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Probing the chemical–biological 
relationship space with the Drug Target Explorer
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Abstract 

Modern phenotypic high-throughput screens (HTS) present several challenges including identifying the target(s) that 
mediate the effect seen in the screen, characterizing ‘hits’ with a polypharmacologic target profile, and contextual-
izing screen data within the large space of drugs and screening models. To address these challenges, we developed 
the Drug–Target Explorer. This tool allows users to query molecules within a database of experimentally-derived and 
curated compound-target interactions to identify structurally similar molecules and their targets. It enables network-
based visualizations of the compound-target interaction space, and incorporates comparisons to publicly-available 
in vitro HTS datasets. Furthermore, users can identify molecules using a query target or set of targets. The Drug Target 
Explorer is a multifunctional platform for exploring chemical space as it relates to biological targets, and may be useful 
at several steps along the drug development pipeline including target discovery, structure–activity relationship, and 
lead compound identification studies.
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Background
In the modern drug discovery and development process, 
high-throughput screens (HTS) of drugs have become 
a common and important step in the identification of 
novel treatments for disease. In the past decade, stud-
ies describing or citing high throughput drug screen-
ing are increasingly prevalent, topping 1000 per year for 
the past 5 years (Fig. 1) and span many disease domains 
such as cancer, neurodegenerative disease, and cardio-
pulmonary diseases [1–3]. These screens are often phe-
notypic in nature whereby a large panel of compounds of 
known, presumed known, and/or unknown mechanisms 
of action are tested in a biological model of interest and 
generate phenotypic readouts such as apoptosis or pro-
liferation. While these types of screens facilitate the rapid 
identification of biologically active drugs or chemical 
probes, they also present several challenges.

One prevailing challenge is the identification of the 
specific biological mechanisms within a cell that deter-
mine the response in a screen. The search for novel 

drugs constantly pushes the pharmaceutical research-
ers to include novel chemical sets in phenotypic screens, 
with the caveat that the underlying mechanism of action 
(MoA) of a particular compound cannot usually be 
gleaned from the phenotypic screens [4]. Most of the 
time, identifying the MoA requires additional experimen-
tation, particularly if the molecule represents a novel or 
understudied chemical entity. Another challenge is that 
the polypharmacologic nature of many small molecules 
can make it difficult to interpret HTS results as a given 
drug may affect multiple targets with a range of efficacy. 
This, in turn, presents the difficulty of consolidating mul-
tiple targets into a unified biological mechanism or set 
of mechanisms leading to poorly annotated targets, mis-
understood MoAs [5], and unknown or ambiguous off-
targets with potential deadly side effects [6, 7]. A final 
challenge is that identification of related molecules and 
their targets is not always straightforward; in the con-
text of HTS analysis, structurally and functionally related 
molecules that are not contained in a screening library 
might be useful to explore.

Multiple tools and databases have attempted to address 
various aspects of the challenges outlined above (see 
Table  1). These tools allow the user to explore known 
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polypharmacology of small molecules. Many also allow 
users to explore compound-target relationships by que-
rying either by molecule or by target: DGIdb, DT-Web, 
BindingDB, Probes and Drugs, CarlsbadOne, Polyphar-
macology Browser, STITCH, and SuperTarget allow users 
to identify MoAs/targets of a given compound by evalu-
ating a query drug [8–15], while DT-Web, BindingDB, 
Polypharmacology Browser, and STITCH allow users to 
search by chemical similarity using any query molecule 
(Table 1). Probe Miner, alternatively, is designed primar-
ily to handle target-based queries [16]. All tools listed 
in Table 1 allow users to identify molecules with known 
polypharmacology, but only three, STITCH, SuperTar-
get, and Probes and Drugs, provide the ability to summa-
rize these targets into biological pathways/mechanisms 
using a gene list enrichment approach [12, 13, 15]. The 
final challenge—identifying structurally or functionally 
related molecules—is addressed by DT-Web, BindingDB, 
Probes and Drugs, CarlsbadOne, Polypharmacology 
Browser, and STITCH [9–12, 14, 15].

While several of the tools listed address one or more 
of these challenges, there are some gaps (Table  1). For 
example, ChEMBLSpace does not have a web interface 
and therefore requires installation on a compatible sys-
tem before use [17]. In addition, not all of these tools are 
open-source (STITCH, SuperTarget, BindingDB, Probes 
and Drugs, CarlsbadOne). An easy to modify open-
source application could enable users to create features 
that are helpful for their specific analyses. While most 
tools allow both drug-based and target-based queries, 
none appear to facilitate queries for molecules that affect 
several targets, which may be useful for users who want 
to leverage polypharmacology by employing drugs that 

inhibit multiple biological mechanisms. While multiple 
targets can be queried at one time in STITCH, it is not 
straightforward to identify single molecules that affect 
all query targets. In addition, DGIdb and ChEMBLSpace 
cannot be used to explore similar chemical space to the 
query molecule. These two, plus SuperTarget and Carls-
badOne, cannot be queried using molecules that are not 
in the database; a feature that might help users with novel 
preclinical candidate drugs. With the exception of DT-
Web, STITCH and CarlsbadOne, these tools do not allow 
visualization of drug–target networks, which may help 
users address the challenge of identifying structurally or 
functionally related drugs. No tools other than STITCH 
and Probes & Drugs perform gene list enrichment, which 
may help users interpret the biological MoAs of polyp-
harmacologic molecules. Finally, these tools do not allow 
users to evaluate query drugs in the context of publically 
available high throughput drug screening datasets.

To address these gaps, we developed the Drug–Target 
Explorer. Specifically, the Drug–Target Explorer enables 
the user to [1] look up targets for individual molecules 
and groups of molecules, [2] explore networks of targets 
and drugs, [3] perform gene list enrichment of targets to 
assess target pathways of compounds, [4] compare query 
molecules to cancer cell line screening datasets, and [5] 
discover bioactive molecules using a query target and 
exploration of these networks. We anticipate that the 
users will include biologists and chemists involved in 
drug discovery who are interested in performing hypoth-
esis generation of human targets for novel molecules, 
identifying off-targets for bioactive small molecules of 
interest, and exploring of the polypharmacologic nature 
of small molecules.

Implementation
To build the database of known compound-target inter-
actions, we aggregated five data sources containing quali-
tative and quantitative interactions (Fig. 2). We defined a 
target of a compound as any human protein with a meas-
urable change in activity when directly exposed to that 
compound, or any human protein qualitatively reported 
to be directly modulated by that compound in the source 
datasets. We considered qualitative interactions to be 
curated compound-target associations with no associ-
ated numeric value. These associations are curated and 
evaluated by experts and are thus a source of high-con-
fidence drug–target information. Quantitative interac-
tions were defined as compound-target information with 
a numeric value indicating potency of compound-target 
binding or functional changes. Qualitative compound-
target associations were retrieved from the DrugBank 
5.1.0 XML database, the DGIdb v3.0.2 interactions.tsv 
file, and ChemicalProbes.org (acc. July 7 2018) [8, 18, 

Fig. 1 High throughput drug screening is an increasingly 
common experimental approach. Yearly count of Pubmed-indexed 
publications that appear with the search term “high throughput drug 
screening.” Search performed on July 12, 2018
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19]. pChEMBL, IC50, C50, EC50, AC50, Ki, Kd, and 
potency values for Homo sapiens targets were retrieved 
from the ChEMBL v24.1 MySQL database [20]. Kd val-
ues were also obtained from Klaeger et al. 2017, in which 
the authors determined the Kd of 244 kinase inhibitors 

against 343 kinases [21]. For all quantitative and quali-
tative data sources, compound structural information 
(SMILES) was retrieved when available. When not avail-
able, it was batch annotated using the Pubchem Identifier 
Exchange Service, or, in some cases, manually annotated 
via PubChem and ChemSpider search [22, 23].

Fig. 2 Process for developing the Drug–Target Explorer. Molecule–target and chemical structure data were collected from public sources. In the 
case of DGIdb, chemical structures were assigned using the PubChem Chemical Identifier Exchange, manually assigned using ChemSpider and 
PubChem, or mapped to ChEMBL structures by ChEMBL ID. Chemical structures from all source databases were standardized, aggregated, and 
assigned internal Drug–Target Explorer identifiers. Qualitative and quantitative data were summarized by calculating several summary statistics, and 
these data were stored together with the internal identifiers to form the Drug–Target Explorer database
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To consolidate data for identical molecules within and 
across multiple databases, structural strings (SMILES) 
were standardized using the standardize_smiles function 
from the MolVS v0.1.1 Python package [24]. Each stand-
ardized structure and all external IDs associated with 
that structure were then assigned an internal identifier, so 
that groups of molecules with identical structures were 
assigned to the same internal ID to permit integration 
of the different datasets. All datasets were combined and 
summaries were generated for each compound-target 
comparison using functions from the R ‘tidyverse’ [25]. 
The number of unique molecules, targets, and molecule–
target associations after structural standardization of 
each source database is described in Table 2.

In addition, chemical fingerprints were generated 
using the R interface (rcdk) to the Java Chemical Devel-
opment Kit (CDK) [26–28]. The package was modified 
to use the latest version of the CDK (2.1.1), which ena-
bles perception of chiral centers, enabling differentiation 
between isomeric molecules in circular fingerprints. Cir-
cular (functional connectivity fingerprint (FCFP6)-like), 
MACCS, and extended fingerprints were generated.

The summary metrics described in Table 3 were calcu-
lated. One of these metrics, pChEMBL, is used to convey 
the potency of a given molecule. It is calculated from one 
of several semi-comparable values in the ChEMBL data-
base, and is defined as the negative log 10 molar of the 
IC50, XC50, EC50, AC50, Ki, Kd, or potency [20]. There-
fore, pChEMBL permits a rough comparison of these 
values. For example, a pChEMBL value of 7 would indi-
cate that there is a measurable effect on a given target in 

the presence of 100  nM of molecule. To harmonize the 
data from Klaeger et al. with ChEMBL data, the Kd val-
ues were converted to pChEMBLs. The mean pChEMBL 
was calculated for every molecule–target combination, as 
well as the number of quantitative and qualitative asso-
ciations found in the source databases.

We devised a known selectivity index (KSI) for each 
molecule–target interaction:

where  KSIdt is the known selectivity index for a given 
molecule–target association,  pChEMBLdt is the mean 
pChEMBL for a specific molecule–target association 
between drug d and target t, and ΣpChEMBLdt is the sum 
of all target (T) pChEMBLs for drug d.

To quantify confidence in each of the interactions, we 
calculated a confidence score (c):

where  cab is the confidence of an interaction between 
molecule a and target b,  nab is the number of quantita-
tive measurements for an interaction between molecule a 
and target b,  lab is the number of qualitative associations 
found between molecule a and target b, µab is the mean 
number of associations across all molecule–target associ-
ations, and σall is the standard deviation of all molecule–
target associations; subtracting the mean and dividing by 

KSIdt =
pChEMBLdt∑
t∈T pChEMBLdt

cab =
(nab + lab)− µall

σall

Table 2 Drug–target association metrics obtained from  each source database after  structural standardization 
and processing

ChEMBL v24.1 ChemicalProbes DGIdb 3.0.2 DrugBank 5.1.0 Klaeger et al.

Molecules 292,765 171 3765 4675 218

Targets 2117 168 1239 2231 348

Associations 650,363 274 8755 11,223 5180

Table 3 Drug–target association metrics summarized in the Drug–Target Explorer database

Metric Unit Meaning

Mean IC50/AC50/EC50/
C50/Potency/Ki/Kd

nM Mean of values obtained from quantitative datasets; available in database but not app

Mean pChEMBL − log10 (nM) Mean − log10 (nM) of all semi-comparable quantitative values

n_qualitative Count Number of qualitative associations identified

n_quantitative Count Number of quantitative associations identified

Known selectivity index N/A The mean pChEMBL for a drug–target association divided by the sum of all pChEMBLs for all drug–target 
associations for a given drug

Confidence score N/A The z-score of the number of quantitative and qualitative interactions found for a drug–target association
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the standard deviation converts the confidence score to a 
z-score. A larger confidence score indicates greater confi-
dence in the relationship between molecule a and target 
b.

This resulted in a database containing 3650 human 
targets (represented by HUGO gene symbols), 304,790 
small molecules, and 507,059 molecule–target associa-
tions summarized from 673,439 quantitative interactions 
and 18,918 qualitative interactions. Finally, this database 
as well as fingerprints and chemical aliases for each mol-
ecule were saved as R binary files and stored on Syn-
apse. All of the data, as well as snapshots of the source 
databases used to build the Drug Target Explorer data-
base (with the exception of DrugBank, which requires 
a license to access) are accessible at www.synap se.org/
dtexp lorer . The Drug–Target Database is licensed under 
CC BY-SA 4.0.

We developed a Shiny application to permit explora-
tion of the database [29, 30]. For chemical queries, users 
can search for molecules in the database by one of three 
methods: from a list of aliases obtained from the source 
databases, retrieving the chemical structure using the 
‘webchem’ interface to the Chemical Identifier Resolver, 

or by directly inputting the SMILES string [31]. A Tani-
moto similarity threshold allows the user to narrow or 
widen the chemical space of the results. After querying, 
the input molecule is converted to a fingerprint and it’s 
similarity calculated relative to all molecules in the data-
base, using ‘extended’ fingerprints. The user then can 
view the resulting set of molecules as well as the mole-
cule–target relationships in interactive tables and graphs 
(Fig.  3). In addition, the user can remove or include 
molecules on an a-la-carte basis, view the 2D structural 
representation of the input molecule, and perform tar-
get list enrichment analysis [32, 33]. Furthermore, the 
query molecule can be compared against molecules in 
the CTRP and Sanger cancer cell line drug-screening 
datasets to identify identical or similar structures in these 
datasets, and compare the relationship between chemical 
structure and correlations in drug response.

For target queries, users can input one or more query 
HUGO gene(s) and identify molecules that are reported 
to bind those targets, and view these data in an interac-
tive table. Users can also view these drugs in an interac-
tive graph format to view their association with the query 
target and their other targets. The Drug–Target Explorer 

Fig. 3 Layout of the Drug–Target Explorer. The “About” tab describes the apps functions and uses, the “Molecules” tab permits molecule-based 
searching, the “Genes” tab permits target queries, and the “Settings” tab allows the user to pick the fingerprinting method used

http://www.synapse.org/dtexplorer
http://www.synapse.org/dtexplorer
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is available at www.synap se.org/dtexp lorer . The source 
code for the Drug–Target Explorer app is available at 
https ://githu b.com/Sage-Bione twork s/polyp harma colog 
y-db. The source code is licensed under Apache 2.0.

Results
The Drug Target Explorer was designed to facilitate the 
following use-cases: hypothesis generation of targets for 
newly-discovered molecules, identification of off-targets 
for existing bioactive research molecules, and exploration 
of polypharmacology, and identification of molecules for 
known targets. Below, we include vignettes highlighting 
how the Drug–Target Explorer can facilitate analysis in 
these areas.

Hypothesis generation of targets for newly-discovered 
molecules
To highlight the use of this app to find potential off-tar-
gets of a novel molecule, we queried the Drug–Target 
Explorer for C21, a recently-published Polo like kinase 
(PLK) inhibitor that is not captured in our database 
[34]. This molecule inhibits Plk2 and Plk1 in the low nM 
range, and Plk3 in the low uM range [34]. Starting at a 
similarity of 1, we decreased the similarity cutoff until we 

identified the most similar molecule in the database at a 
similarity of 0.74 (CHEMBL3609309), a BRD4-binding 
molecule. We then continued to decrease the similar-
ity threshold to identify other molecules and targets in 
the database. At a similarity cutoff of 0.65 we identified 
15 molecules (Fig.  4a, Additional file  1: Supplemental 
Table  1). PLK1 and PLK2 are known targets of several 
of these molecules, such as BI 2536 and volasertib. Curi-
ously, CAMKK2, BRD4, BRDT, PLK3, PDXK, and PTK2 
are also targeted by molecules in this chemical set, with 
pChEMBL values > 6–8. A plausible hypothesis could be 
that these targets are affected by this family of molecules, 
including the query molecule, in the 10–1000 nM range, 
which would indicate that further research is needed to 
determine the selectivity of C21 or other structurally 
related molecules. 

Identification of targets for existing bioactive research 
molecules
This app may also be useful in identifying alternate tar-
gets of existing molecules in a preclinical or exploratory 
research setting. In order to confidently interrogate the 
role of cellular targets, one must use compounds with 
specificity for those targets. A well-known example of a 

Fig. 4 Molecule–target networks highlight targets within chemical families. Using the novel Plk inhibitor C21 as a query with a Tanimoto cutoff of 
0.65 (SMILES: CCNC(=O)C1=CC2=C(C=C1)N(C=C2)C1=NC=C2N(C)C(=O)[C@@H](CC)N(C3CCCC3)C2=N1), we identify 15 related molecules (blue 
vertices), and observe several targets (green vertices) common to multiple members of this group of structurally related molecules, including PLK1, 
PLK2, BRD4, CAMKK2, PTK2, and PDXK

http://www.synapse.org/dtexplorer
https://github.com/Sage-Bionetworks/polypharmacology-db
https://github.com/Sage-Bionetworks/polypharmacology-db
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non-specific inhibitor is imatinib. This molecule, devel-
oped for use in the treatment of chronic myelogenous 
leukemia, was initially considered a selective inhibitor of 
Abl [35]. More recently, several other targets have been 
identified for imatinib such as KIT, PDGFRA, and PDF-
GRB [36]. Querying the Drug Target Explorer indicates 
that there is evidence for 59 targets of imatinib, several of 
which have pChEMBL values within a reasonable range 
of Abl, PDGFRA, and PDFGRB (Additional file  2: Sup-
plemental Table 2). These targets must all be considered 
when evaluating imatinib in human model systems.

A more recent example is the tool compound G-5555, 
a selective PAK1 inhibitor [37]. This compound has been 
used to demonstrate the role of PAK1 in cellular pro-
cesses such as invasion [38]. A search of the Drug–Tar-
get Explorer database showed that this molecule not 
only binds PAK1 (mean pChEMBL = 7.79, Table  4), but 
there is qualitative evidence for effects on PAK2/3, and 
quantitative evidence suggesting an effect on SIK2, 
MAP4K5, and PAK2 at similar concentrations of G-5555 
(mean pChEMBLs 8.05, 8, and 7.69 respectively, Table 4). 
G-5555 also may have an effect on STK family proteins 
(STK24, STK25, STK26) and LCK. Therefore, any find-
ings with G-5555 with regards to PAK1 inhibition must 
be validated with other selective inhibitors or genetic 
approaches, as Jeannott and colleagues did (using other 
PAK inhibitors such as FRAX597 and FRAX1036, as 
well as PAK1 silencing RNA), to confirm that the effects 
observed are PAK1 specific [38].

Exploration of polypharmacology and related molecules 
in biological data
In order to provide biological context, this app allows 
the user to aggregate multiple targets from compounds 
into functional categories. Using the previous example 
of G-5555, we performed enrichment analysis on the list 
of targets to identify potential biological pathways that 
this molecule may disrupt. In doing so, we observed that 

G-5555 targets are enriched in several Gene Ontology 
terms and KEGG Pathways like T cell receptor signal-
ing (p = 1.62e-6), Ras/MAPK signaling (p = 3.13e-4), and 
Golgi-localized proteins (p = 2.86e-2), among several 
others (Additional file 3: Supplemental Table 3). The app 
also allows the user to compare the query molecule to 
drugs in the Cancer Cell Line/CTRP and GDSC/Sanger 
cell line screening datasets. Specifically, the app identifies 
the most similar molecule (Tanimoto similarity) available 
in these datasets and uses that molecule as a reference 
to calculate the Spearman correlation of drug response 
across all drugs within the dataset. For example, a search 
for ABT-737, a BCL family inhibitor, (Fig.  5a) tests the 
Spearman correlation of AUCs in all cell lines treated 
with ABT-737 to the AUCs across all cell lines for all 
other drugs in the CCLE dataset. The app plots these cor-
relations with respect to the Tanimoto similarity of each 
CCLE molecule to the input molecule. The plot shows 
several molecules with highly and significantly correlated 
biological activity to ABT-737 (such as other BCL family 
inhibitors, navitoclax, ABT-199, and combinations with 
navitoclax) that appear to be more chemically similar to 
ABT-737 than the majority of the CCLE-tested drugs. 
Interestingly, this also reveals that SZ4TA2, a BCL-XL 
inhibitor, while structurally related to ABT-737, does 
not have a correlated biological response in the CCLE 
dataset.

This approach can also be used to explore the land-
scape of chemically similar drugs even when the query 
drug is not in the drug screening datasets. For example, 
in Fig.  5b, a query for 2′-deoxycytidine, which is not in 
the CCLE dataset, identifies cytarabine hydrochloride 
as the most structurally similar molecule in the CCLE 
screening set. Using this molecule as a reference, the 
app calculates the drug response Spearman correlation 
with the other drugs in the dataset and identified several 
other molecules that are structurally similar to the input 
molecule. For example, gemcitabine is quite structurally 

Table 4 Targets of G-5555 found in the Drug–Target Explorer Database

Molecule name HGNC symbol Mean pChEMBL n Quantitative n Qualitative KSI Confidence

CHEMBL3770443 PAK1 7.79 4 1 0.127 2.27

CHEMBL3770443 PAK2 7.69 3 1 0.125 1.64

CHEMBL3770443 LCK 7.28 1 0.119 − 0.229

CHEMBL3770443 MAP4K5 8 1 0.13 − 0.229

CHEMBL3770443 SIK2 8.05 1 0.131 − 0.229

CHEMBL3770443 STK24 7.37 1 0.12 − 0.229

CHEMBL3770443 STK25 7.47 1 0.122 − 0.229

CHEMBL3770443 STK26 7.7 1 0.126 − 0.229

CHEMBL3770443 PAK3 1 − 0.229
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similar to the input molecule (2′-deoxycytidine) (> 0.8) 
and has a highly correlated drug response to the refer-
ence molecule (cytarabine HCl) (> 0.75). We can also 
find examples of drugs that are structurally distinct but 
functionally similar (clofarabine) as well as drugs that are 
functionally distinct but structurally similar (zebularine).

Identification of molecules for known targets
Finally, the tool allows users to perform a reverse search, 
i.e. identify molecules that have an association with a 
query target or targets and assess the known selectivity 

of these molecules. For example, Petrilli et  al. identi-
fied LIM domain kinases as targets of interest in tumors 
caused by the genetic disease neurofibromatosis type 2 
(NF2) [39]. They found that pharmacologic (LIMK1/2 
inhibitor BMS-5) and genetic modulation of LIMK1 and 
LIMK2 caused cell-cycle inhibition and reduced viability 
in merlin (Nf2) deficient Schwann cells [39]. In the con-
text of follow-up studies, it may be beneficial to test alter-
nate molecules that target LIMK1/2 with greater potency 
than BMS-5. We used the Drug–Target Explorer to find 
molecules that target LIMK1 and LIMK2 (Additional 

Fig. 5 Exploration of similar molecules in biological datasets. a A search for ABT-737 identifies similarly-acting BCL family inhibitors in the CCLE 
dataset, including ABT-199, navitoclax, and combinations of navitoclax with other drugs. b A search for 2′-deoxycytidine identifies the most 
structurally similar molecule in the CCLE dataset (cytarabine HCl) and identifies several molecules with highly and significantly correlated drug 
responses, including clofarabine, gemcitabine, and decitabine
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file 4: Supplemental Table 4, Fig. 6a). For example, BMS-5 
(CHEMBL2141887 in the Drug–Target Explorer) has 
mean pChEMBLs of 7.33 and 7.07 for LIMK1 and LIMK2 
respectively, while CHEMBL3623442 has pChEM-
BLs of 9 and 8.52 for LIMK1 and LIMK2 respectively. 
Another interesting possibility is the identification of 
multiple molecules with overlapping desired targets and 

non-overlapping off-targets to reduce off-target effects, 
or to identify single-target, multi-drug combinations as 
outlined by Fitzgerald et  al. 2006 [40]. Using the above 
scenario with LIMK1/2, it may be possible to use struc-
turally distinct molecules in combination or in sequence, 
like CHEMBL3356433 and others that do not have iden-
tical known off-targets (Fig.  6a) to reduce off-target 

Fig. 6 Target-based queries identify molecules that target a gene of interest. a A gene-based query for two targets (green vertices), LIMK1 and 
LIMK2, identifies 10 molecules (blue vertices), as well as other targets affected by these molecules. b A query for multiple targets relevant to tumors 
caused by neurofibromatosis type 2 identifies three molecules that have associations with these targets



Page 12 of 14Allaway et al. J Cheminform  (2018) 10:41 

effects while targeting LIMK1/2. The opposite approach 
could also be taken by finding a single molecule that 
binds multiple desired targets. In the case of merlin-defi-
cient cells, focal adhesion kinases (FAKs) such as PTK2 
(FAK2) and PTK2B, as well as Aurora kinase A (AURKA) 
have been highlighted as potential targets of interest [39, 
41, 42]. Using the Drug–Target Explorer, we can identify 
molecules that target LIMK1/2, PTK2/2B, and AURKA 
(Additional file  5: Supplemental Table  5, Fig.  6b). Using 
this information, a rational hypothesis might be that 
CYC116 or danusertib could be effective and selective for 
NF2-deficient tumor cells; to our knowledge, the use of 
these molecules in this setting has yet not been explored.

Conclusions
In the present study, we demonstrate that the Drug–Tar-
get Explorer enables the user to look up targets for novel 
and known molecules such as C21, G-5555, and imatinib, 
as well as explore networks of these drugs and their tar-
gets. Users can perform target enrichment to consolidate 
multiple targets to into pathways, compare query mol-
ecules to screening datasets, and identify bioactive mol-
ecules given a query target.

Several future directions are envisioned for this appli-
cation. The code and database has been designed in such 
a way that any database with structural information 
and drug–gene target information (qualitative associa-
tions, or quantitative associations that can be coerced to 
pChEMBL values) can be harmonized and integrated 
into the database. Therefore, as new datasets become 
available, such as the recently-published Drug–Target 
Commons [43], they can be integrated and released. 
We also envision occasional errors being identified as 
the database is explored and vetted by users and have 
included a feedback form for users to suggest new data 
to integrate, as well as to highlight necessary corrections 
to the dataset. Currently, the query molecule to full data-
base similarity calculation is computationally intensive. 
One solution to speed up calculation times may be to 
implement a locality sensitive hashing method in future 
versions of the database and web app, such as the method 
devised by Cao et  al. 2010 [44]. An additional planned 
feature for this app is the implementation of a bulk anno-
tation feature to allow users to annotate HTS data with 
targets and/or putative targets of identical or structur-
ally related molecules. Finally, the integration of a pre-
dictive framework for identifying targets of query drugs 
based on drug and target feature data would enable users 
to quantitatively predict targets of novel molecular enti-
ties rather than manually exploring structurally similar 
molecules.

The Drug–Target Explorer enables users to explore 
known molecule–human target relationships as they 

relate to chemical similarity rapidly and with minimal 
effort. We anticipate that users such as biologists and 
chemists using chemical probes or studying preclinical 
therapeutics will find this tool useful in several areas. 
Specifically, this tool may aid drug discovery efforts 
by accelerating hypothesis generation, simplifying the 
transition from phenotypic HTS results to mechanistic 
studies, and streamlining the identification of candidate 
molecules that target a protein or mechanism of interest.

Availability and requirements
  • Project name: Drug–Target Explorer
  • Project home page: http://www.synap se.org/dtexp 

lorer 
  • Operating system(s): Platform independent
  • Programming language: R
  • Other requirements: Chrome, Safari, or Firefox
  • License: Apache 2.0

Additional files

Additional file 1: Supplemental Table 1. Targets of C21-like compounds 
in the Drug–Target Explorer Database. Related to Fig. 2.

Additional file 2: Supplemental Table 2. Targets of imatinib in the Drug–
Target Explorer Database. Related to Table 2.

Additional file 3: Supplemental Table 3. Target enrichment analysis 
of G-5555 highlights putative mechanistic effects. G-5555 targets were 
enriched in multiple Gene Ontology terms and KEGG pathways. Related 
to Fig. 2, Table 2.

Additional file 4: Supplemental Table 4. Molecules targeting LIMK1/2. 
The database was queried for molecules that may modulate LIMK1 and 
LIMK2; this analysis revealed a large set of putative tool compounds. 
Related to Fig. 2.

Additional file 5: Supplemental Table 5. Identification of multi-kinase-
targeting molecules for NF2. A query of the database for molecules that 
target several kinases of interest in NF2 (AURKA, LIMK1/2, PTK2/2B) identi-
fied 3 polypharmacologic compounds. Related to Fig. 2.
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