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Abstract 
d-β-hydroxybutyrate (d-3HB), a monomer of microbial polyhydroxybutyrate (PHB), is also a natural ketone body produced 
during carbohydrate deprivation to provide energy to the body cells, heart, and brain. In recent years, increasing evidence 
demonstrates that d-3HB can induce pleiotropic effects on the human body which are highly beneficial for improving physi-
cal and metabolic health. Conventional ketogenic diet (KD) or exogenous ketone salts (KS) and esters (KE) have been used 
to increase serum d-3HB level. However, strict adaptation to the KD was often associated with poor patient compliance, 
while the ingestion of KS caused gastrointestinal distresses due to excessive consumption of minerals. As for ingestion of 
KE, subsequent degradation is required before releasing d-3HB for absorption, making these methods somewhat inferior. 
This review provides novel insights into a biologically synthesized d-3HB (d-3-hydroxybutyric acid) which can induce a 
faster increase in plasma d-3HB compared to the use of KD, KS, or KE. It also emphasizes on the most recent applications 
of d-3HB in different fields, including its use in improving exercise performance and in treating metabolic or age-related 
diseases. Ketones may become a fourth micro-nutrient that is necessary to the human body along with carbohydrates, pro-
teins, and fats. Indeed, d-3HB being a small molecule with multiple signaling pathways within the body exhibits paramount 
importance in mitigating metabolic and age-related diseases. Nevertheless, specific dose–response relationships and safety 
margins of using d-3HB remain to be elucidated with more research.
Key points
  • d-3HB induces pleiotropic effects on physical and metabolic health.

• Exogenous ketone supplements are more effective than ketogenic diet.
• d-3HB as a ketone supplement has long-term healthy impact.

Keywords  PHB · d-β-hydroxybutyrate · d-3HB · Physical health · Metabolic health · Age-related disease · Ketone body · 
Micronutrient

Introduction

Energy metabolism in mammalian organisms is typically 
dependent on carbohydrate digestion which generates adeno-
sine triphosphate (ATP) via glucose metabolism. However, 
the presence of high glucose had long been implicated in 
causing detrimental effects that negatively affect human 
metabolic health such as obesity, Type II Diabetes (T2D), 
chronic cardiovascular disease (CVDs), and the metabolic 
syndrome (Horwich and Fonarow 2011). At the same time, 
glucose hypometabolism also triggers neurodegeneration 
(Lee and Yau 2020). Intermittent fasting (IF) (Wilkinson 
et al. 2020) and the ketogenic diet (KD) (Kumar et al. 2021) 
have been explored as potential non-pharmaceutical inter-
ventions to overcome these complications. Mechanistically, 
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both IF and KD cause a metabolic switch from glycolysis 
to ketosis by producing natural ketone bodies in the liver, 
namely, d-β-hydroxybutyrate (d-3HB), acetoacetate, and 
acetone, of which d-3HB accounts for more than 70% of 
total ketones produced (Balasse and Féry 1989).

Occurrence and functions of d‑3HB

d-3HB is the most prominent ketone body that is natu-
rally produced by the liver during times of carbohydrate 
deprivation (Cahill 2006). As demonstrated by its chemi-
cal structure (Fig. 1), d-3HB is a small molecule with a 
molecular weight of 104.1 g/mol (Fig. 1A) which can 
easily pass through the bloo d-brain barrier and thin cap-
illary cell walls to supply energy to the brain and muscle 

Fig. 1   Chemical structures of 
d-3HB acid (A) and different 
forms of ketone supplements 
(B–E) including ketone salts 
and esters. (R)-3-hydroxybutyly 
(R)-3-hydroxybutyrate is syn-
thesized via a transesterification 
reaction between 1,3-butanediol 
and ethyl-3-hydroxybutyrate. 
Bis-hexanoyl (R)-1,3-butanediol 
is a newly-synthesized ketone 
ester which can be hydro-
lyzed into hexanoic acid and 
1,3-butanediol. E shows a 
ketone diester derived from 
acetoacetate. All structures are 
redrawn using ChemDraw Pro-
fessional as original artworks
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cells, respectively. During starvation, the body is heav-
ily dependent on ketone bodies as energy fuel whereby 
two-fifth of fatty acid metabolism in the whole body 
occurs via hepatic ketogenesis, producing 140–280 g of 
ketones per day. Individuals undergoing extreme fasting 
for 4–5 days or longer can exhibit d-3HB levels of up to 
4–7 mM (Veech et al. 2001), which is well within the nor-
mal physiological range of serum d-3HB in humans (Rich 
1990). Over the recent years, there has been a vast num-
ber of studies detailing how d-3HB benefits the human 
body such as enhancing exercise performance (Margolis 
and O’Fallon 2019), optimizing body composition (Kang 
et al. 2020), improving metabolic health (Fischer et al. 
2019b; Bleeker et al. 2020), and for potential anti-aging 
treatments (Park and Kim 2020; Habieb et al. 2021).

Exogenous d‑3HB supplementations are more 
effective than the KD

There has been a rise in demand for the use of exogenous 
ketone supplements to induce ketosis for improving phys-
ical and metabolic health (Poff et al. 2020). Exogenous d-
3HB supplements can be present in the form of ketogenic 
salt (KS), ketogenic ester (KE), or free acid. The chemical 
structures of the currently available forms of ketone sup-
plements are available in several forms (Fig. 1B–E). To 
date, synthetic KS is the most prominent form of ketone 
supplement which can increase serum d-3HB to approxi-
mately 1.2 mM in adults with a small reduction in respira-
tory exchange ratio (RER) and consequently, increased 
fatty acid oxidation (O’Malley et al. 2017). However, pos-
itive results in terms of enhancing high-intensity exercise 
performance using KS were only reported in one study 
when the composition was composed of KS with caffeine, 
l-taurine, and l-leucine (Kackley et al. 2020).

On the other hand, KE supplements are a superior form 
of ketone supplement compared to KS due to faster onset 
and higher bioavailability (Stubbs et al. 2017). The first 
pure commercially-available KE (i.e., (R)-3-hydroxybu-
tyl-(R)-3-hydroxybutyrate monoester, KME) was devel-
oped via an enantioselective transesterification reaction 
catalyzed by the immobilized Candida antarctica lipase B 
(USA FDA 2015). The KME exhibits a high enantiomeric 
purity of the d-isomer, which is the natural form present 
in the body, and produces a rapid effect at elevating serum 
d-3HB leading to enhanced exercise performance (Cox 
et al. 2016). More recently, a group at the Buck Institute 
in the United States synthesized a novel ketone diester 
which also increases serum d-3HB while stimulating 
hepatic ketogenesis (Stubbs et al. 2021).

Disadvantages of existing KS and KE

KS supplements are usually composed of mixed d- and 
l-isomers, whereby l-3HB is not naturally produced by 
the body, and its presence in non-racemic d/l-3HB tends 
to delay the onset of ketosis (Millet 2019). Another draw-
back of KS is the increased likelihood of excessive salt con-
sumption which can cause fatal effects such as salt-induced 
hypertension (Strazzullo et al. 2009). Additionally, in one 
study where a sodium/calcium d/l-3HB salt was used for 
treating multi acyl-CoA dehydrogenase deficiency (MADD), 
the patient reported severe gastrointestinal (GI) side effects 
which was likely to be due to excessive mineral consumption 
(Fischer et al. 2018). With respect to the KME, the major 
downside is that the ester needs to be hydrolyzed in the liver 
before releasing d-3HB, hence, may cause a slight delay in 
onset compared to the direct absorption of free d-3HB acid 
(Stubbs et al. 2017). Nevertheless, pure d-3HB acid is cur-
rently only available from Sigma-Aldrich as standard sam-
ples at a great expense.

It is proposed here a novel pure d-3HB supplement in 
the free acid form to be manufactured via biosynthesis (Lyu 
et al. 2021). Next, we have summarized the most recent 
applications of d-3HB, starting with its utilization in exer-
cise (Margolis and O’Fallon 2019), obesity, and related 
metabolic complications (Kumar et al. 2021), as well as in 
major age-related pathologies (Han et al. 2020) that affects 
human health (Tables 1 and 2). Due to the novelty of having 
such free acid d-3HB in large amounts, subsequent inves-
tigations to establish the pharmacokinetic profiles, safety, 
and tolerability data in humans, as well as dose–response 
studies correlated to different medical conditions (Fig. 4), 
are potential areas that can be studied in future. Further 
mechanistic research using the free acid may aid in the 
development of novel therapies for treating metabolic and 
age-related diseases.

A free d‑3HB acid derived from microbial 
polyhydroxybutyrate

To date, the majority of patented methods related to the pro-
duction of d-3HB were through chemical synthesis (Haas 
et al. 2018). On the other hand, biological synthesis allows 
for better enantiomeric control which is selective for the 
d-isomer and barely introduce heavy metals during the 
manufacturing process (Chen et al. 2002). In recent years, 
biosynthesis of the biodegradable polyhydroxyalkanoates 
(PHA) from microorganisms has raised great attention 
due to economic and environmental reasons (Anjum et al. 
2016). Polyhydroxybutyrate (PHB), being the first identi-
fied biodegradable PHA, was composed of d-3HB mono-
mers. Previous research had already shown that PHB could 
be efficiently produced through bacterial synthesis using a 
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new strain of bacteria known as Halomonas TD01 (Tan et al. 
2011). For the first time, a pure free acid form of d-3HB has 
been successfully made from biologically synthesized PHB 
on a kilogram scale via a series of hydrolytic reactions (Lyu 
et al. 2021). Details on the exact manufacturing process are 
proprietary. The d-3HB acid was further formulated into a 
novel supplement for direct consumption which may elicit 
a more rapid response in terms of elevating blood d-3HB 
compared to existing KS and KE supplements (Schroeder 
and Hynes 2021). A simple comparison between chemically 
synthesized ketone supplements and the free d-3HB acid is 
provided (Fig. 2).

Applications of d‑3HB across different fields

d-3HB is a small endogenous molecule that acts as both 
an alternative energy fuel and an intracellular signaling 
molecule in the body with a myriad number of downstream 
targets within different tissues and organs, especially the 
heart and kidneys (Cuenoud et al. 2020). The downstream 
pathways of d-3HB metabolism could be as either an energy 
fuel in the mitochondria or a signaling molecule in other 
extrahepatic cells and tissues (Fig. 3). Thus, d-3HB have 

been extensively explored in different fields over the past few 
years in relation to physical and metabolic health (Møller 
2020). Interestingly, it has been proposed that d-3HB may 
provide protection against cardiometabolic complications in 
high-stress workers due to its ability to mitigate oxidative 
stress and inflammation (Waldman and McAllister 2020).

Newman and Verdin have extensively reviewed how d-
3HB was regulated and its role as an endogenous histone 
deacetylase (HDAC) inhibitor within the body, which was 
significant in modulating metabolism and diseases of aging 
(Newman and Verdin 2014). Here we have summarized 
the recent applications of d-3HB in exercise and obesity 
(Table 1), as well as, the most recently investigated meta-
bolic and age-related conditions using d-3HB (Table 2). An 
overall summary of the different mechanisms of d-3HB is 
provided with corresponding medical indications (Fig. 4).

d‑3HB and exercise: endurance training 
and post‑exercise recovery

Nowadays, the use of ketone supplements in exercise is 
highly popular among athletes for improving endurance 
performance or enhancing post-exercise recovery to pre-
vent overtraining (Table 1). The use of exogenous ketone 

Table 2   Most recently explored medical indications for treatment using d-3HB

ALZ, Alzheimer’s; PARK, Parkinson’s; SCZ, Schizophrenia; HFrEF, heart failure with reduced ejection fraction; HFpEF, heart failure with pre-
served ejection fraction; MADD, multiple acyl-CoA dehydrogenase deficiency; FAO, fatty acid oxidation disorders; PTSD, post-traumatic stress 
disorder; CKD, chronic kidney disease; mTORC1, mechanistic target of rapamycin complex 1; NLRP3, nod-like receptor pyrin-domain contain-
ing 3 inflammasome; hKC, human keratinocytes; Kbhb, lysine-β-hydroxybutyrylation; H3K9/H3K14, β-hydroxybutyrylation on lysine residues 
at position 9 and 14 of histone 3

No Indications d-3HB effect Specific mechanism Ref

1a ALZ, PARK, SCZ, HFrEF Alternative energy fuel Restore energy deficits caused by 
glucose hypometabolism

(Kashiwaya et al. 2000; Kraeuter et al. 
2020; Yurista et al. 2021b; Monzo 
et al. 2021)

1b MADD, FAO diseases Replenish acetyl-CoA (Fischer et al. 2018, 2019a; Bleeker 
et al. 2020)

2 Age-induced sarcopenia Anti-oxidant Reduce reactive oxidative species and 
oxidative stress

(Wallace et al. 2021)

3a Atherosclerosis
PTSD, anxiety, gout pain, HFpEF

Anti-inflammatory NLRP3 inhibition (Goldberg et al. 2017; Yamanashi et al. 
2020; Deng et al. 2021; Zhang et al. 
2021)

3b CKD mTORC1 inhibition (Tomita et al. 2020)
4a Wound healing, Diabetic foot Promotes growth and 

proliferation of cells
hKCs (Ji et al. 2008; Kesl 2016)

4b Anti-osteoporosis Osteoblast cells (Cao et al. 2014)
4c Hair loss Hair follicular cells (Han et al. 2007)
5 Glioblastomas

Other types of cancer?
Gliomas/melanomas

Anti-cancer Inhibits glycolytic pathways
Potentiates effect of existing drugs/

chemotherapy
NLRP3 inhibition

(Maurer et al. 2011; Vallejo et al. 2020)
(Feng et al. 2019; Iyikesici 2020)
(Shang et al. 2018; Tengesdal et al. 

2021)
6 Influenza A virus

SARS-CoV-2 virus
Anti-viral Activate γδ-T cells to enhance 

immune system function
(Stubbs et al. 2020)

7a Diabetic vascular injury Kbhb H3K9 (Wu et al. 2020a)
7b Novel anti-cancer therapy? Kbhb H3K9, H3K14 (Dąbek et al. 2020)
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Fig. 2   Conventional chemically 
synthesized ketone supple-
ments versus novel biologically 
synthesized d-3HB acid. Draw-
backs of chemically synthesized 
ketone supplements and key 
features of the novel d-3HB acid 
produced through biosynthesis. 
Image of Halomonas TD01 
taken from (Tan et al. 2011). 
Chemical structures are redrawn 
using ChemDraw Professional. 
All other images are produced 
as original artworks
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supplementations as a potential strategy to induce nutri-
tional ketosis and enhance endurance exercise has already 
been thoroughly reviewed (Margolis and O’Fallon 2019; 
Shaw et  al. 2020). Although some conflicting studies 
show how ingestion of d-3HB precursors failed to benefit 
long-term endurance exercise (Poffé et al. 2020), other 
evidences still show positive effects in terms of improv-
ing physical performance especially in well-trained ath-
letes and using rodent models (Cox et al. 2016; Murray 

et al. 2016). Moreover, ketone supplements are capable 
of optimizing body composition by reducing body lipids 
without affecting lean body mass (Vargas et al. 2018), thus 
implies that ketone utilization can prevent excessive mus-
cle breakdown during weight loss. This is crucial for many 
weight-sensitive sports such as weight-lifting. In fact, a 
recent review has specifically focused on how d-3HB pro-
moted muscle recovery following exercise (Mansor and 
Woo 2021).

Fig. 3   Mechanism of actions 
of d-3HB in the mitochon-
dria and downstream signal-
ing pathways on the cellular 
level. d-3HB serves as (A) 
an alternative energy fuel by 
replenishing acetyl-CoA via an 
independent pathway irre-
spective of glucose, or (B) an 
endogenous signaling molecule 
with functions on HDAC, 
NLRP3 inflammasome, and 
Gi/o-protein-coupled receptors 
(i.e., FFAR3 and GPR109A), 
which lead to a range of 
downstream effects including 
inhibition of inflammation and 
lipolysis, reducing oxidative 
stress, alleviating atherosclero-
sis and epigenetic changes (e.g., 
lysine β-hydroxybutyrylation on 
histones which regulate genes 
in the starvation-responsive 
metabolic pathway). Abbrevia-
tions in figure: PDC, pyruvate 
dehydrogenase complex; 
AcAc, acetoacetate; HDACs, 
histone deacetylases; NLRP3, 
nod-like receptor pyrin-domain 
containing protein 3; FFAR3, 
free fatty acid receptor 3; 
GPR109A, G-protein-coupled 
receptor 109A; Kbhb, lysine 
β-hydroxybutyrylation. Figure 
produced as original artwork B)
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Specifically, d-3HB modulates skeletal muscle cell 
function via a ketone-induced muscle protein sparing 
effect and increases mitochondrial fusion, which enhances 
cellular viability and improves mitochondrial function 
(Parker et al. 2018). Similar muscle-sparing effect was 
demonstrated through in vitro incubation with 2–4 mM of 
d-3HB salt in the epitrochlearis muscle 2 h following exer-
cise (Takahashi et al. 2019). Furthermore, the enhance-
ment in post-exercise recovery has also been proven in 

athletes who consumed the KME following strenuous exer-
cise whereby more than 50% increase in muscle glycogen 
content was observed compared to control (Holdsworth 
et al. 2017). Such effect may be caused by an increase in 
leucine-mediated activation of the mechanistic target of 
rapamycin complex 1 (mTORC1) which increased the rate 
of protein synthesis (Vandoorne et al. 2017). The overall 
outcome is a preservation of skeletal muscle mass which 

Fig. 4   Summary of the recently 
explored applications of d-3HB 
within the human body. The 
various cellular actions of d-
3HB have been divided up into 
groups with implications for 
treating different metabolic and 
age-related diseases. Abbre-
viations in figure: HDACs, 
histone deacetylases; NLRP3, 
nod-like receptor pyrin-
domain containing protein 3; 
mTORC, mechanistic target 
of rapamycin complex; Kbhb, 
lysine β-hydroxybutyrylation; 
CKD, chronic kidney disease; 
ADPKD, autosomal dominant 
polycystic kidney disease; 
PTSD, post-traumatic stress 
disorder; HT, hypertension; 
ATH, atherosclerosis; MADD, 
multi acyl-CoA dehydrogenase 
deficiency. Figure produced as 
original artwork

D-3HB

Alterna�ve Energy Fuel;
Replenish Acetyl-CoA
(Via Non-Glycoly�c Pathway)

An�-Inflamma�on

mTORC1 Inhibi�on

Support Cell Growth 
& Prolifera�on

Alters Gut 
Microbiota

HDAC Inhibi�on
Kbhb on histones
Stunts Glycolysis

Promote Immune 
Response (γδ-TCs)

Reduc�on of 
ROS/Oxida�ve Stress

Epigenetic Changes

Modulate genes in the starvation-
responsive metabolic pathways

Tackle viral infections

Tumor cell arrest

↑ Butyrogenesis in D-3HB utilizers
↓ Intestinal Th17 cells

NLRP3 Inhibition
↓ Proinflammatory cytokine
↓ Vascular/endothelium damage

ADPKD
CKD

Parkinson’s
Alzheimer’s

Psychiatric Disorders
MADD

Aid Wound Healing
Diabetic Foot Wound
Hair Loss Treatment
Anti-Osteoporosis

Prevents Sarcopenia

Alters mitochondrial function

Target Indica�ons: PTSD, 
anxiety, HT, gout, ATH

e.g. Bifidobacterium

Heart Failure

Vascular endothelial injuries

Novel Cancer 
Therapy?

6236 Applied Microbiology and Biotechnology (2021) 105:6229–6243



1 3

would be highly beneficial for maintaining performance in 
resistance training and weight-sensitive sports.

d‑3HB and cardiometabolic health

Obesity has been one of the biggest metabolic complica-
tions in today’s society affecting millions of individuals 
worldwide. It is also linked to other cardiovascular diseases 
such as atherosclerosis which leads to life-threatening sit-
uations (Kachur et al. 2017). Lifestyle alteration is a key 
strategy used to tackle obesity and long-term KDs or very-
low-energy diets have already been explored as a promising 
treatment strategy (Gow et al. 2021; Kumar et al. 2021).

First of all, d-3HB was shown to be able to improve the 
blood lipid profile in obese adults by a reduction in low-
density lipoprotein (LDL) cholesterol, increase in high-
density lipoprotein (HDL) cholesterol, smaller adipocyte 
cell volume, and inhibition of lipolysis via a G-protein-cou-
pled receptor (GPCR) which reduced subsequent release of 
serum lipolytic products (Caminhotto et al. 2017). At the 
cellular level, d-3HB markedly increased mitochondrial 
uncoupling in brown adipose tissue (BAT) which increased 
mitochondrial respiration and thermogenesis, thereby results 
in increased resting energy expenditure (REE) in the obese 
(Deemer et al. 2020; Walton et al. 2020). More recently, 
studies revealed that the anti-inflammatory actions of d-
3HB on the NOD-like receptor pyrin-domain containing 3 
(NLRP3) inflammasome in obese adults can also prevent 
obesity and associated cardiometabolic complications such 
as atherosclerosis (Neudorf et al. 2020; Zhang et al. 2021). 
The latter study revealed a specific pathway by which d-
3HB acts to alleviate atherosclerosis via activation of the 
GPCR109A, which is known to be key endogenous receptors 
of d-3HB (Zhang et al. 2021).

As a central regulator of cardiometabolic health, d-3HB 
acts as an alternative fuel particularly to the heart and the 
kidneys (Hattori 2021; Yurista et al. 2021a). Interestingly, 
d-3HB functions in different ways within the two organs due 
to a high or low abundance of the succinyl-CoA:3-ketoacid 
CoA transferase (SCOT) present in the heart and kidneys, 
respectively (Hattori 2021). It has been recently elucidated 
that the failing heart utilizes d-3HB more efficiently than 
the non-failing heart (Murashige et al. 2020). Hence, infu-
sion of d-3HB to chronic heart failure (HF) patients (Monzo 
et al. 2021) and animal HF models (Yurista et al. 2021b) sig-
nificantly increased cardiac output (CO) and such increase 
occurred in a dose-dependent way (Nielsen et al. 2019). 
Meanwhile, d-3HB was also demonstrated to rescue HF by 
reducing excessive mitochondrial hyperacetylation through 
inhibition of NLRP3 inflammasome (Deng et al. 2021).

Within the kidneys, the renoprotective roles of d-3HB are 
mostly mediated through endogenous inhibition of histone 
deacetylases (HDAC) and NLRP3 which leads to subsequent 

inhibition of mTORC1, inflammation, oxidative stress, and 
tissue fibrosis (Hattori 2021). Moderately elevated ketone 
bodies by sodium-glucose cotransporter 2 (SGLT2) inhibi-
tors have been shown to potentiate the renoprotective effects 
of the drug in chronic kidney disease via inhibition of 
mTORC1 hyperactivation (Tomita et al. 2020). In addition, 
d-3HB also alleviated secondary metabolic complications 
such as cognitive impairments in DM patients (Jensen et al. 
2020a).

d‑3HB and brain health

Ketone bodies have long been utilized as a strategy for treat-
ing refractory epilepsy in children and infants (Thompson 
et al. 2017; Zarnowska 2020). It was recently demonstrated 
that d-3HB elicited its anti-epileptic effect through activa-
tion of KATP channels and GABAB signaling, which led to 
reduced neuronal firing (Li et al. 2017). Recent studies have 
revealed novel signaling pathways by which d-3HB may be 
involved (Wang et al. 2021), as well as its potential for treat-
ing other forms of epilepsy (Brunner et al. 2021).

Nowadays, age-related neurodegeneration has become a 
highly prominent issue around the world, which was usu-
ally characterized by glucose hypometabolism in the brain 
(Jensen et al. 2020b). Novel strategies using ketone bodies 
have emerged which offers neuroprotection and alleviates 
pathologies in many neurological and psychiatric disorders 
(Kovács et al. 2019; Norwitz et al. 2020). Importantly, it 
was shown that d-3HB competes with glucose for energy 
metabolism in the brain (Suissa et al. 2021). Moreover, the 
utilization of d-3HB stabilized brain networks in an aging 
model while glucose destabilized brain network stability 
(Mujica-Parodi et al. 2020).

To date, a number of studies have investigated the path-
ways by which d-3HB acts to ameliorate Alzheimer’s and 
Parkinson’s Disease in rodent models (Kashiwaya et al. 
2000; Wu et al. 2020b). In fact, in one clinical report of a 
patient with sporadic ALZ following treatment with KME, 
the patient demonstrated remarkable improvements in mood, 
self-caring ability, cognitive, and physical performance 
(Newport et al. 2015). d-3HB was recently proven to miti-
gate both positive and negative schizophrenia (SCZ)-like 
symptoms in drug-induced SCZ rats by overcoming the 
energy deficit caused by glucose hypometabolism in the 
cerebral brain (Kraeuter et al. 2020). Furthermore, endog-
enous NLRP3 inhibition by d-3HB alleviated stress-induced 
anxiety and post-traumatic stress disorder (PTSD) (Yama-
nashi et al. 2017, 2020). d-3HB also promoted the effect 
of a subtherapeutic dose of an anti-depressant drug, which 
led to suppression of chronic unpredictable stress-induced 
increase in immobility time and reduction in body weight in 
rat studies (Pan et al. 2020).
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d‑3HB and implications in osteoporosis, diabetic 
foot, and hair loss

d-3HB may be beneficial in the treatment and prevention 
of osteoporosis due to its ability to promote the growth of 
bone osteoblast cells (Cao et al. 2014). Moreover, different 
research groups have demonstrated that d-3HB promotes the 
growth and proliferation of other cell types such as skin cells 
(Ji et al. 2008), neural cells (Xiao et al. 2007), and hair fol-
licular cells (Han et al. 2007). Thus, d-3HB may exhibit a 
role in multiple conditions such as wound healing, cognition, 
and hair loss prevention respectively (Han et al. 2007; Zou 
et al. 2009; Gumel et al. 2015).

A recent investigation also forecasts how d-3HB may 
help to alleviate hair loss caused by excessive inflamma-
tion through its inhibitory effect on NLRP3 in macrophages 
which reduces subsequent release of proinflammatory 
cytokines (Goldberg et  al. 2017). Surprisingly, d-3HB 
may be effective against genetically inherited hair loss 
conditions although the specific mechanisms are unknown 
(Della Marina et al. 2020). Other studies also implicate that 
downstream mechanisms of d-3HB such as reducing reac-
tive oxygen species (ROS) and inflammation can aid the 
wound-healing process (Kesl 2016) hence may be useful in 
the treatment of diabetic foot (Kato et al. 2014). In addition, 
d-3HB was also demonstrated to induce differentiation of 
intestinal cells and functions in the maintenance of intestinal 
homeostasis (Cheng et al. 2019).

d‑3HB and implications in fighting viral infections

A very recent investigation suggested that d-3HB exhibits 
anti-viral properties which can target respiratory viral infec-
tions such as the Influenza A virus or the severe acute res-
piratory syndrome (SARS)-CoV-2 virus via different intra-
cellular mechanisms (Stubbs et al. 2020). Thus, researchers 
hypothesize that d-3HB may also help alleviate the COVID-
19 pandemic by promoting the immune response or mitigat-
ing critical risk factors that make individuals susceptible to 
COVID-19 such as obesity, T2D, and CVDs (Paoli et al. 
2020).

d‑3HB and implications in cancer

Emerging research suggests that d-3HB may exhibit an 
important role against cancer by either starving tumor cells 
which normally depend on glucose metabolism for survival 
(Maurer et al. 2011; Vallejo et al. 2020; Barrea et al. 2020). 
According to recent literature, ketogenic metabolic therapy 
had already been proven effective for use in glioblastomas 
(Winter et al. 2017) and neuroblastomas (He et al. 2020). 
Specifically, one study demonstrated that the KD inhibited 
proliferation and stemness of glioma cells and glioma-like 

stem cells by altering energy metabolism which resulted in 
increased reactive oxygen species (ROS) production and 
increased apoptosis of tumor cells (Ji et al. 2019). In addi-
tion, d-3HB may also enhance the anti-cancer effects of 
existing drugs and chemotherapies (Feng et al. 2019; Wang 
et al. 2020) while other investigations have proposed the 
possibility of d-3HB in alleviating some types of advanced 
cancers (Iyikesici 2020; Hagihara et  al. 2020). More 
recently, Tengesdal et al. have identified a novel pathway 
for treating melanomas by targeting tumor-derived NLRP3 
activation which limited expansion of myeloid-derived sup-
pressor cells (MDSCs) via inhibition of interleukin-1β (IL-
1β) production, leading to reduced tumor growth through 
enhanced anti-tumor immunity (Tengesdal et al. 2021). The 
group concluded that a combination of NLRP3 inhibition 
and anti-PD-1 therapy could potentiate the efficacy of the 
monotherapy in treating melanomas, and that NLRP3, which 
is a key cellular target of d-3HB (Shang et al. 2018), may 
become a novel therapeutic target for human melanomas.

d‑3HB signaling in the regulation of metabolism

It was only until recent years when d-3HB was identified 
as an epigenetic modifier due to its function as a HDAC 
inhibitor which promotes protein acetylation, resulting in 
metabolic reprogramming and changes in expression of 
downstream transcription factors or metabolic enzymes 
that are associated with cancers or other metabolic diseases 
(Sun et al. 2021). In particular, it was recently discovered 
that d-3HB induces a novel post-translational modification 
known as lysine β-hydroxybutyrylation (Kbhb) (Xie et al. 
2016). Consequently, Kbhb caused an increase in histone 
acetylation which altered downstream gene expressions. One 
particular study has demonstrated that Kbhb on the lysine 
residues of histone 3 (H3K9) activated gene expressions that 
led to upregulation of the vascular endothelial growth factor 
(VEGF), which protected against aortic endothelial injury 
in diabetic rats (Wu et al. 2020a). It was also predicted that 
hyperacetylation on H3K9 and H3K14 might contribute to 
reduced incidence of cancer (Dąbek et al. 2020). Indeed, the 
relevant epigenetic roles played by d-3HB in cancer remains 
of question and controversial (Liu et al. 2019); therefore, fur-
ther mechanistic research are still needed in order to develop 
d-3HB into novel anti-cancer therapies for the future.

Conclusion and future perspectives

In summary, d-3HB is a small molecule that plays multi-
ple roles in the human body in terms of regulating physical 
and metabolic health (Fig. 4; Table 2). Indeed, the posi-
tive effects of d-3HB span from nutrition and exercise to 
the prevention and treatment of metabolic and age-related 
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diseases (Tables 1 & 2). So far, a large number of stud-
ies have focused on neurological and cardiovascular ben-
efits of d-3HB in humans and animal models (Table 2). In 
recent years, the use of exogenous ketone supplements has 
increased in popularity which induced rapid ketosis without 
the need to comply to the KD. Ingestion of d-3HB could 
effectively optimize the body composition of athletes, lead-
ing to enhanced exercise performance (Table 1). However, 
ingestion of ketone salts and esters was associated with 
unwanted GI side effects or requires further degradation 
before releasing d-3HB for absorption.

To our knowledge, there has been no direct investigation 
based on supplementing the free acid form of d-3HB as a 
beverage drink to humans or animals yet due to difficulties 
in obtaining the free acid form in large amounts. Hence, 
the recently patented technology which utilizes a biosyn-
thetic process to produce d-3HB acid on a kilogram scale is 
considered a first-time success within this field. Due to its 
novelty, we propose that further in vitro and in vivo phar-
macokinetics, dose–response relationships, and safety and 
tolerability studies using the acid can be investigated. At 
last, we hope that the availability of such free d-3HB acid 
on a large scale may attract and aid scientists and researchers 
worldwide in developing novel treatments which will ben-
efit the overall metabolic health of humans and potentially 
extend human life expectancy.
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