22, 39, 40].

The total rate of proteins entering the cycle is defined as kpt ¼ kp þ k�p with a misfolded frac-

tion mf ¼ k�p=ðkp þ k�pÞ unable to fold. Eq 1 and the corresponding misfolded protein equa-

tions are non-dimensionalized by the timescale of glucose trimming for chaperone-bound

proteins, setting kr = 1, and by total chaperone number, setting Ctot = 1 (see Methods for

details). Table 1 summarizes model concentrations, parameters, and performance metrics.

For a given set of rates ki, the steady state protein concentrations Pi can be found as derived

in the Methods. We will use this steady-state solution to evaluate performance, on the assump-

tion that protein production and processing parameters remain constant over timescales

much longer than the individual cycle time.

Results

Quality control efficiency and energy input

We begin by considering how the glycoprotein folding system illustrated in Fig 1 is governed

by a trade-off between accuracy and speed. On the one hand, the system needs to achieve

robust, error-free quality control. On the other hand, it needs to process incoming proteins

sufficiently rapidly to keep up with production and avoid accumulation of unfolded proteins

in the cell. We quantify system accuracy using the steady-state fraction of foldable proteins

that successfully undergo folding rather than degradation,

f ¼
kfPc

kp
: ð2Þ

A higher folding fraction f indicates a more efficient folding process that produces more func-

tional proteins per input of nascent unfolded proteins.
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A second metric for processing efficiency is the total unfolded protein present in the cycle

at steady-state: Punfolded ¼ Pg þ P�g þ Pc þ P�c þ P þ P�. Low values of Punfolded correspond to

rapid processing of individual nascent proteins that prevents their accumulation in the system.

High concentrations of unfolded proteins can lead to protein aggregation, which impede cellu-

lar function and health [7]. With a typical influx to the ER of 0.1–1 million proteins per minute

in each cell [57], proteins accumulate rapidly if the folding system cannot keep up with pro-

duction. High protein concentrations also induce ERAD and the unfolded protein response to

limit the accumulation of protein aggregates, curtailing the throughput of functional proteins

[58].

Overall, we aim to understand how glycoprotein quality control can achieve both efficient

shunting of foldable proteins towards folding rather than degradation, and rapid processing

that limits the accumulation of unfolded proteins. To assess this interplay, we determine the

maximum folding fraction for each fixed value of total unfolded proteins, generating a phase-

diagram of achievable values for these two metrics (Fig 2A). For fixed values of the production

rate kpt, misfolded fraction mf, folding rate kf, and background protein level Pb, the cycle rate

constants kc, k-c, kr, k-r, kg, and k-g are allowed to vary (details in Methods) to map out the

Table 1. Model protein concentrations, parameters, and performance metrics.

Quantity Description

Steady-state protein concentrations

Pg Concentration of foldable proteins with glucose tag allowing chaperone binding. Proteins enter cycle in

this state.

Pc Concentration of foldable proteins bound to chaperone.

Pcf Concentration of folded proteins bound to chaperone.

P Concentration of foldable proteins lacking a glucose tag and vulnerable to degradation.

P�i Concentration of unfoldable proteins (i.e. P�g , P�c , and P�).

Pb Concentration of ‘background’ proteins that are not part of the chaperone-binding cycle but can bind

chaperone.

Pcb Concentration of chaperone-bound background proteins.

Ctot Total chaperone concentration.

CA Concentration of available chaperones.

Parameters

kp Rate of foldable protein production.

k�p Rate of unfoldable protein production.

kpt Total rate of protein production, kp þ k�p.

mf Fraction of produced proteins that cannot fold, k�p=ðkp þ k�pÞ:

kc Rate constant of chaperone binding of glucose-tagged proteins.

k-c Rate constant of chaperone-bound proteins unbinding from chaperone and retaining glucose tag.

kr Rate constant of chaperone-bound proteins unbinding from chaperone and losing glucose tag.

k-r Rate constant of unfolded proteins without glucose tag binding to chaperone.

kg Rate constant of unfolded protein glucosylation.

k-g Rate constant of glucose removal from unfolded protein.

kf Rate constant of foldable protein folding.

kd Rate constant of non-glucosylated protein degradation.

Performance metrics

f Fraction of foldable proteins that fold.

f �max Maximum fraction of foldable proteins that fold with Punfolded = 1.

Punfolded Total concentration of unfolded proteins.

https://doi.org/10.1371/journal.pcbi.1008654.t001
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space of accessible efficiency metrics. The curves of maximum folding fraction vs. total

unfolded protein represent a Pareto frontier [59] of folding cycle performance, where perfor-

mance above or to the left of the curves in Fig 2A is not achievable. In Fig 2A, protein produc-

tion (kpt), misfolded fraction (mf), and background protein concentration (Pb) are fixed for all

curves, and each curve has a different protein folding speed (kf). Faster folding speeds allow for

more efficient folding at each given value for the total unfolded protein. The Pareto frontier

has a characteristic shape of an increasing fmax at low Punfolded, followed by a plateau in fmax at

high Punfolded. These curves demonstrate the trade-off between the two measures for efficient

quality control, showing that maximization of folding fraction and minimization of steady-

state total unfolded protein cannot be simultaneously achieved.

The characteristic curve shape in Fig 2A for fmax vs. Punfolded suggests it is not always feasible

to operate the glycoprotein quality control pathway at or near the maximum folding fraction

as these high folding fractions can require a very high concentration of unfolded proteins.

To assess pathway performance, we choose to limit the total unfolded protein quantity to

Punfolded = 1, corresponding to a total unfolded protein concentration equal to the concentra-

tion of chaperones. We then define the folding efficiency (f �max) as the maximum folding frac-

tion at Punfolded = 1, serving as an overall utility function to evaluate the performance of the

glycoprotein quality control pathway. This metric represents the best efficiency that can be

achieved by the pathway without accumulating so many unfolded proteins as to overwhelm

the binding capacity of the chaperones.

The consensus physiological model of the glycoprotein quality control pathway forms a

cycle (Fig 1), with proteins proceeding through the various states in a directed fashion. This

directed protein flux requires free-energy dissipation [60], representing a cost to cellular

resources. To evaluate the impact of this free-energy dissipation on pathway performance, we

consider how the folding efficiency depends on the free energy input, for fixed values of pro-

tein production rate kpt, misfolded fraction mf, and protein folding speed kf. The free energy

Fig 2. Quality control engenders a trade-off between folding accuracy, speed, and energy. (A) Shaded regions in the phase diagram represent all

combinations of folding fraction f and total steady-state unfolded protein Punfolded that can be achieved by varying cycle parameters kc, k-c, kr, k-r, kg, k-g,

and kd while keeping a fixed folding rate kf, production rate kpt, misfolded fraction mf, and background protein concentration Pb. Solid lines represent

the maximal achievable folding fraction fmax. Dots represent the efficiency metric f �max. (B) Each curve adjusts kc, k-c, kr, k-r, kg, k-g, and kd to maximize

the folding fraction (Eq 2) while the total cycle energy (Eq 3) is varied and the total unfolded protein Punfolded ¼ Pg þ P�g þ Pc þ P�c þ P þ P� is

constrained to equal one. Each curve shows a distinct level of background proteins Pb, with fixed kpt = 0.1, kf = 0.1, and mf = 0.001 for all curves.

https://doi.org/10.1371/journal.pcbi.1008654.g002
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driving the quality control cycle is given by [60]

E ¼ kBT log
kckrkg

k� ck� rk� g
: ð3Þ

For each value of this driving energy, the cycle rate constants are allowed to vary so as to maxi-

mize the folding efficiency f �max.

Fig 2B shows that the folding efficiency can increase with the cycle driving energy. In the

absence of chaperone-binding background proteins (Pb = 0), the optimal folding fraction is

independent of the energy input into the system, because this energy allows discrimination

between proteins that participate in the full cycle (non-background proteins) and proteins that

do not participate in the full cycle (background proteins). When Pb = 0, there is no need for

such discrimination between background and non-background proteins, and the same opti-

mal folding fraction can be reached independent of cycle energy. However, when there are

background proteins present (Pb > 0), increasing the energy driving the quality control cycle

enables more efficient allocation of chaperone resources specifically to foldable rather than

background proteins. For example, reducing the rebinding rate of deglucosylated proteins

(k-r) would decrease the fraction of chaperones occupied by background proteins. In the

extreme limit k-r! 0, background proteins no longer contribute to the system, and the maxi-

mal folding efficiency is achieved. However, fully eliminating binding of unglucosylated pro-

teins would require an infinite energy input to provide a fully irreversible process. S1 Fig

explores the extent to which energetic driving enhances folding efficiency under different

input conditions.

Comparison of performance between models

A finite driving energy for the quality control cycle implies the presence of reverse processes

for all the cycle transitions. We proceed to consider how the presence of the non-physiological

reverse transitions for chaperone rebinding k-r and unbinding k-c modulate the pathway

efficiency.

Fig 3A shows that f �max monotonically decreases as k-r increases, for all cases where back-

ground proteins are present (Pb > 0). This result suggests that removing untagged chaperone

binding (i.e. setting k-r = 0) improves the performance of the chaperone cycle, allowing higher

folded protein throughput. Removing untagged binding allows only those proteins recognized

as foldable to occupy the chaperone. For the moderate level of background proteins assumed

here (Pb = 1), this effect becomes small when k-r < 1 (corresponding to a rebinding rate smaller

than the rate of deglucosylation and chaperone unbinding). However, its importance increases

for higher values of Pb (see Pb = 10 curve in Fig 3A). Removing the untagged rebinding process

entirely can protect the quality control system from potential fluctuations in the total levels of

untagged background protein that can result in unproductive chaperone occupation. Having

demonstrated the detrimental effects of untagged rebinding, we hereafter set k-r = 0, removing

this process from the cycle.

We next turn our attention to how quality control efficiency varies with k-c, the rate of pro-

tein detachment from the chaperone without removal of the glucose tag. For low production

and slow folding rates, the folding fraction is maximized or nearly maximized when k-c is kept

low (Fig 3B). In this regime, it is advantageous for the quality control cycle to operate slowly,

and high values of k-c ≳ 5 lead to a reduction in the folding fraction by allowing proteins to

escape the chaperones before they have a chance to fold. By contrast, at high production and

fast folding rates, the folding fraction peaks at an intermediate k-c value as rapid turnover

through the quality control cycle is advantageous. In this regime, low values of k-c would result
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in the chaperones becoming overloaded by already folded proteins (see S2 Fig), decreasing

folding efficiency.

Fig 3B suggests that different rates of chaperone unbinding (k-c) become optimal in differ-

ent regimes, depending on whether protein production is sufficiently high and folding is suffi-

ciently slow to overwhelm the available quantity of chaperones. Chaperones in the ER, such

as BiP, are thought to be present in excess quantities [61–63], to facilitate rapid chaperone

binding of nascent proteins. This suggests that the glycoprotein quality control pathway typi-

cally operates in the regime of relatively low production kpt ≲ 1, so that protein release from

chaperones can keep up with the incoming proteins and the chaperones do not become over-

whelmed. At low protein production, Fig 3B shows that raising the chaperone release rate k-c

primarily decreases the maximum folding fraction. Removing the ability of a protein to

completely detach from a chaperone without glucose trimming should thus improve the per-

formance of the chaperone binding cycle, and folding proteins should remain closely associ-

ated with the chaperone until glucose removal. This tight association may have additional

functional importance, such as facilitating recruitment of other enzymes important for folding

[40, 64] or as a by-product of the high specificity of chaperone-glucose interaction [65].

Fig 3 demonstrates that removing non-specific chaperone binding (k-r) and detachment of

proteins from the chaperone without glucose trimming (k-c) improves the performance of the

chaperone binding cycle by increasing the maximum folding fraction with a limited accumula-

tion of unfolded protein. The consensus physiological model, with these two processes absent,

is thus shown to be more efficient (in the low-production regime) than the full model illus-

trated in Fig 1.

We now explore further glycoprotein quality control pathway model variations, including

those that are not cyclic (Fig 4A). The non-cyclic models include all possible variations of a

three-state model that lack untagged binding (no k-r) and are capable of producing a finite

steady-state solution. We compare the performance of these models to the consensus physio-

logical model in terms of the efficiency metric f �max, at varying levels of protein production

(Fig 4B).

Fig 3. Untagged protein binding and reversible chaperone binding can be disadvantageous. (A) Maximal achievable folding fraction at fixed

unfolded protein, Punfolded = 1, plotted versus the untagged rebinding rate k-r, as cycle parameters kc, k-c, kr, kg, k-g, and kd are free to vary. Other curves

show similar behavior when folding and production rates are altered. (B) Folding efficiency is plotted as a function of unbinding rate k-c. Cycle

parameters kc, kr, kg, k-g, and kd are free to vary. Folding rate kf and production rate kpt are held constant as indicated. The misfolding fraction is set to

mf = 0.001.

https://doi.org/10.1371/journal.pcbi.1008654.g003
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The WB (weak binding) model allows proteins to bind and unbind from the chaperone,

until the glucose tag is removed. The WBSV (weak binding, safety valve) model introduces an

additional “safety-valve” pathway where the glucose tag can be removed without chaperone

binding. The OS (one shot) model treats chaperone binding and glucose trimming as irrevers-

ible, so that each protein only has one chance to attempt folding. These three models share a

common feature—they lack the ability to restore a glucose tag once it is removed, irreversibly

committing deglucosylated proteins (P) to degradation. Each of these models performs worse

than the physiological system in the regime of low protein production (kpt < 1), with the fold-

ing efficiency f �max dropping by approximately a factor of 2 (Fig 4B). In the regime of high pro-

duction, the WBSV model is capable of more effectively funneling proteins into a degradation-

committed state, allowing it to significantly outperform the physiological model (Fig 4B).

However, as discussed previously, cells are believed to typically operate in a regime of limited

protein production levels and excess chaperone capacity, so that we focus largely on model

performance at low kpt.

In the physiological model, a deglucosylated protein (P) is more likely to have first passed

through chaperone binding than a monoglucosylated protein (Pg). This feature allows glucose

moieties to serve as a form of molecular memory—the presence of a glucose tag means the pro-

tein is more likely to be newly made; the absence of the tag means the protein is more likely to

have already attempted folding. A contrasting non-cyclic model is the NTM (no tag memory)

model, which allows chaperone binding and glucose removal to function as independent pro-

cesses (Fig 4A). When the fraction of misfolded proteins (mf) is low, the NTM model performs

equivalently to the physiological model. However, when a substantial number of proteins

entering the quality control cycle are incapable of being folded (high mf), the NTM model is at

a disadvantage to the physiological system (Fig 4B). In the presence of such defective unfold-

able proteins, the cyclic addition and removal of glucose tags allows the physiological model to

have a memory of which proteins already attempted (and failed) folding and thus should be

Fig 4. Physiological model for glycoprotein quality control outperforms other models. (A) Schematic of cyclic and non-cyclic models. The

physiological model corresponds to the consensus description of the glycoprotein quality control pathway. (B) Ratios of folding efficiency f �max
comparing performance of all models to the physiological model. Curve color indicates the model being compared, with solid lines for mf = 0.001 and

dashed lines for mf = 0.4. For all curves, kf = 1.

https://doi.org/10.1371/journal.pcbi.1008654.g004
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made vulnerable to degradation. Overall, the physiological model outperforms all non-cyclic

models in the low-production regime.

The cyclic model with no safety valve (CNSV) exhibits the same cycle as the physiological

model: of chaperone binding, deglucosylation upon release, and subsequent reglucosylation

(Fig 4A). However, it lacks the direct transition from the tagged state Pg to the vulnerable state

P. In the absence of this safety valve pathway, the CNSV model matches the performance of

the physiological model at low production rates (Fig 4B). However, for kpt > 1, proteins cannot

be released from the chaperones fast enough to keep up with new protein production, and the

CNSV model cannot reach a steady state. In this regime, all chaperones would become clogged

with protein and the protein would accumulate indefinitely. A similar behavior is observed for

the non-cyclic WB model, which also lacks the safety-valve (Fig 4B).

Performance and robustness of the physiological model

We now explore the performance of the physiological model, as well as the optimal kinetic

parameter values under different conditions. Performance is quantified in terms of the folding

efficiency f �max (the maximum folding fraction at a total protein content Punfolded = 1). We treat

the total production rate kpt, protein folding rate kf, and misfolding fraction mf as external

input conditions for the system. As always, these rates are expressed relative to the rate of chap-

erone removal (kr = 1 for non-dimensionalization), which is also treated as fixed. The quality

control pathway is then allowed to adjust all other kinetic rate constants to optimize the fold-

ing efficiency—the resulting optimal folding fraction and the optimized parameters are plotted

in Fig 5.

When the overall production rate is low, the optimal folding fraction approaches one (blue

curve in Fig 5A), indicating that nearly all the foldable proteins that enter the quality control

cycle are successfully folded. At higher production (kp ≳ 1), the removal of proteins from

chaperones cannot keep up with the flux of incoming proteins. In this regime, the available

chaperones in the system are overwhelmed and the folding efficiency drops.

The optimal parameters (red curves in Fig 5A) describe how the optimized quality control

system adjusts to changing production rates. For all conditions explored, binding rate constant

(kc) is always maximized, allowing nascent or reglucosylated proteins to bind to chaperones as

quickly as possible. For low kpt, the reglucosylation rate constant kg is high and the rate con-

stant k-g for glucose removal from free (not chaperone-associated) proteins is low. High kg and

low k-g indicate that the cycle is quickly removing proteins from the vulnerable state P to pre-

vent degradation. This is expected for low protein production (kpt) and low misfolded fraction

Fig 5. Optimal performance and corresponding parameters. Maximum folding fraction fmax at Punfolded = 1, (blue curves, left blue vertical axis), and

corresponding optimal rate constants, ki (red curves with markers, right red vertical axis) as cycle conditions are varied for the physiological model. (A)

varies protein production rate kpt for fixed mf = 10−3 and kf = 1, (B) varies protein folding rate constant kf for fixed mf = 10−3 and kpt = 0.9, and (C)

varies misfolded fraction mf for fixed kpt = 0.7 and kf = 1.

https://doi.org/10.1371/journal.pcbi.1008654.g005
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(mf) as proteins will then usually be provided multiple rounds of chaperone binding. In this

regime, the optimal degradation rate (kd) rises gradually with increasing production in order

to maintain a constant amount of unfolded protein Punfolded = 1. Eventually (when kpt! 1)

there will not be sufficient chaperones to fold all proteins, and protein degradation must

increase sharply to maintain a fixed level of total unfolded protein.

As the production rate passes kpt� 1, protein reglucusylation (kg) steeply decreases and glu-

cose removal (k-g) increases. This switch indicates the activation of the ‘safety valve’ pathway

which moves excess proteins directly into the degradation-vulnerable state P to avoid accumu-

lation of unfolded proteins. As protein production continues to increase, glucose removal via

k-g further increases to enhance this safety valve. Overall, there are two regimes: low protein

production, where chaperones are available and proteins are quickly tagged for chaperone

rebinding to prioritize folding; and high protein production, where chaperones are over-

whelmed and rapid deglucosylation and degradation is prioritized.

Fig 5B shows how performance and optimal parameters change as protein folding speed kf

is varied. As expected, the folding fraction increases with folding speed. The increased folding

speed does not cause significant changes in the optimal parameters, with a modest increase in

reglucosylation (kg) and decreases in glucose removal (k-g) and degradation (kd) as faster fold-

ing frees up chaperones. Fig 5C shows that increasing the misfolded fraction mf modestly

decreases the folding efficiency while leaving optimal parameters largely unchanged.

Overall, Fig 5 demonstrates that maintaining maximum folding efficiency requires large

variation in parameters if the protein production level changes, but limited variation in param-

eters is needed to respond to changes in protein folding speed and misfolded protein fraction.

We next proceed to explore how well the cycle can perform under changing production levels

if a single fixed parameter set is used across all values of kpt. The goal is to assess the robustness

of this quality control system to fluctuation in protein production rates, for the case where

other parameters cannot be adjusted sufficiently rapidly to keep up with such changes.

We consider the robustness of a fixed quality control system as follows. The rate constants

are optimized to give maximal folding efficiency for a given value of input conditions kpt, kf,

mf. For those parameters and input conditions, the system gives the highest folding fraction

f �max that maintains a fixed protein content Punfolded = 1. When the input production rate kpt is

varied and all remaining parameters are held fixed, the folding fraction will decrease below

this optimum value (Fig 6A) and the total protein content Punfolded will also change (Fig 6B).

The values plotted in Fig 6A and 6B are given relative to the folding fraction and protein con-

tent at the point where the system was optimized.

If the parameters are optimized at low protein production (kpt = 0.1), the system continues

to achieve close to the optimal folding fraction when the protein production is increased (Fig

6A, red curves). However, the total accumulated protein increases by orders of magnitude

even for a modest rise in the production rate (Fig 6B, red curves). If the parameters are opti-

mized at high protein production (kpt = 10), and the production rate is lowered significantly,

then the folding efficiency is reduced to roughly half of the optimal amount and the accumu-

lated protein is also decreased (Fig 6A and 6B, blue curves). A system optimized at intermedi-

ate production (kpt = 1) exhibits analogous behaviors (Fig 6A and 6B, green curves). If the

production rate is lowered, the folded fraction drops below optimal values. If raised, then a

massive increase in accumulated protein is observed.

These results highlight a general principle: the quality control cycle can be optimized to

operate in one of two regimes: a regime with excess chaperone capacity, and one where the

chaperones are overwhelmed. Optimizing for the former requires shutting off the safety-valve,

and prioritizing reglucosylation over degradation. Optimizing for the latter requires enhancing

degradation and deglucosylation. The transition between the two regimes occurs when the
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rate of protein production becomes comparable to the rate at which chaperone-bound pro-

teins detach from chaperones (i.e.: at kpt = 1). A system optimized for low production will

result in large-scale protein accumulation if the production rate is increased by even a modest

amount. A system optimized for high production yields suboptimal folding throughput if

shifted to the low-production regime.

Without any flexibility to adjust cycle parameters, the glycoprotein quality control system

will perform poorly in one of the two regimes. A natural question is to what extent adjusting a

single kinetic parameter will allow the system to compensate for changing production rates

and to perform well across a broad range of conditions. Fig 5A shows that the optimal degra-

dation rate (kd) continuously changes across a range of low protein production levels (kpt),

suggesting kd as a good candidate for an adjustable parameter. Thus we choose to treat the

degradation rate kd as capable of adapting to changing production levels, while all other rate

constants in the cycle are held fixed. At each value of the production rate, kd is adjusted to

maintain a total protein content Punfolded = 1 whenever possible, with the resulting folding frac-

tion shown in Fig 6C. For a system optimized at low protein production, an adjustable degra-

dation rate allows the optimum folding fraction to be maintained across all production rates.

Fig 6. Robustness of quality control cycle to changing production rates. (A) The folding fraction achieved with fixed rate constants is plotted as a

fraction of the maximum achievable folding fraction fmax for Punfolded = 1 as the protein production rate kpt is varied. Fixed rate constants kc, kg, k-g, and

kd are those that achieve fmax with mf = 0.001 at various protein production levels: kpt = 0.1 (red curves and star), kpt = 1 (green), and kpt = 10 (blue). (B)

The Punfolded corresponding to the folding fractions in (A). (C) Analogous plot to (A), with rate constants fixed at the optimal values for specific kpt

values, except that the degradation rate constant kd adjusts to maintain Punfolded = 1. If kd adjustment cannot achieve Punfolded = 1, then kd adjustment

minimizes the difference from Punfolded = 1. (D) The Punfolded corresponding to the folding fractions in (C).

https://doi.org/10.1371/journal.pcbi.1008654.g006
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Even when the fraction of misfolded proteins is increased (dashed curves in Fig 6C), the opti-

mum folding fraction can be maintained up to intermediate production levels.

Strikingly, a system optimized at low protein production can also maintain a fixed total pro-

tein Punfolded = 1 up to intermediate production levels (kp ≲ 0.7) by adjusting the degradation

rate kd (Fig 6D). The ability of this system to maintain fixed total protein content over a broad

range of low to intermediate production values is in sharp contrast to the rapidly increasing

protein levels that arise when all parameters are held fixed (Fig 6B). At higher production

rates, there is no value of the degradation rate that can maintain the fixed total protein content

and we adjust kd as needed to minimize Punfolded. Allowing kd to adjust in a system optimized

for intermediate or high protein production has little impact on both folding fraction and pro-

tein accumulation compared to the fully fixed system (Fig 6C and 6D).

This analysis establishes that the quality control pathway can perform well at typical low

production rates, yet be capable of adapting to moderate surges in protein production. Such

robust behavior requires only for the protein degradation rate to be rapidly adjustable to

changing conditions. Other parameters in the quality control cycle can be held constant while

allowing near-optimal system performance over an order of magnitude range in protein pro-

duction. Interestingly, there is evidence that cellular quality control systems do in fact control

protein degradation throughput in response to perturbations in protein homeostasis. Specifi-

cally, cells maintain a reservoir of ERAD enzymes in ER-associated vesicles that can fuse with

the ER lumen in response to an accumulation of unfolded proteins, rapidly upregulating pro-

tein degradation [66–68].

Discussion

We have investigated the impact of pathway architecture and kinetic parameters on the perfor-

mance of the glycoprotein quality control cycle in the endoplasmic reticulum. Two metrics are

used to evaluate steady-state performance. The fraction of foldable proteins that are success-

fully folded measures the accuracy of the system. The total quantity of unfolded proteins mea-

sures processing speed, with lower steady-state protein levels corresponding to more rapid

processing.

Broadly, we find that a cyclic quality control process, with protein substrates driven in a

preferred direction through three quality control states, leads to improved performance.

Energy is required for cyclic driving, and increased driving energy per cycle allows higher pro-

tein folding fractions (Fig 2B). A higher folding fraction is achieved by eliminating reverse

transitions that are absent from the consensus physiological model of the glycoprotein quality

control pathway (Fig 3). This matches the directed, cyclic behavior commonly described as

occurring for physiological glycoprotein quality control.

‘Kinetic proofreading’ processes increase biochemical specificity by harnessing cyclic free

energy consumption coupled with distinct rates for different substrate types [15, 23, 24]. DNA

replication is famously driven out of equilibrium to perform kinetic proofreading that

increases replication accuracy [3, 69]. Similar cyclic nonequilibrium processes increase the

accuracy of T-cell signaling [4] and sensing of external concentrations [70]. Our work high-

lights analogous behavior of the glycoprotein quality control cycle as a kinetic proofreading

process, consistent with previous descriptions [15, 23, 24].

By exhaustively considering all remaining cyclic and non-cyclic variations of the glycopro-

tein quality control pathway, we show that the consensus physiological model outperforms all

other viable models (Fig 4). Models lacking a ‘safety valve’, or a path for protein degradation

without chaperone binding, will dangerously accumulate unfolded proteins at high protein

production levels. This safety valve requirement aligns with the only two-way transition in the
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consensus physiological model, which allows glucose tags to be removed from proteins that

are not bound the chaperone, facilitating their degradation.

We find that the optimal tuning of the consensus physiological model varies substantially

with protein production level (Fig 5A). If the cell must choose a particular set of rate constants,

it will either sacrifice folded protein throughput at low protein production levels, or induce

massive unfolded protein accumulation at higher production levels (Fig 6A and 6B). A particu-

larly robust system design requires optimizing parameters for low protein production and

allowing a single rate constant (the degradation rate) to adapt to changing production levels.

Such a system can successfully maintain both maximum folding efficiency and low unfolded

protein accumulation across a range of low-to-intermediate production rates (Fig 6C and 6D).

The adjustable degradation rate, which alone can maintain both high folding throughput

and low unfolded protein accumulation, corresponds to the dynamic behavior observed for

some ERAD enzymes that remove proteins from the ER for degradation. Certain mannosi-

dases, important for ERAD targeting, are largely sequestered to quality control vesicles in

the absence of ER stress [66–68]. When the ER becomes stressed (i.e. unfolded proteins accu-

mulate), these mannosidases converge on the ER, rapidly increasing degradation targeting

[66–68].

Our results suggest that an adjustable degradation rate, implemented by mannosidase con-

vergence to the ER, can maintain optimal protein folding conditions across a range of rela-

tively low protein folding loads. In vivo glycoprotein folding in the ER is thought to largely

operate in a low protein production regime, matching the robust system design. Namely, there

is excess protein folding capacity in the ER under basal conditions [61], with abundant chaper-

ones that exceed the requirements of the protein folding load [62, 63]. Under conditions of

high protein folding load, chaperones are overwhelmed [71, 72]. Gene expression changes are

then triggered through a spectrum of pathways collectively termed the unfolded protein

response (UPR) [73], to return the system to an effectively low protein folding load.

The timescale of mannosidase convergence to the ER following proteasome inhibition is

approximately a couple hours [67], allowing ERAD-mediated degradation adjustments to cur-

tail the accumulation of unfolded proteins relatively quickly. Gene expression stimulated by

the UPR is comparatively slow, and starts to take effect in the ER after approximately 5 to 10

hours [61]. The difference in these timescales suggests that for mild unfolded protein stress the

earlier ERAD-mediated adjustments may be sufficient without triggering the slower UPR.

UPR stimulation, by contrast, may require substantial accumulation of unfolded proteins to

overwhelm the basal protein folding capacity [61].

For more severe unfolded protein stress, our results show that simply adjusting degradation

is not sufficient. This could occur for a large increase in protein folding load (such as occurs in

insulin-producing beta cells [74]), cell differentiation that results in a permanent increase in

protein folding load [75], or for cellular stress that inhibits protein folding [56]. The UPR then

triggers a broad range of perturbations to restore homeostasis. In particular, it reduces the

nascent protein influx into the ER, increases ER chaperone concentrations, upregulates

ERAD, modifies glycosylation enzyme levels, and increases the ER size [73, 76, 77]. These

actions would affect much of the ER quality control system. Quantitatively addressing how the

many facets of the UPR return glycoprotein quality control to homeostasis, both for short-

term non-steady-state and long-term adaptive steady-state effects (such as those for differenti-

ating cells [75]), is a promising future endeavor.

In contrast to the large variations in optimal rate constants with protein production level,

changes in protein folding speed require relatively little variation to the optimal rate constants

(Fig 5B). The glycoprotein quality control pathway must simultaneously process a variety of

proteins, which can have folding times ranging from a few minutes to several hours [41]. The
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ability of a single pathway to near-optimally process this variety of folding speeds appears to be

a strength of its design. The efficiency of protein throughput can approach 100% and range

down to 25% or lower for slow-folding proteins or proteins with mutations [41]. Fig 5B sug-

gests that these low efficiencies (ranging down to 25% or lower) are not the result of a poorly-

tuned quality control process, but instead that the low efficiencies are an unavoidable conse-

quence of slow folding.

The optimal rate constants also change little with the fraction of produced proteins which

are inherently misfolded or unfoldable (Fig 5C). This suggests the design of the quality control

pathway is robust to the onset of systematic misfolding, which may arise from translation

errors, environmental stress, or mutations [56], so long as the total protein production levels

remain relatively unchanged.

Effective quality control of glycoprotein folding in the endoplasmic reticulum ensures an

adequate supply of functional natively-folded proteins and limits the accumulation of mis-

folded proteins. The failure to provide sufficient natively-folded proteins [41] and the forma-

tion of misfolded protein aggregates [9] can both contribute to the onset of disease. Our

modeling quantitatively demonstrates how the performance of this pathway under a broad

range of conditions is modulated by key kinetic parameters that serve as potential targets for

pharmacological or genetic perturbations. This quantitative framework serves as a basic foun-

dation for understanding the glycoprotein quality control pathway, which can be further

expanded in future work to account for more complex aspects, such as sequential glycan sugar

moiety removal [50, 67] and the spatial organization of quality control activities [66].

Methods

Non-dimensionalization. We non-dimensionalize all times by the timescale of protein

removal from the chaperone via glucose trimming, k� 1
r , and all concentrations by total chaper-

one concentration, Ctot. For conciseness of notation, all kinetic parameters in the text refer to

non-dimensionalized values. The dimensionless dynamic equations for foldable proteins are

then:

dPg

dt
¼ kgP þ k� cPc � ðkcCA þ k� gÞPg þ kp ð4aÞ

dPc

dt
¼ ðkcPg þ k� rPÞCA � ð1þ k� c þ kfÞPc ð4bÞ

dP
dt
¼ Pc þ k� gPg � ðkg þ k� rCA � kdÞP ð4cÞ

dPcf

dt
¼ kfPc � ð1þ k� cÞPcf ; ð4dÞ

dPcb

dt
¼ k� rCAPb � krPcb : ð4eÞ
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The dynamics of misfolded proteins are described by

dP�g
dt
¼ kgP

� þ k� cP
�

c � ðkcCA þ k� gÞP
�

g þ k�p ð5aÞ

dP�c
dt
¼ ðkcP

�

g þ k� rP
�ÞCA � ð1þ k� cÞP

�

c ð5bÞ

dP�

dt
¼ P�c þ k� gP

�

g � ðkg þ k� rCA � kdÞP
� : ð5cÞ

Note that most rate constants are the same for both foldable and misfolded proteins, except

kp changes to k�p to allow different production rates of foldable and misfolded proteins,

k�f ¼ 0 (misfolded proteins cannot fold), and P�b ¼ 0 (as only a single comprehensive popula-

tion of background proteins is considered). The available amount of chaperone is

CA ¼ 1 � Pc � Pcf � P�c � Pcb, where Ctot = 1 is the dimensionless total chaperone

concentration.

Steady-state solution of chaperone cycle dynamics. Eqs 4 and 5 describe the dynamics

of the chaperone folding cycle. In steady state each of the time derivatives must equal zero. By

summing together Eqs 4a–4d, we get the steady-state condition for the total flux of foldable

proteins through the cycle:

kp ¼ kfPc þ kdP : ð6Þ

Rearranged, this gives P in terms of parameters and Pc,

P ¼
kp
kd
�

kf
kd

Pc : ð7Þ

Applying dPcf/dt = 0 gives

Pcf ¼
kf

kr þ k� c
Pc ; ð8Þ

and dPcb/dt = 0 gives

Pcb ¼ k� rPbCA ; ð9Þ

where the available chaperone is

CA � 1 � Pc � Pcf � P�c � Pcb ð10aÞ

¼ 1 � 1þ
kf

kr þ k� c

� �

Pc � P�c � k� rPbCA : ð10bÞ

Substituting Eqs 7, 8, and 9 into Eqs 4a and 4b gives

dPc

dt
¼ CA kcPg þ

k� rkp
kd
�
k� rkf
kd

Pc

� �

� ðkf þ 1þ k� cÞPc ð11aÞ

dPg

dt
¼ kp þ k� cPc þ

kgkp
kd
�
kgkf
kd

Pc � k� gPg � CAkcPg : ð11bÞ
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Similarly for misfolded proteins, which have k�f ¼ 0, the steady state condition for protein

fluxes entering and exiting the cycle is

P� ¼
k�p
kd

: ð12Þ

Substituting Eq 12 into Eqs 5a and 5b gives

dP�c
dt
¼ CA kcP

�

g þ
k� rk�p
kd

� �

� ð1þ k� cÞP
�

c ð13aÞ

dP�g
dt
¼ k�p þ k� cP

�

c þ
kgk�p
kd
� k� gP

�

g � CAkcP
�

g : ð13bÞ

Eq 11 can be rewritten as M~P ¼~b:

M~P ¼
CAkc CAm1 þ n1

� CAkc � k� g n2

2

4

3

5
Pg

Pc

" #

¼
CAb1

b2

" #

¼~b ; ð14Þ

with m1 = −k-r kf/kd, n1 = −(kf + 1 + k-c), n2 = k-c − kg kf/kd, b1 = −k-r kp/kd, and b2 = −(kp + kg

kp/kd). The determinant

jMj ¼ kcm1C2
A þ ðk� gm1 þ kcn1 þ kcn2ÞCA þ k� gn1 ¼ r2C2

A þ r1CA þ r0. Rearranging gives

Pg

Pc

" #

¼
1

r2C2
A þ r1CA þ r0

p1CA þ p0

q2C2
A þ q1CA

" #

; ð15Þ

with p1 = b1 n2 −m1 b2, p0 = −b2 n1, q2 = kc b1, q1 = k-g b1 + kc b2.

Similarly, Eq 13 can be rewritten as M�~P� ¼~b�:

M�~P� ¼
CAkc n�

1

� CAkc � k� g k� c

2

4

3

5
P�g

P�c

" #

¼
CAb�1

b�
2

" #

¼~b ; ð16Þ

with n�
1
¼ � ð1þ k� cÞ, b�1 ¼ � k� rk

�
p=kd, and b�

2
¼ � k�p � kgk�p=kd. The determinant

jM�j ¼ CAðkck� c þ n�
1
kcÞ þ n�

1
k� g ¼ CAr�1 þ r�

0
. Rearranging gives

P�g

P�c

" #

¼
1

CAr�1 þ r�
0

p�
1
CA þ p�

0

q�
2
C2

A þ q�
1
CA

" #

; ð17Þ

with p�
1
¼ k� cb�1, p�

0
¼ � b�

2
n�

1
, q�

2
¼ kcb�1, and q�

1
¼ k� gb�1 þ kcb�2.

We now insert Pc from Eq 15 and P�c from Eq 17 into Eq 10b,

CA ¼ 1 � 1þ
kf

1þ k� c

� �
q2C2

A þ q1CA

r2C2
A þ r1CA þ r0

�
q�

2
C2

A þ q�
1
CA

r�
1
CA þ r�

0

�
k� r
kr

PbCA :

ð18Þ
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Rearranging,

CAð1þ k� rPbÞ½r2r�1C
3
A þ ðr2r�0 þ r1r�1ÞC

2
A

þ ðr1r�0 þ r0r�1ÞCA þ r0r�0�

� ½r2r�1C
3
A þ ðr2r�0 þ r1r�1ÞC

2
A þ ðr1r�0 þ r0r�1ÞCA þ r0r�0�

þ ½1þ kf=ðk� c þ 1Þ�ðq2C2
A þ q1CAÞðCAr�1 þ r�

0
Þ

þ ðq�
2
C2

A þ q�
1
CAÞðr2C2

A þ r1CA þ r0Þ ¼ 0 :

ð19Þ

This forms a quartic equation for CA, which can be solved with standard root-finding algo-

rithms. Once CA is obtained, Eqs 15 and 17 give steady state Pc, Pg, P�c , and P�g , from which

Eq 7 gives steady state P. Eq 12 gives steady state P� once k�p and kd are selected, without need-

ing other information.

Optimization of cycle efficiency. For the results in Fig 2A, the maximum folding fraction

independent of total unfolded protein was first found by allowing ki = kc, k-c, kg, k-g, k-r, and kd

to vary to maximize the folding fraction using the Matlab routine fmincon, with ki 2 [10−3,

103]. The minimum total unfolded protein is found using the Matlab routine fmincon for each

fixed folding fraction (at a value less than or equal to the maximum folding fraction), con-

strained with the nonlinear constraints option, and with ki 2 [10−3, 103].

For the results in Fig 2B and S1 Fig, ki = kc, k-c, k-r, kg, k-g, and kd are allowed to vary to max-

imize the folding fraction (Eq 2), while fixing the energy (Eq 3) at a specific value, and fixing

the total unfolded protein Punfolded = 1. The folding fraction maximization was performed

using the Matlab routine fmincon with energy and total unfolded protein fixed using the non-

linear constraints option. The ki were free within the range ki 2 [10−3, 103].

The results in Fig 3A are found similarly to those of Fig 2B, with the fixed folding fraction

varied using the bisection method until a Punfolded 2 (0.99, 1.01) is found. Results in Figs 3B

and 5 and S2 Fig are found with the same method as Fig 3A with the appropriate ki set to zero

and the appropriate ki allowed to vary within ki 2 [10−3, 103]. Almost all results in Fig 4 are

also found with the method of Figs 3B and 5. The exception in Fig 4 is the no tag memory

(NTM) model, which lacks the transition represented with rate constant kr, and instead sets

k-c = 1.

The f �max and optimizing k�i at particular kpt in Fig 6 are found with the same method as Figs

3, 4 and 5. The optimal parameters that achieve f �max are then used as the fixed parameters in Eq

19 to determine the folding fraction and total unfolded protein in Fig 6A and 6B as the protein

production is varied. The folding fraction and total unfolded protein in Fig 6C and 6D with

only kd free is found by using the bisection method to vary kd to attempt to find a kd value with

Punfolded = 1. If Punfolded = 1 cannot be achieved with kd 2 [10−3, 103] then kd = 103 is chosen to

minimize Punfolded.

Supporting information

S1 Fig. Nonequilibrium driving improves performance. Each curve adjusts kc, k-c, kr, k-r, kg,

k-g, and kd to maximize the folding fraction (Eq 2) while the total cycle energy (Eq 3) is varied

and the total unfolded protein is constrained to Punfolded ¼ Pg þ P�g þ Pc þ P�c þ P þ P� ¼ 1.

Other parameters are fixed for each curve as indicated, and background protein levels are set

to Pb = 1. Colored curves show effects of increasing protein folding speed (red dashed),

increasing protein production (blue dotted), and increasing misfolded fraction (green dashed-

dotted) relative to the black curve, which is identical to the corresponding curve in Fig 2B.

Increased kf leads to a higher folding efficiency, because faster folding can better compete with
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degradation, allowing folded proteins to rapidly leave the cycle and free up chaperones. Both

high protein production (kpt) and high misfolded fraction (mf) lead to decreased folding effi-

ciency because fewer chaperones are unoccupied and available for foldable protein binding.

(TIF)

S2 Fig. Protein population variation with reversible chaperone binding. Steady-state con-

centrations of chaperone-bound foldable proteins (Pc, orange), and already-folded proteins

(Pcf, green) vs. unbinding rate k-c. Two regimes are shown, corresponding to two curves

shown in Fig 3B. Solid lines correspond to low production, slow folding. Dashed lines show

high production, rapid folding. mf = 0.001 for all curves. Increased k-c allows already-folded

proteins to be rapidly removed from chaperones, freeing chaperones to bind other nascent

proteins. For fast folding, already-folded proteins (Pcf, green dashed line) can occupy a signifi-

cant fraction of the available chaperones, leading to a decrease in efficiency for low unbinding

rates k-c—this occupation of significant chaperone by already unfolded proteins at low k-c is

not seen for slow-folding proteins (green solid line). If the unbinding rate becomes much

higher than the folding rate, proteins will frequently detach from the chaperone before they

can fold, manifesting as low values of Pc (orange lines), with rapid unbinding reducing effi-

ciency at all folding rates.

(TIF)
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