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Abstract In 1905, Henry Head first suggested that trans-

mission of pain-related protopathic information can be

negatively modulated by inputs from afferents sensing

innocuous touch and temperature. In 1965, Melzak and

Wall proposed a more concrete gate control theory of pain

that highlights the interaction between unmyelinated C

fibers and myelinated A fibers in pain transmission. Here

we review the current understanding of the spinal micro-

circuits transmitting and gating mechanical pain or itch.

We also discuss how disruption of the gate control could

cause pain or itch evoked by innocuous mechanical stimuli,

a hallmark symptom for many chronic pain or itch patients.
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Management of chronic pain and itch remains a major

medical challenge. One common symptom seen in these

patients is the presence of allodynia or alloknesis-pain or

itch evoked by innocuous mechanical stimuli [1–10].

Chronic pain can be caused by tissue inflammation

(inflammatory pain) or by lesions of the nervous system

(neuropathic pain). Studies in the past decades have

revealed many mechanisms leading to allodynia. In one

scenario, peripheral sensitization following inflammation

allows high-threshold nociceptors to gain the ability to

respond to innocuous mechanical stimuli (for details, see

the recent reviews [11–15]). The other scenario is partly

based on the gate control theory first postulated by Ronald

Melzak and Patrick Wall in 1965 and then revised in

subsequent years [5, 16, 17], allowing low-threshold

mechanoreceptors (LTMRs) to activate pain transmission

neurons under pathological conditions. In this mini-review,

we provide an update on the identities of spinal neurons

that form the microcircuits underlying the gate control of

mechanical pain or itch.

Pain Theories and Mapping Dorsal Spinal Circuits

The mammalian dorsal spinal cord transmits and processes

information related to a variety of sensory modalities,

including pain, itch, temperature, and touch [5, 18]. It is

organized into distinct laminae [18, 19]. Unmyelinated C

afferents and thinly-myelinated Ad sensory afferents that

transmit pain, itch, and temperature primarily terminate in

laminae I/II, as well as lamina V and other more ventral

laminae [5, 18]. Various classes of LTMRs, including

myelinated Ab fibers, as well as Ad and C fibers, terminate

from the ventral inner layer of lamina II (vIIi) to lamina V

[20]. The major output neurons include projection neurons

located in lamina I and laminae III-VI, which ascend along

the anterolateral tract or through the dorsal column [18, 21]

(Fig. 1A).
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One key question in the somatosensory field is to

understand how the dorsal horn transmits distinct sensory

modalities. Four different theories, including the specificity

versus gate control theories discussed here, have been

proposed in past centuries, as recently reviewed by Perl and

others [22–25]. The specificity hypothesis suggests the

existence of specific neural circuits transmitting different

sensory modalities. Regarding pain-related information

transmission, the specificity hypothesis is supported by the

discovery of nociceptive-specific (NS) neurons in the late

1960s and early 1970s, based on extracellular recordings

[26] (but see also below). Primary afferents expressing the

G-protein coupled receptor (GPCR) MrgrpA3 and spinal

neurons expressing the gastrin-releasing peptide receptor

(GRPR) are required selectively to transmit chemical itch,

but not pain, providing further support for the specificity

hypothesis [27–30]. The gate control theory discussed in this

review highlights crosstalk among different afferents in

shaping sensory information transmission. Sensory afferent

crosstalk is clearly suggested by the Thermal-Grill illusion

discovered in 1896, showing that cold andwarm stimulations

in alternative skin regions generate paradoxical hot or even

burning pain percepts [31, 32]. In 1905, Henry Head

performed nerve lesion on his own hand, and, based on the

differential regeneration speeds of different sensory affer-

ents and the progressive change in perception in response to

various sensory stimuli, he concluded that the crude

protopathic pain perception generated by noxious stimuli

can be attenuated by inputs from epicritic afferents that sense

innocuous touch and temperatures [33], leading to the

prototype of the gate control theory. In 1965, Melzack and

Wall then proposed a more concrete gate control theory that

was built on both clinical observations and electrophysio-

logical recordings [16]. Gate control theory has several

features (Fig. 1B), following incorporation of the discovery

of the large number of nociceptors by Perl and his colleagues.

First, spinal transmission (‘‘T’’) neurons normally receive

inputs from nociceptors, and their activation evokes pain and

other action systems. Second, transmission of nociceptive

information to T neurons can be modulated by descending

inputs from various brain regions. Third, T neurons concur-

rently receive excitatory inputs from LTMRs, but these

inputs are gated via feedforward activation of local

inhibitory interneurons (‘‘IN’’), such that innocuous

mechanical stimuli normally suppress acute nociceptive

pain. Fourth, strong nociceptive inputs, as well as plasticity

induced by inflammation or nerve injury, somehow attenuate

the inhibitory inputs from IN neurons and/or sensitize T

neurons, such that normally subthreshold LTMR inputs can

now sufficiently activate T neurons to evoke allodynia

(Fig. 1B).

Recent years have seen important progress in charac-

terizing the spinal circuits that transmit mechanical pain or

itch. Together with the Martyn Goulding lab at the Salk

Institute, we have been using an intersectional genetic

strategy to identify spinal neurons involved in the trans-

mission and gating of distinct modalities [34–36]. This

intersectional genetic strategy allows us to ablate or silence

specific spinal neurons that are defined by co-expression of

the Cre DNA recombinase driven from a specific gene and

the Flpo recombinase driven from the Lbx1 gene whose

expression is restricted to the dorsal spinal cord and dorsal

hindbrain [37, 38]. As such, only dorsal spinal/hindbrain

excitatory or inhibitory neurons that co-express XCre (X

indicates a specific gene) and Lbx1Flpo are ablated or

silenced, without affecting Cre-expressing neurons in the

peripheral nervous system or in the brain [34–36]. Mean-

while, several labs combined genetic and viral tools to

manipulate specific populations of spinal neurons [39–42].

Subsequent behavioral and electrophysiological studies

have now provided considerable insights into the trans-

mission of mechanical pain and/or itch in the dorsal spinal

cord. In this review, we focus on the identities of T neurons

for the transmission of mechanical pain, the pathways

Fig. 1 Laminar organization of

the spinal dorsal horn. A Lami-

nar organization of dorsal horn

and primary afferent inputs,

modified from Craig [19]. B The

gate control theory proposed in

1965. T, transmission neurons;

IN, inhibitory neurons in the

substantia gelatinosa (lamina II)

of the dorsal horn.
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linking LTMRs to T neurons, the characterization of IN

neurons for the gate control of mechanical pain or itch, and

the identities of relevant LTMRs.

Spinal ‘‘T’’ Neurons Transmitting Mechanical
Pain

Spinal ‘‘T’’ neurons for mechanical pain transmission are

defined as excitatory neurons that receive monosynaptic

inputs from mechano-sensitive nociceptors. ‘‘T’’ neurons

do not necessarily represent ascending projection neurons

as suggested by the original gate control diagram [16]. We

found that spinal neurons in the somatostatin (SOM)

lineage, marked by SOMCre in which the Cre recombinase

is driven from the SOM gene locus, are enriched in laminae

II and III and critical for the transmission of both acute and

chronic mechanical pain. Mice with intersectional ablation

of a major subset (*85%) of SOM lineage neurons defined

by the co-expression of SOMCre and Lbx1Flpo, referred to

as SOMLbx1 neurons, fail to respond to noxious mechanical

stimuli. Surprisingly, SOMLbx1 neurons are dispensable for

nocifensive behaviors evoked by noxious thermal stimuli,

even though many primary afferents and spinal output

neurons in superficial dorsal horn laminae are polymodal,

responding to both noxious heat and mechanical stimuli

[34]. In order to explain the nearly complete loss of

cutaneous mechanical pain in SOMLbx1 neuron-ablated

mice, inputs from both mechanical-selective nociceptors

and mechanically sensitive polymodal nociceptors should

all be transmitted via SOMLbx1 neurons in lamina II

(Fig. 2), whereas inputs from heat-selective sensory fibers,

marked by the transient receptor potential channel TRPV1

(ref. [43, 44]), must be sufficient to mediate heat-evoked

nocifensive responses via direct projection to heat-selective

or polymodal neurons in laminae I/IIo or deep laminae that

do not belong to the SOM lineage [26, 45] (Fig. 2). Earlier

studies suggested that vertical cells represent major output

neurons that relay sensory information from lamina II to

lamina I [46–51], and consistently, the SOM lineage

neurons include vertical cells with elaborate dendritic trees

reaching laminae II–IV and a thin axon projecting to

lamina I. SOMLbx1 neurons could, however, play a

redundant role in transmitting heat pain-related informa-

tion, by relaying inputs from polymodal nociceptors.

Consistent with these findings, Christensen et al. activated

spinal SOM? interneurons in adults using optogenetics,

resulting in a nocifensive licking response [52]. Chemo-

genetic inhibition of SOM? neurons reduced acute

mechanical sensitivity and mechanical allodynia following

peripheral inflammation [52]. However, they also found a

slight deficit in noxious thermal sensation by chemogenetic

inhibition of spinal SOM? neurons [52], suggesting the

possibility that a subset of SOMCre neurons that do not

express Lbx1Flpo, which would be preserved in SOMLbx1

neuron-ablated mice, might play a role in mediating

thermal pain.

Primary afferents transmitting noxious mechanical

information have recently been characterized. Unmyeli-

nated primary sensory afferents expressing the G-protein-

coupled receptor MrgprD are required to respond to light

punctate mechanical stimuli evoked by von Frey filaments

[53], whereas myelinated afferents expressing the neu-

ropeptide Y receptor NPY2R transmit superthreshold

pinprick-evoked intense mechanical pain [54]. In the

dorsal spinal cord, with the existence of wide dynamic

range (WDR) neurons, it had long been postulated that

mechanical pain intensity might be encoded by the firing

rates of WDR neurons [55, 56]. However, characterization

of other molecularly defined spinal neurons shows that

light punctate mechanical information, but not pinprick-

evoked intense mechanical information, is transmitted

through spinal neurons marked by the developmental

expression of calbindin 2 (Calb2, also known as calretinin),

which is in contrast to the transmission of both light and

intense mechanical pain by the SOM lineage neurons.

Lineage tracing experiments have shown that the Calb2

lineage neurons partially belong to the SOM lineage, albeit

to those with transient SOM expression [34]. Conceivably,

Fig. 2 Transmission of mechanical versus heat pain. A Three types

of projection neuron located in lamina I and deep laminae, including

mechanical-selective (yellow), heat-selective (red), and polymodal

(green) projection neurons. B, C SOM lineage neurons (marked after

crossing SOMCre with tdTomato reporter mice, as previously

described [34]), are enriched in laminae II and III, ventral to

NK1R? projection neurons in lamina I (B). Biocytin labeling showing
a SOMtdTomato neuron in lamina II that is a vertical cell (C). Image in

C adapted from Duan et al. [34].
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MrgprD? neurons and NPY2R? Ad mechanical nocicep-

tors might be preferentially connected to the Calb2 lineage

neurons and the Calb2-negative SOMLbx1 neurons to

transmit light and intense mechanical pain, respectively.

This initial segregation, however, does not necessarily

argue against the intensity-encoding hypothesis. For exam-

ple, Calb2? neurons and Calb2-negative SOMLbx1 neurons

could send convergent inputs to downstream WDR

neurons.

Multiple Gated Spinal Pathways Linking LTMR
Inputs to Lamina I Output Neurons

A key prediction from the gate control theory is that spinal

T neurons receive inputs not only from nociceptors, but

also from Ab-LTMRs (and possibly Ad-LTMRs as well),

and LTMR inputs are gated via feedforward activation of

inhibitory neurons under normal conditions. Light and Perl

initially performed extracellular recordings in laminae I/IIo,

revealing many nociception-specific neurons [47]. How-

ever, extracellular recordings can only detect inputs

sufficient to generate an action potential output. Subse-

quent in vivo intracellular recordings then revealed sub-

threshold inputs from innocuous mechanical stimuli

[57, 58], and multiple pathways relay LTMR inputs from

lamina III to laminae I/IIo (Fig. 3). First, vertical cells in

laminae I/IIo, including SOM neurons that represent T

neurons for acute mechanical pain transmission, send

dendrites to laminae III/IV and receive direct (not neces-

sarily monosynaptic) inputs from A-LTMRs. Second,

electrophysiological recordings also reveal polysynaptic

pathways starting with neurons located at the II–III border

or within lamina III [34, 41, 59–61]. SOM neurons at the

II–III border partially overlap with neurons expressing

protein kinase C gamma (PKCc), which receive

detectable monosynaptic or polysynaptic Ab inputs with

or without action potential firing due to feedforward

inhibition [34, 40, 61–63]. Peirs et al. subsequently

reported that lamina III neurons marked by transgenic

Vglut3::Cre, most of which receive monosynaptic inputs

from Ab fibers, play a critical role in relaying Ab inputs to

superficial laminae as well [41]. Since neurons at the II–III

border or within lamina III normally do not receive

nociceptive afferent inputs, at least based on extracellular

recordings [47], the neurons that receive gated Ab inputs

no longer fit the original ‘‘T’’ neurons defined to be

involved in the transmission of acute mechanical pain.

Because the relay of Ab fiber inputs from lamina III to

lamina I is virtually abolished in mice with ablation of

SOM lineage neurons, Vglut3::Cre-marked neurons could

either overlap with SOM neurons or are connected to SOM

neurons located in laminae II to relay Ab inputs. Indeed,

chemical genetic activation of Vglut3::Cre-marked neurons

is able to activate PKCc neurons and Calb2? neurons [41],

both of which partially belong to the SOM lineage [34]

(Fig. 3).

The direct and polysynaptic Ab pathways are gated via

feedforward activation of inhibitory neurons located in

laminae I–III. The dorsal pathway is gated at least partly

via spinal inhibitory neurons marked by the Cre driven

from the preprodynorphinin locus (DynCre). The DynCre

labels mainly inhibitory neurons enriched in laminae I and

II, a subset of which represents vertical cells that receive

Ab inputs with action potential firing [34]. Following

ablation of the Dyn lineage inhibitory neurons, most

superficial dorsal horn neurons in I/IIo now receive Ab
inputs with action potential firing, a third of which are

monosynaptic, indicating the opening of the direct pathway

as well as polysynaptic pathways. A number of inhibitory

neurons have been shown to gate the polysynaptic Ab
pathways, and these inhibitory neurons are enriched in

laminae II and III, including inhibitory neurons marked by

Cre driven from the parvalbumin gene locus (PVCre) and

the receptor tyrosine kinase Ret gene locus (RetCreER), as

well as the glycine transporter gene locus (GlyT2Cre)

Fig. 3 Schematic showing the

spinal circuits that transmit

mechanical pain-related infor-

mation. CR?/-, transient-central

cells partly marked by Cal-

b2/calretininCre (CR?/-);

SOM?/- cell (blue), vertical

neuron in lamina IIo; P, projec-

tion neuron in lamina I; IN,

inhibitory interneuron at the II-

III border or within lamina III,

including the Dyn, PV, GlyT2,

and Ret lineage neurons. Mod-

ified from Duan et al. [34].
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[39, 40, 42] (Fig. 3). Dyn neurons also contribute to the

gating of the polysynaptic Ab pathways [34] (Fig. 3).

Strikingly, individual ablation of these four sets of

genetically marked inhibitory neurons leads to the spon-

taneous manifestation of mechanical allodynia. We envi-

sion several scenarios: (1) these four sets of cells could

overlap with each other and the overlapping portion gates

the same allodynia pathways, (2) a summation of inputs

from all these inhibitory neurons is needed to gate a

pathway, and (3) perhaps most likely, these inhibitory

neurons may gate distinct allodynia pathways, opening

each of which would be sufficient to allow low-threshold

mechanical stimuli to evoke pain.

Peripheral inflammation and nerve injury cause central

sensitization and disinhibition, which collectively lead to

gate opening and the manifestation of allodynia

[5, 6, 12, 13, 25, 64–66]. Disinhibition can occur via

many different mechanisms, such as attenuated functions

of GABAA and glycine receptors, decreased expression of

enzymes for GABA synthesis or glycine transport, and a

change of intracellular versus extracellular Cl- gradients

via downregulation of KCC2, as previously reviewed

[6, 64, 67]. Other recently revealed disinhibition mecha-

nisms include reduced inhibitory synapses onto the exci-

tatory transmission neurons [40], and neuronal silencing

via long-term potentiation of glycine receptor-mediated

currents in GABAergic inhibitory neurons [68]. In vivo

extracellular recordings have demonstrated that such

disinhibition allows low-threshold inputs to activate nor-

mally nociception-specific neurons in both lamina I and

lamina V, resulting in allodynia [64, 69–71]. The SOM

lineage neurons are required to relay Ab inputs from

lamina III to lamina I under disinhibition conditions caused

by the presence of bicuculline and strychnine to block

GABAA and glycine receptors [34], or following nerve

injury (Cheng et al., unpublished data). Consistently,

mechanical allodynia induced by nerve injury or inflam-

mation is virtually abolished following ablation of SOM

lineage neurons in the dorsal horn [34]. Other studies have

shown that inflammation and nerve injury open distinct

allodynia pathways, based on differential c-Fos induction

in Calb2? neurons versus PKCc? neurons [41]. However,

not all forms of neuronal activity or firing patterns lead to

c-Fos induction. For example, low-threshold mechanical

stimuli evoking touch perception under normal conditions

rarely stimulate c-Fos in dorsal horn neurons [34]. As such,

a lack of c-Fos induction in Calb2? neurons following

nerve lesions does not necessarily suggest that these

neurons are not involved in the transmission of neuropathic

pain, and a definite conclusion awaits in vivo or ex vivo

recordings and/or imaging. It should also be pointed out

that while activation of Calb2? interneurons is sufficient to

induce spontaneous nocifensive behaviors and mechanical

allodynia [41], ablation of most of these neurons does not

have a detectable impact on allodynia [34], possibly due to

the existence of redundant allodynia pathways opened by

inflammation and nerve injury.

The identities of A-LTMRs that transmit and/or gate

mechanical pain are only beginning to be understood.

Myelinated LTMRs expressing the toll-like receptor 5 [72]

or delta opioid receptors [73, 74] are necessary for the

expression of mechanical allodynia, and co-activation of

LTMRs marked by MafACre is able to attenuate acute

pinprick pain mediated by Ad mechanical nociceptors [54],

possibly via feedforward activation of spinal inhibitory

neurons for gate control. Not discussed in this review is the

involvement in the induction and/or expression of mechan-

ical allodynia of other types of primary afferents, such as

C-LTMRs [75], MrgprD? polymodal nociceptors [53], and

sensitized fast-conducting myelinated mechanical nocicep-

tors [76–78].

Gate Control of Mechanical Itch

Itch, or pruritus, is defined as an unpleasant sensation

associated with the desire to scratch [79]. The close

connection between itch and scratching indicates that the

neuronal apparatus for itch might initially have evolved as

a nocifensive system to remove potentially harmful stimuli,

such as insects moving across the skin (mechanical itch) or

mosquitoes injecting pruritogens into the skin (chemical

itch). This also highlights the inhibition of itch by painful

stimuli, such as scratching, possibly via activation of spinal

inhibitory neurons [80]. For example, pruritogen-evoked

chemical itch is greatly sensitized (1) in mice with loss of a

mixed population of spinal inhibitory interneurons whose

development is dependent on the basic helix-loop-helix

transcription factor Bhlhb5 [81, 82], and (2) in mice

following ablation of glycinergic interneurons located deep

in the dorsal horn [39]. Inhibition of chemical itch by

painful stimuli is dependent on glutamate release from

primary nociceptors, possibly via activation of the afore-

mentioned inhibitory neurons [83, 84].

Regarding mechanical itch, the lightest stroking by a

thin filament across the skin, particularly the upper lip [79],

or vibration of a single facial venus hair, can evoke an

intense itch sensation. Mechanical itch cannot be blocked

by antagonists against histamine receptors [85]. However, a

finger stroking with a slightly stronger force produces

touch perception without itch. Thus, inputs from LTMRs

not only gate mechanical pain, but also mechanical itch.

Presumably, there is a class of itch-evoked LTMRs that are

extremely sensitive to mechanical stimuli, but this low

threshold mechanical itch can be gated (masked) via

concurrent activation of other classes of LTMRs (Fig. 4).
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Recently, we found that spinal inhibitory neurons express-

ing neuropeptide Y::Cre (NPY::Cre) are required to gate

touch-evoked mechanical itch [35]. NPY lineage neurons

are enriched in laminae II–IV and most of them receive

inputs from Ab fibers. Ablation or silencing of the

NPY::Cre-marked neurons within the dorsal spinal cord

(and the dorsal hindbrain) causes the selective loss of gate

control for mechanical itch, allowing low-threshold von

Frey filament stimulation to evoke scratching responses,

while pain and chemical itch sensitivity remains unchanged

[35]. As a result, NPY::Cre neuron-ablated mice display

excessive spontaneous scratching and eventual skin lesions

[35]. Interestingly, this mechanical itch pathway is inde-

pendent of GRPR? spinal neurons that transmit chemical

itch [29, 35, 86]. Furthermore, NPY neurons rarely overlap

with Bhlhb5-dependent inhibitory neurons, which are

required to gate chemical itch [81], suggesting distinct

spinal microcircuits that transmit and gate mechanical

versus chemical itch (Fig. 4).

Concluding remarks

Extracellular recordings by Perl and his colleague first

revealed many neurons in laminae I and IIo that are

nociception-specific. Subsequent intracellular and genetic

manipulations have now demonstrated that most of these

neurons also receive monosynaptic and/or polysynaptic

inputs from LTMRs, and LTMR inputs can either be

silenced or become subthreshold due to feedforward

activation of inhibitory neurons. Any given stimulus to

the skin most likely activates a spectrum of sensory

afferents with different receptive fields, conduction veloc-

ities, and adaptation rates, and the outcome of spinal

transmission neurons in response to such a stimulus

depends on the spatial and temporal summation of all of

the excitatory and inhibitory inputs generated by these

sensory afferents. Manifestation of allodynia or alloknesis

can therefore be achieved via many different mechanisms,

such as central sensitization of transmission neurons or

reduced feedforward inhibition, or both.

Several outstanding issues remain to be addressed. First,

while MrgprD? and NPY2R? nociceptors are critical for

the transmission of light and intense mechanical informa-

tion, respectively [53, 54], peripheral LTMRs and spinal

excitatory neurons that transmit mechanical itch have not

yet been characterized. The underlying mechanotransduc-

ers are also unclear. Piezo2, a rapidly-adapting, mechan-

ically-activated ion channel transmits innocuous touch

[87–91] and proprioception [87, 92], but is dispensable for

the transmission of both acute mechanical pain in humans

[87] and inflammation-induced mechanical allodynia in

mice [88]. Second, it remains to be determined if the same

or different subtypes of LTMRs provide inputs to spinal

excitatory neurons for pain transmission versus inhibitory

interneurons for gate control. Third, more effort should be

directed to understanding how these gated spinal circuits

are altered under distinct pathological conditions, since a

loss of gate control appears to be the hallmark symptom

seen in chronic pain or itch patients [23, 25]. Addressing

these questions will eventually help to develop new

therapeutic strategies to treat chronic pain and itch, such

as by restoring the lost gate control.
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