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Abstract

Monitoring programs are fundamental to understanding the state and trend of aquatic eco-

systems. Sampling designs are a crucial component of monitoring programs and ensure

that measurements evaluate progress toward clearly stated management objectives, which

provides a mechanism for adaptive management. Here, we use a well-established marine

monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to

investigate whether a sampling re-design has increased the program’s capacity to meet its

primary objectives. Specifically, we use bootstrap resampling to assess the change in statis-

tical power to detect temporal water quality trends in a 15-year inshore marine water quality

data set that includes data from both before and after the sampling re-design. We perform a

comprehensive power analysis for six water quality analytes at four separate study areas in

the GBR Marine Park and find that the sampling re-design (i) increased power to detect

trends in 23 of the 24 analyte-study area combinations, and (ii) resulted in an average

increase in power of 34% to detect increasing or decreasing trends in water quality analytes.

This increase in power is attributed more to the addition of sampling locations than increas-

ing the sampling rate. Therefore, the sampling re-design has substantially increased the

capacity of the program to detect temporal trends in inshore marine water quality. Further

improvements in sampling design need to focus on the program’s capability to reliably

detect trends within realistic timeframes where inshore improvements to water quality can

be expected to occur.

Introduction

Monitoring programs are fundamental to understanding the state and trend of ecosystems

and to assessing the abundance, distribution and occurrence of biota or concentrations of

chemical and biological parameters. A crucial component of scientifically robust monitoring

programs is that the sampling design ensures measurements evaluate progress toward clearly
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stated management objectives [1–4]. Recent environmental studies that assessed the influence

of sampling design on detecting change include Wagner et al. [5] who looked at the statistical

power to detect temporal trends in riverine contaminants in the Chesapeake Bay Watershed.

Further, O’Hare et al. [6] simulated the effect of network re-design on the statistical power to

detect long-term trends across a national monitoring network of three key ecological indica-

tors. Data collected within a rigorously designed monitoring program provide sufficient statis-

tical power to assess change in indicators aligned with monitoring objectives, providing a

mechanism for management intervention or adjustments [1, 7, 8]. Low power indicates a high

probability of concluding that no environmental impact has occurred when in reality it has,

resulting in substantial short- and long-term costs due to necessary action not being taken [1].

Optimal sampling designs balance the power and precision of primary parameters against

budget, resource and practical constraints in an integrative and holistic manner [6, 9, 10].

Recently, O’Hare et al. [6] investigated the optimisation of statistical power to detect long-term

trends when re-designing existing large-scale environmental monitoring networks. However,

we are unaware of any studies that have used long-term monitoring data from both before and

after a sampling re-design to evaluate whether the intervention has improved power to meet

the program’s objectives.

The Great Barrier Reef (GBR) Marine Monitoring Program (MMP) is a well-established

monitoring program with sufficient data to investigate the effect of sampling re-design on the

statistical power to detect trends in marine water quality. The MMP monitors the health of

inshore ecosystems in the GBR Marine Park, including coral reefs (Thompson et al., 2014),

seagrass meadows [11], and water quality [12] to assess progress against the objectives of the

Reef 2050 Long Term Sustainability Plan [13] and the Reef 2050 Water Quality Improvement

Plan [14]. The MMP Inshore Water Quality component (MMP WQ), the focus of this study,

was first established in 2005 [15] and builds on monitoring activities conducted in the GBR

Marine Park since the early 1990s [16, 17]. The objectives of the MMP WQ have evolved since

2005; however, the aim of assessing temporal and spatial trends in inshore marine water qual-

ity has remained the program’s primary objective [12, 15]. The current overarching objective

of the MMP WQ is to assess temporal and spatial trends in inshore marine water quality and

to link pollutant concentrations to end-of-catchment loads [18]. From 2005 to 2014, the MMP

WQ consisted of two main components: (i) since 2005, monitoring of ambient water quality

using grab samples and data-logging instruments [19]; and (ii) since 2007, monitoring of flood

plumes (resulting from river flood events) in the coastal ocean using water quality grab sam-

ples and remote sensing [20].

Following a critical review of the statistical design for the overall MMP, Kuhnert et al. [21]

provided a set of considerations to the Great Barrier Reef Marine Park Authority (GBRMPA)

that included a more comprehensive sampling design to improve the delivery of the MMP

WQ monitoring objectives. Specifically, for the ambient water quality sampling component of

the MMP WQ, which is the focus of this study, Kuhnert et al.’s [21] advice concentrated on

the sampling design’s spatial representativeness and the capacity to link water quality data

with other components of the program. In February 2015, GBRMPA, in collaboration with

research partners, implemented the current MMP program, which included a re-design that

added additional sampling locations and increased within-region sampling frequency [12].

Here, we aim to close an iteration of the adaptive monitoring cycle [4] by evaluating

whether the MMP WQ sampling re-design has increased the statistical power to meet the pro-

gram’s objective of assessing trends in inshore ambient water quality. Specifically, we use a

bootstrap resampling algorithm [22, 23] to perform a comprehensive evaluation of power to

detect trends for six water quality analytes between the 2005–2014 and the 2015–2019 sam-

pling designs at four separate study areas. Furthermore, we statistically examine the effect of
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increasing the sampling frequency versus adding additional sampling locations on the power

to detect a change in water quality trends.

Materials and methods

Great Barrier Reef

The GBR is the most extensive coral reef system in the world, extending for 2,300 km along

Australia’s north-eastern coast [24–26]. The GBR region has been protected as the 344,400

km2 GBR Marine Park since 1975 and inscribed as the 348,000 km2 GBR World Heritage Area

by UNESCO in 1981. The GBR World Heritage Area contains approximately 20,000 km2 of

coral reefs, 43,000 km2 of seagrass meadows, 25,600 km2 of shoals, and extensive mangrove

forests [26]. Despite a high level of protection, the condition of GBR ecosystems has deterio-

rated over the past decades (Great Barrier Reef Marine Park Authority, 2019) due to the com-

bined impacts of mass coral bleaching events [27, 28], Crown-of-Thorns starfish outbreaks

[29], and severe tropical cyclones [30], as well as poor inshore water quality [31–33].

Study areas

The current MMP WQ monitors the inshore waters of the GBR Marine Park across five of the

six Natural Resource Management (NRM) regions: Cape York, Wet Tropics, Burdekin,

Mackay-Whitsunday, and Fitzroy (Fig 1). In Australia, NRM regions are based on catchments

or bioregions, and are managed by regional NRM bodies that are responsible for protecting

and managing natural resources. In our study, we consider monitoring data collected across

four study areas within three of these NRM regions, namely the Russell-Mulgrave and Tully

study areas (within the Wet Tropics NRM region), the Burdekin study area (i.e., the Burdekin

NRM region), and the Mackay-Whitsunday study area (i.e., the Mackay-Whitsunday NRM

region). This study uses inshore water quality data obtained from ambient monitoring using

grab samples at fixed locations across these four study areas from 2005 to 2019.

MMP WQ sampling design: 2005–2014 and 2015–2019

From 2005 to 2014, inshore water quality was monitored at 14 fixed sampling locations across

the Wet Tropics, Burdekin, Mackay-Whitsunday, and Fitzroy NRM regions three times per

year (wet, early and late dry seasons) by the Australian Institute of Marine Science (AIMS)

[34] (Fig 1A). These sampling locations were originally selected to represent measured or pre-

sumed gradients in coastal water quality related to river discharge from priority catchments

[15, 19, 35]. In this study, we used data from ambient MMP WQ grab sampling across 10 of

the 14 locations that were monitored. This included three locations each in the Russell-Mul-

grave (RM1, RM7, RM8), the Burdekin (BUR1, BUR2, BUR4), and the Mackay-Whitsunday

(WHI0, WHI1, WHI4) region, and one sampling location in the Tully region (TUL3) (Fig 1A

and Table 1). These study areas were chosen because monitoring continued at these locations

through to 2019, after a change in sampling design implemented in 2015. Five locations (Snap-

per, WHI0, FTZ1, FTZ2, and FTZ3; Fig 1A) were monitored from 2005 to 2014 but were dis-

continued in 2014 due to funding constraints.

Data from Snapper, FTZ1, FTZ2, and FTZ3 were excluded due to the regions containing

these locations not being included in the post-2015 re-design. Data from the WHI0 location

were included as they are representative of the pre-2015 sampling design in the Mackay-Whit-

sunday region. Monitoring at locations in the Fitzroy NRM region recommenced in late 2020,

however, due to the gap from 2015 to 2020 these locations were unsuitable and not included in

the analyses.
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In 2014, GBRMPA undertook a comprehensive review of the overall MMP [36], which

included an external assessment of the MMP WQ sampling design [21]. In the context of our

study, this review suggested that monitoring of ambient water quality using grab samples and

data-logging instruments be retained, but could better meet its objectives by (i) increasing spa-

tial representativeness in high-risk inshore areas (as defined in [37]), and (ii) increasing sam-

pling frequency to investigate potential water quality drivers of other MMP components (i.e.,

seagrass and coral cover). In 2014, the MMP WQ sampling design was modified based on new

knowledge of the spatial patterns of water quality [37–39], recommendations from a statistical

analysis of MMP data from 2005–2012 [21], the desire to continue the long-term time series,

and trade-offs due to logistical and/or funding constraints.

The current sampling design was implemented in February 2015 and included (i) adding

sampling locations in the Cape York, Wet Tropics, Burdekin, and Mackay-Whitsunday NRM

regions, and (ii) increasing sampling frequency within regions. Grab sampling across the four

study areas of interest occurs now at 22 sampling locations (Fig 1B and Table 1), including

most of the original sampling locations (except Snapper, the three Fitzroy locations, and

WHI0), allowing for the continuation of the decadal time series.

Fig 1. Survey locations of the Marine Monitoring Program for Inshore Water Quality from (a) 2005–2014 and (b) 2015–2019. The values of n refer to the

number of samples taken per year across the ten-year and five-year sampling periods respectively. The dark blue area represents the Great Barrier Reef World

Heritage Area; the dark blue lines within the GBR Marine Park represent the six marine Natural Resource Management (NRM) regions. Locations used in the

current study are detailed in Table 1.

https://doi.org/10.1371/journal.pone.0271930.g001
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Sampling frequency within regions increased to between five and twelve times annually

and focussed on the Austral summer wet season (twice monthly to monthly) to better charac-

terise this period of higher variability with fewer visits in the drier winter months. Specifically,

grab sampling in the Russell-Mulgrave and the Tully study areas was conducted ten times a

year and shared equally by AIMS and James Cook University (JCU). For sites in the Burdekin

study area (except BUR10) sampling was conducted four times per year by AIMS and five

times per year by JCU. Moreover, AIMS conducted grab sampling at BUR10 every month, and

in the Whitsunday area (WHI1, WHI4, WHI5, WHI6, WHI7) five times per year.

Water quality monitoring

The MMP WQ conducts ambient water quality monitoring, including grab sampling during

non-event periods (i.e., outside river flooding events), to collect a suite of physical, chemical, and

biological water quality analytes at each sampling location [12]. Here, we focus on six water qual-

ity analytes, namely total suspended solids (TSS), Secchi disc depth (Secchi), Chlorophyll a (Chl-

a), particulate nitrogen (PN), particulate phosphorus (PP), and nitrate/nitrite (NOx). These six

analytes are considered relatively robust indicators that integrate several bio-physical processes in

the coastal ocean, and water quality guideline values are available for all six of these analytes [40].

From 2015 onwards, the sampling methodologies between AIMS and JCU were generally

consistent, however, some institutional differences in analytical methods are described below.

At each sampling location, water was collected using Niskin bottles from the sub-surface (~0.5

m below water surface) and bottom (~1 m above the seabed) of the water column between

8:00 and 16:00. From each Niskin bottle, water samples were taken either in duplicate (AIMS)

or as single samples with 10% of samples as duplicates (JCU) and processed on-board the ves-

sel as follows. Samples for NOx analysis were immediately filtered (Minisart, pore size

0.45 μm) and the filtrate was frozen until analysis at the laboratory. Concentrations of NOx

were determined by segmented flow analysis (Seal AA3 Analyser) at AIMS [41, 42] and JCU

(Flow Solution FS3700 OI Analytical segmented flow auto analyser). Samples of Chl-a were fil-

tered (Whatman GF/F, pore size 0.7 μm) under vacuum and the filters were stored frozen

until analysis. Chl-a samples were extracted in 90% acetone, ground, and supernatant fluores-

cence was read on a fluorometer (Turner 10-AU) at AIMS [43]; JCU samples collected before

Table 1. Study areas, survey locations and seasonal sampling frequency for the subset of the marine monitoring program used in the power analysis detailed by

design i.e., 2005–2014 or 2015–2019.

Design Sampling frequency

2005–2014 Study area Locations Wet-season Dry-season

Russell-Mulgrave RM1, RM7, RM8 1 2

Tully TUL3 1 2

Burdekin BUR1, BUR2, BUR4 1 2

Mackay-Whitsunday WHI0, WHI1, WHI4 1 2

2015–2019

Russell-Mulgrave RM3, RM7, RM8, RM10 7 3

RM1 3 2

Tully TUL2, TUL3, TUL5, TUL6,

TUL8, TUL10

7 3

Burdekin BUR1, BUR2, BUR4, BUR7, BUR13 7 2

BUR10 6 6

Mackay-Whitsunday WHI1, WHI4, WHI5, WHI6, WHI7 3 2

The values under sampling frequency refer to the number of sampling visits per year within the wet (November to April) or dry seasons (May to October).

https://doi.org/10.1371/journal.pone.0271930.t001
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2019 were analysed on a Shimadzu UV-1700 spectrophotometer and from 2019 onwards Chl-

a samples were analysed on a Turner Trilogy 7200–000 fluorometer. PN samples were filtered

(Whatman GF/F, pore size 0.7 μm) under vacuum and the filters were stored frozen until ana-

lysed by high temperature combustion (Shimadzu TOC-V with Total Nitrogen unit) at AIMS

and JCU (from 2018 onwards). Samples of PP were filtered (Whatman GF/F, pore size 0.7 μm)

under vacuum and the filters were stored frozen until analysis by persulfate digestion and col-

orimetric determination on a spectrophotometer at AIMS [44]. The same PP method was fol-

lowed by JCU from July 2018 onwards; earlier PN and PP values on JCU samples were defined

as the difference between total filterable nitrogen/phosphorus (0.45 μm filtered sample) and

total nitrogen/phosphorus (unfiltered digested sample) measured on a Flow Solution FS3700

OI Analytical segmented flow auto analyser. Samples of TSS were filtered (polycarbonate, pore

size 0.4 μm), rinsed with ultrapure water, and measured gravimetrically at AIMS [45]. The TSS

procedure at JCU was similar but used a different filter type (Whatman GF/C, pore size

1.2 μm) in the earlier samples (pre-2019). Secchi depth was determined as the visual limit that

a Secchi disc can be seen when cast on the sunlit side of a vessel.

Water quality results from the AIMS laboratory were quality controlled with a series of

approaches including procedural blanks, spike recovery in seawater, assessment of analytical

accuracy with proficiency testing biannually (Quasimeme, http://www.quasimeme.marlab.ac.

uk/about.htm) and annually (the Environmental Nutrient Collaborative Trial program, Aus-

tralia), and assessment of analytical precision through comparison of duplicate samples. Dupli-

cate sample performance was assessed through the coefficient of variance between duplicates,

where this value exceeded 20%, duplicate samples were re-run from spare samples collected at

the same location and time. The JCU laboratory also participated in the annual Environmental

Nutrient Collaborative Trial program. Every tenth sample at the JCU laboratory was analysed

in duplicate and if the mean of the results was >10% then the sample was reanalysed using

stored spare samples. After quality control was completed, results were loaded into the AIMS

Oracle database. For this study, all available ambient monitoring data were extracted (2005-

23-05–2019-07-03) and sampling locations that were not included in our project were

excluded. Samples were collected under Marine Park permit numbers G12/35236.1 for AIMS

and G15/37587.1 for JCU issued by the Great Barrier Reef Marine Park Authority.

Preparation of data for power analysis

For each sampling time point at each sampling location, values for each water quality analyte were

initially averaged over any duplicate measurements, and subsequently depth-averaged by taking

the mean of surface and bottom values, which is the standard for the MMP WQ reporting [46].

Measurements of nitrite and nitrate in the tropical coastal ocean are often below the detection

limit (BDL) of analytical instruments, which are reported as half the detection limit (1/2DL) in the

MMP WQ dataset. NOx measurements can therefore represent (1) the sum of two BDL measure-

ments, or (2) comprise a BDL measurement and a concentration measurement above the detec-

tion limit. For NOx, we investigated the implications of imputing BDL values with 1/2DL values

on statistical power by comparing results with two other methods (see S1 File and S1 Fig).

Water quality data obtained from AIMS and JCU showed differences for some water quality

analytes when visualised in time-series plots (see an example in Fig 2). Potential reasons for

between-institution variability (AIMS versus JCU) could include temporal differences in sam-

pling times during the year, with JCU conducting more grab sampling during the wet season,

which generally has higher variability in water quality data due to greater river discharge [47,

48]. Additionally, AIMS and JCU have used different analytical methods for Chl-a, TSS, PP

and NOx (detailed above). Regardless, for all six water quality analytes except for NOx there
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was no a priori reason to exclude data from either institution with the observed variability con-

sidered a good measure of the natural variation in the ecosystem [33]. For NOx, we did not

incorporate the JCU data as inter-institutional validation showed differences that could not be

attributed solely to measurement timing and were likely related to differences in analytical

methods. For the remaining five analytes, we investigated whether there was a mean difference

between measurements from AIMS and JCU institutions by including an intercept term

indexed by institution in Model 1 below.

Bootstrap method

We used a bootstrap resampling method to investigate power to detect a linear trend in the mea-

surements of each of the six water quality analytes considered. We propose a simplified parametric

version of the model fitted to the MMP data [12, 46]. The simplified model is expected to be

straightforward to repeat in future analyses, and in our instance, maintains strong links to the the-

ory surrounding bootstrapping of a regression model, which is weakened by using random-effects

or smooth terms [22, 49]. Furthermore, the model is required to be applicable and fixed across

two sampling designs with the pre-2015 design being sparser in space and time.

We model the relationship between time and analyte using the following linear regression

model with a harmonic seasonal term

Yi ¼ b0 þ bp þ bs þ b1xi þ b2 cos
2p~xi

T

� �

þ b3 sin
2p~xi

T

� �

þ �i; i ¼ 1; . . . ; n; ð1Þ

where the �is are uncorrelated with zero means and equal variance σ2, n is the sample size,

Fig 2. Conceptual representation of one realisation of the bootstrap algorithm. Observed (red) and bootstrapped (blue) data for Chl-a concentration (μg L-

1) taken from a single sampling location (only one of the six Burdekin locations from the regional analysis is shown for clarity) within the Burdekin study area.

Panels a) to c) represent the sub-sampled time-series periods for the pre-2015 data, while panel d) depicts the post-2015 data. The blue points and lines

represent one replicate of the bootstrap algorithm with a 0.1 year-on-year fractional increase i.e., residuals are resampled from a fit of Model 1 to the observed

data and simulated using the expectation of (1) with a new linear term substituted such that the trend (dashed blue line) is increasing at a 0.1 fractional year-on-

year change from the intercept term of Model 1.

https://doi.org/10.1371/journal.pone.0271930.g002
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T = 365.25 is the average length of the calendar year in days, β0 is the intercept, βp is the

effect due to project (p: AIMS or JCU) and, βs is the effect on analyte measure due to sam-

pling locations within a region, which vary by region and time-series analysed, β1 is the linear

trend and β2 and β3 represent the coefficients characterising the harmonic seasonal compo-

nent. The data (xi, yi) correspond to the sampling date and the log-transformed analyte mea-

surement on the i-th day, respectively. The term ~xi represents the number of days from

January 1st of the first sampling year for the seasonal component ensuring that the seasonal

curve estimated is relative to January 1st, which aids in interpretation. We log-transform the

constituent measurements to improve the positively skewed residual distribution that typi-

cally arises in regression analyses where analyte concentration measurements are the depen-

dent variable. This positive skew correction was validated by residual inspection post

analysis using Model 1.

The seasonal component is a periodic function of time with a period of one year and

models the deviation around the linear trend and has been referred to as the harmonic

regression model [50, 51]. Higher order harmonic terms, which allow for more complex

seasonal structures, were investigated for pilot analyses but did not improve the model fit

(results not shown). The seasonal model is incorporated because concentrations of the six

water quality analytes considered here vary with intra-annual seasonal processes such as

rainfall and river discharge [47, 48]. Seasonal variation is expected to be detectable at the

inter-annual scale due to dry and wet season variation. Initial computation of wet and dry

inter-annual averages showed differences for a substantial proportion of the analytes

(results not shown). The harmonic model is a simplified parametric version of the general-

ised additive model smooth term fitted in the MMP reporting [12, 46]. Initial investigations

showed that the harmonic model had higher model R2 for a majority of the site-analyte

combinations than a simple wet-dry dummy variable model, which is a common practice

for deseasonalising data [52].

To investigate the exclusion of autocorrelated errors, for all region site-analyte combina-

tions (total number of combinations = 198), we performed the Durbin-Watson test for auto-

correlation of residuals [53], from fitting the within site version of Model 1. At an FDR [54] of

5%, only 10 of the 198 site-analyte combinations rejected the null hypothesis of no autocorrela-

tion (of AR1 type) suggesting that autocorrelation is not pervasive across designs and analytes

within sites. To investigate the impact of model misspecification due to autocorrelation on

inference, which could potentially affect the significance of the trend term within each boot-

strap replicate, we investigated the power for the primary analyses using heteroskedasticity

and autocorrelation robust standard errors [55] implemented in the sandwich [56] package in

R.

To investigate the potential impact of spatial autocorrelation, we visualised residual vario-

grams of residuals of the regional model (Model 1) in the gstat [57] R package. We further per-

formed the permutation test for Moran’s I statistic in the spdep [58] package in R. No general

evidence for spatial autocorrelation in the residuals was observed from these analyses (results

not shown). Clustered sandwich estimators [59] were also investigated to adjust inference in

the trend parameter for the potential that errors are spatially correlated within (but not

between) sites in the R package sandwich.

For each constituent and subset of the total time-series we estimated the parameters of

Model 1 and implemented a bootstrap resampling algorithm that computes the power for a set

of target trend slope coefficients defined as the fractional year-on-year change (δ) (that is, 100δ
is the percentage change) in analyte values (see S2 File for further algorithm details).
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Power change between pre-2015 and post-2015 sampling designs

To investigate whether the sampling re-design influenced the power to detect a linear trend in

measurements of individual water quality analytes, we split the data time series into four time

periods: data with dates greater than 2005-09-18 and less than 2009-12-30 (pre-2015-S1);

greater than or equal to 2010-06-15 and less than 2015-01-01 (pre-2015-S2); between 2008-02-

01 and 2012-05-09 (pre-2015-S3); and after 2015-01-01 (post-2015). Each of these three pre-

2015 time periods span approximately 1,550 days, which is the length of the data available for

the post-2015 sampling period. This was done to allow for a valid comparison between the

pre-2015 and post-2015 sampling regimes using equal sampling periods (~5 years). The first

two pre-2015 time periods (pre-2015-S1, pre-2015-S2) were chosen as a natural division of the

ten-year pre-2015 study period. The third pre-2015 period (pre-2015-S3) was taken from the

intermediate years to average over any potential processes unique to the first two.

For each period, we estimated the parameters over the individual study area (i.e., all sam-

pling locations included) using the linear model described in Model 1 for each of the six water

quality analytes and for each of the four study areas. We used Algorithm 1 to estimate the

power to detect a linear trend with δ = (−0.2, −0.19, . . ., 0.19, 0.2) and R = 1,000. The bootstrap

process is conceptualised in Fig 2 for one bootstrap iteration using a fractional year-on-year

increase of 0.1 and data for Chl-a from a single sampling location (BUR1), which is a compo-

nent of the regional bootstrap analysis in the Burdekin area.

Power change for increasing sampling locations and sampling frequency

To investigate whether adding sampling locations or increasing per-year sampling frequency

contributed to the greatest relative improvement in power, we partitioned the post-2015 data

into the following sets: 1) we sub-sampled the post-2015 data to only those sampling locations

used in the pre-2015 sampling regime and a similar within-year sampling density to pre-2015,

which is three samples per year (baseline/null data); 2) we retained the same within-year sam-

pling density (three samples per year) as in 1) but added in the extra sampling locations for

each study area to the post-2015 data (i.e., effect of additional sampling locations); and 3) we

retained the pre-2015 sampling locations but increased the sampling density to the post-2015

data (i.e., effect of additional samples). For comparison we also incorporated the results from

all data after 2015.

Using these four data sets, we investigated the power to detect a linear trend using Model 1

for five of the six priority water quality analytes (excluding NOx) and for each of the four study

areas. NOx was excluded from this analysis as the removal of the JCU data limits the capacity

to increase the sampling density to be comparable with the other analytes in assessing the effect

of additional samples. Note that for the Mackay-Whitsunday area the sampling frequency only

increases from three to five and thus a smaller power increase is expected relative to other

regions. To estimate power, we used the bootstrap algorithm with δ = (−0.2, −0.19, . . ., 0.19,

0.2) and R = 1,000.

Results

Power change between pre-2015 and post-2015 sampling designs

The bootstrap resampling results refer to the power to detect a linear trend in a regional scale

linear model (Model 1) applied to each water quality analyte (i.e., TSS, Secchi, Chl-a, PN, PP,

and NOx) in each of the four study areas (i.e., Russell-Mulgrave, Tully, Burdekin, and Mackay-

Whitsunday). Parameter estimates and significant terms at a 5% false discovery rate [54] can
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be viewed for each model in S1 Table. Power curves were generated for each of the six water

quality analytes and each of the four time series periods (S3 Fig).

To reduce the complexity of interpreting these power curves we averaged the power values

over δ = (−0.1, 0.1), which are approximately equal for most analytes but are different for some

(e.g., NOx; S3 Fig). For all analytes, except NOx, a fractional value of 0.1 examines the 5-year

trend and power to detect a decline (exceedance of the 10th percentile of the post-2015 analyte

measurements) or increase (exceedance from the 90th percentile of the post-2015 analyte mea-

surements) in analyte values (see example calculations in S4 Fig). In the case of NOx, a 12-year

trend is examined. The average (over sampling locations in each study area) computed time to

exceed the 10th and 90th percentiles of the post-2015 data for each analyte-study area combina-

tion is presented in S5 Fig and S2 Table. Furthermore, we averaged the power at a 0.1 fractional

change over the three pre-2015 time-series periods for comparison with the post-2015 results

(see S6 Fig for results from each scenario). These summaries show that at a 0.1 fractional

change the yearly mean for most analytes will exceed the tails of the current distribution of val-

ues within four to six years and in the case of NOx, 12 to 16 years (S5 Fig).

The power analysis showed that for 23 of the 24 analyte-study area combinations the post-

2015 data had higher power to detect a 0.1 fractional linear change in analyte measurements

over a five-year period (Fig 3). Overall, we observed an average power increase of� 34% across

all analyte-study area combinations. Increases in the absolute value of power to detect a 0.1

fractional linear change ranged from 4.5% for NOx in the Mackay-Whitsunday study area to

75% (15% to 90%) for Secchi depth in the Tully study area. The power to detect a 0.1 fractional

change exceeded 80% for 13 of the 24 analyte-study area combinations in the post-2015 sce-

nario that previously had power less than 80%.

The one combination that did not show increased power in the post-2015 data was PP in

the Russell-Mulgrave study area, which had approximately 30% more power in the pre-2015

data. In this case, the raw PP data (averaged over depth and measure replicates) showed sub-

stantial differences in variation between AIMS and JCU measurements, with reduced samples

for JCU from one of the sampling locations (S7 Fig). For comparison, the AIMS and JCU mea-

surements for Chl-a in the Russell-Mulgrave study area showed higher consistency in both

value and variability (S8 Fig).

Substantial increases in power were observed for the post-2015 data in the Tully study area,

which is a likely result of the increase in sampling locations from one to six and the increased

sampling frequency (see S9 Fig for a representative example of the increase in sampling for

Secchi depth). For example, the power to detect a 0.1 fractional change for Secchi depth

increased by a factor of four to approximately 90% after the sampling re-design in the Tully

area. S10 and S11 Figs showed no change in the primary inference summarised above using

the heteroscedastic and autocorrelation robust or cluster robust standard errors, which implies

that Model 1 is reasonably specified.

Power change for increasing sampling locations and sampling frequency

Power curves were generated for each of the analyte-study area combinations across the down

sampled post-2015 data scenarios. The power curves were summarised as the average power

values over δ = (−0.1, 0.1) (Figs 4 and S12). The sampling location versus sampling frequency

analysis showed that the retention of the pre-2015 sampling regime gave substantially reduced

power relative to the current post-2015 sampling design at a 0.1 fractional change for all but

one analyte-study area combination. The exception was again PP in the Russell-Mulgrave area,

which showed increased power with the addition of sampling locations but reduced power

when the within-year sampling frequency was increased. The addition of sampling locations
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Fig 3. Power at 0.1 fractional change for six water quality analytes for pre- and post-2015 sampling designs across four study areas. The height of each bar

within each panel is the average of the two power values for δ = (−0.1, 0.1) i.e., an increasing and decreasing year-on-year fractional change of 0.1 in analyte

values. The pre-2015 (red) and post-2016 (blue) values in each panel represents a further average over three time periods (see S3 and S6 Figs). Darker grey

horizontal line represents 80% power. The columns are presented for Chlorophyll a (Chl-a), nitrate/nitrite (NOx), particulate nitrogen (PN), particulate

phosphorus (PP), Secchi depth (Secchi), and total suspended solids (TSS), for the Burdekin, Mackay-Whitsunday, Russell-Mulgrave and Tully study areas.

https://doi.org/10.1371/journal.pone.0271930.g003
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Fig 4. Power at 0.1 fractional change for six water quality analytes investigating the change in power due to increasing sampling frequency or adding

sampling locations. The height of each bar within each panel is the average of the two power values for δ = (−0.1, 0.1) for each of the subsamples of the post-

2015 data namely: all data after 2015-01-01 data (current sampling (purple)); down sample the post-2015 data to those sites used in the pre-2015 sampling

regime and a similar within year sampling density to pre-2015 (null (red)); retain the same within year sampling frequency but add in the extra sites for each

area to the post-2015 data (null + sites (blue)); and retain the pre-2015 sites but increase the sampling density to the post-2015 data (null + samples (green)).

The number above each bar corresponds to the sample size of the down sampled data set that was used to estimate Model 1 and subsequently in the bootstrap

power analysis. Darker grey horizontal line represents 80% power. The columns are presented for Chlorophyll a (Chl-a), nitrate/nitrite (NOx), particulate

nitrogen (PN), particulate phosphorus (PP), Secchi depth (Secchi), and total suspended solids (TSS), for the Burdekin, Mackay-Whitsunday, Russell-Mulgrave

and Tully study areas.

https://doi.org/10.1371/journal.pone.0271930.g004
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always increased power relative to the null scenario with varying degrees of improvement

across analyte-study area combinations. Similarly, increasing sampling frequency always

increased power relative to the null scenarios except for PP in the Russell-Mulgrave and Tully

study areas. For TSS in the Burdekin study area, and TSS and Chl-a in the Russell-Mulgrave

study area, increasing the sampling frequency equalled or increased power compared to add-

ing sampling locations. Overall, both the addition of sampling locations and increasing sam-

pling frequency increased the power to detect change relative to the null scenario. However,

the addition of sampling locations gave the greatest increase in power to detect change on

average per sample size.

Discussion

Sampling designs are crucial to ensuring that measurements in monitoring programs are capa-

ble of evaluating progress toward clearly stated management objectives [1–4]. Here, we used a

15-year monitoring dataset to investigate the effect of sampling re-design on the statistical

power to detect trends in marine water quality. We performed a comprehensive bootstrap

resampling analysis to assess the power for six water quality analytes at four separate study

areas in the GBR Marine Park. We found that the sampling re-design increased power to

detect trends in 23 of the 24 analyte-study area combinations. Specifically, our results showed

an average increase in power of 34% at an increasing or decreasing 0.1 fractional change in

year-on-year analyte values. Furthermore, we demonstrated that this increase in power is

attributed more to the addition of sampling locations (i.e., spatial coverage) than increasing

the sampling frequency (i.e., temporal coverage). Therefore, the sampling re-design has sub-

stantially increased the capacity of the MMP WQ to detect temporal trends in inshore marine

water quality, which is a component of its primary objective [18].

Sampling re-design improves power

To our knowledge, this is one of the only studies to have utilised long-term monitoring data

from both before and after a sampling program re-design to determine if the intervention has

improved statistical power. The study further required knowledge of the purpose and interven-

tion implementation, consistency in measurement practices, and the resources to complete an

assessment of the impact. Modern examples of power analysis in ecological monitoring typi-

cally assess the capacity of a current monitoring program to answer key questions aligned with

its objectives [60–63] and/or simulate prospective optimal sampling re-designs that integrate

new methodologies (analytical or experimental) and constraints on resources [8, 64, 65].

O’Hare et al. [6] simulated the effect of network re-design on the statistical power to detect

long-term trends across a national monitoring network of three key ecological indicators.

O’Hare et al. [6] highlighted that one caveat of simulated re-designs is that the process assumes

that the trends and structure of noise in future monitoring data follow similar patterns to the

pilot data. Our study is not subject to this caveat because the re-design data are observed. For

example, a simulation approach would not have integrated the increase in total data variance

related to increased sampling during the wet season, which was observed in the post-2015

data.

Although our study showed that the sampling re-design substantially increased power to

detect trends, 11 combinations did not exceed 80% power in the re-design. NOx and TSS did

not exceed 80% power for any area-analyte combination and showed the lowest power

(< 20%) on average in the pre-2015 sampling design. Likely reasons for these systematically

low baseline power values for NOx and TSS include NOx being the sum of nitrate and nitrate

measurements, which leads to many more below the detection limit values. These
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measurements require imputation, which increases trend uncertainty and lowers power.

Across all sites, on average, TSS showed the highest variability of all analytes (SD of mean

adjusted values of 3.25 relative to 0.372 for Chl-a) and the highest between-site variability

within study areas. This increased variation limits power as the sample size needs to be larger

to compensate for this higher variability to achieve similar power. Darnell et al. [66] also

observed low levels of power to detect a trend in TSS and attributed it most likely to climate

signal variability and measurement uncertainty.

Darnell et al. [66] further examined the power to detect trends in total suspended sediment

loads in the Burdekin and Tully areas of the GBR commensurate with the Reef Plan’s goal of a

20% reduction in sediment by 2020. Darnell et al. [66] used a simulation to show that the end

of catchment monitoring programs had low statistical power to obtain the 2020 goal and that a

10% year-on-year change over 20 years was required to reach 80% power. A key difference of

our study from that of Darnell et al. [66], and other studies of monitoring design and power, is

that we had the benefit of an observed post-re-design data set. These data allowed for the utili-

sation of bootstrap resampling on both the pre- and post-2015 data sets. The bootstrap resam-

pling of the residuals algorithm offers an intuitive integration of the hypothesised effect sizes

with the observed model variation. The bootstrap algorithm improves the estimation of the

trend effect uncertainty, and subsequent estimates of power, when normal-theory distributions

of the estimators are inaccurate [22]. Reflections on this study should consider that the power

analysis results are conditional on the model fitted. For example, if a more complex model

explained more of the total data variability then this may increase the power to detect trends.

As our study was comparative, we did not explore more complex models in detail, however,

models including spatial components would be a likely next step [8].

Fractional year-on-year change in analyte concentration

In our study we performed summary comparisons of the two sampling designs at a 0.1 frac-

tional year-on-year change, because the mean value of most analytes would exceed the 10th or

90th percentile of the post-2015 data within four to six years on average across sampling loca-

tions within a study area. Therefore, the 0.1 fractional year-on-year change represents a for-

ward projection where the current ecological state moves to a new state within five years (on

average). Most previous research on changes in coastal water quality has focused on nutrient

inputs (nutrient loading) to the system, typically in the context of management interventions.

Only a few studies, however, have reported measured improvements in river pollutant loads

and coastal water quality following catchment management [67]. Recently, Lefcheck et al. [68]

reported that sustained management actions had reduced measured nitrogen concentrations

in Chesapeake Bay by 23% and phosphorus concentrations by 8% since 1984. Riemann et al.

[69] described a reduction in Danish coastal waters of flow-weighted concentrations of dis-

solved inorganic nitrogen, total nitrogen (TN), dissolved inorganic phosphorus, and total

phosphorus, with the TN loading decreasing by*50% relative to pre-action values within 10–

15 years. From an increasing trend perspective, Harding et al. [70] analysed trends in periods

(1945–1980) of eutrophication in Chesapeake Bay that showed a doubling of TN and NOx

loading (increases of>120% and 90%, respectively). In a global meta-analysis of recovery of

lakes and coastal marine ecosystems from eutrophication, McCrackin et al. [71] reported that

on average coastal marine areas achieved 24% of their baseline conditions decades after the

cessation or partial reduction of nutrient loading.

Within the MMP WQ, annual mean or median values of water quality analytes are com-

pared to GBR water quality guideline values to assess condition [40]. Linking fractional year-

on-year change to these guideline values was not feasible given the variability in guideline
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values by sample location and region, coupled with many sample locations within a study area

having a yearly mean or median close to their guideline values [12]. The validation of guideline

values was not an objective of this study, so we instead used a standard 0.1 fractional year-on-

year change to allow comparison in study design at the regional and whole-of-program scale.

Although major summaries are made at a 0.1 fractional year-on-year change, comparisons are

possible for any value between -0.2 and 0.2 through inspection of supplementary power results.

We assumed that this year-on-year fractional change would be the same for each of the sam-

pling locations with different initial starting values. Model 1 does not consider that within

sampling location trends could change at different rates, with the study area estimate averaging

the within sampling location trends over the study area. Weiser et al. [72] investigated the

implications of this averaging and found higher power is achieved when grouped sites have

similar relationships. Within-sampling location power analyses could resolve this and would

be simple to implement in future studies using the methodology presented.

Particulate phosphorus in the Russell-Mulgrave region: The one exception

The power to detect change decreased in the PP data in the Russell-Mulgrave study area, pre-

senting an opportunity to understand its potential root cause. The raw post-2015 data showed

substantially increased variation, with approximately six times the variation in PP measure-

ments compared to the pre-2015 data (S7 Fig). Under a set of simplified model assumptions,

the multiple regression power calculation depends on the sample size and the model R2, which

summarises the proportion of total data variation accounted for by the linear predictor [73].

Although the variation in the linear predictor for PP explained three times the variation in the

post-2015 model when compared with the pre-2015 linear predictor, the increase in total data

variance reduced the model R2. Substantial data investigation prior and post power analysis

suggests a potential for increased variation in PP to be derived from the differences in analyti-

cal methods for PP concentration measurement between AIMS and JCU, the sampling by JCU

in higher variability wet-season, and the addition of inshore sites, which may be more respon-

sive to river discharge. The JCU lab method for PP uses the difference between the total (unfil-

tered) and filtered sample. The final result has the uncertainties in the analysis of both results

(i.e., the filtered and unfiltered sample) and hence the precision of the final result may be less

than via a direct measure. Further evidence for the high-variation observations limiting power

was observed in the increasing sampling locations versus sampling frequency analysis, where

the ‘addition of locations’ scenario had substantially higher power relative to the full post-2015

data. In this analysis, the high-variance measurements are excluded because the data are sub-

sampled to the pre-2015 sampling frequencies when monitoring was performed 2 out of 3

times in the less variable dry season. These high-variance measurements are also present in the

Tully and Burdekin regions at similar sampling instances to those observed in the Russell-Mul-

grave (see online results tool in Code Availability section). We observed that the power

decreased for PP in the Tully area when we removed these JCU observations (seen in the ’Null

+ sites’ results in Fig 4), indicating that these high variability JCU measurements influenced

power across study areas. The increase from one to six sites was substantial enough to increase

power for the Tully region in the pre- versus post-sampling design analysis. This anomaly

highlights the importance of standardising field and laboratory methodologies in monitoring

programs to reduce variation and maximise statistical power.

The importance of spatial versus temporal coverage

The increase in power to detect change following the sampling re-design can be attributed

more to the addition of sampling locations (i.e., spatial coverage) than increasing the sampling
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frequency (i.e., temporal coverage). Spatial variability could be related to differences in, and

distances from, land-based inputs [74], as well as oceanic drivers including resuspension,

transport, and shelf biogeochemical processes and metabolism [75, 76]. Andersen and Steidl

[77] through a power simulation study of terrestrial fauna observed that for the same sampling

effort across space and time, the highest power to detect changes in abundance was achieved

by maximising the number of sites. Importantly, the ‘addition of sampling locations’ analysis

has the caveat that the sampling frequency is reduced to the pre-2015 rate when monitoring

was performed 2 out of 3 times in a less variable period of the year (i.e., the dry season). This

reduces total variability in the data and is a likely contributor to the increased power of the

‘addition of sampling locations’ scenario relative to the ‘increased sampling rate’ scenario.

Across all analyte-study area combinations, the median post-2015 data variance increased by a

factor of 3.7 with only Secchi depth in the Mackay-Whitsunday having a value less than unity

(0.541). Contributing factors to this increased variation likely include the increased spatial cov-

erage of the new design, which incorporated new sites with higher variability (such as sites

near river mouths), and an increased frequency of monitoring in the higher-variability wet

season period (3 times dry season and 7 times wet season). This capturing of the increased var-

iation limits the power in the post-2015 data relative to the pre-2015 data. It is interesting that

the increase in sample size has been substantial enough to compensate for this increase in vari-

ation and has led to a more powerful sampling design for detecting temporal trends for nearly

all analyte-study area combinations.

Implications for monitoring and management

The findings of this study demonstrate that the sampling re-design in 2015 has increased the

statistical power to meet the MMP WQ’s objective of detecting trends in inshore ambient

water quality. These findings provide confidence in the current MMP WQ sampling design,

and a similar sampling design recently implemented in the Fitzroy NRM region. Our analy-

sis highlights the benefits and drawbacks of using two different laboratories across a moni-

toring program. Indeed, using two laboratories can increase confidence in the dataset with

added QA/QC components such as inter-laboratory comparisons to demonstrate the verac-

ity and replication of the datasets. However, where differences in the laboratory methods are

apparent, having separate laboratories can create added uncertainty and reduce power, as

observed for PP in our analysis. Although trend estimation was performed in our analysis,

trends in water quality analytes are formally reported on and the implications against man-

agement guideline values are discussed in the recent MMP WQ program reporting [46].

Future analyses should focus on further optimising these sampling designs to reliably detect

trends within timeframes where improvements in inshore water quality can be expected to

occur based on management activities in GBR catchments [67, 68]. Furthermore, while the

increased sampling frequency did not contribute as much to the improved power to detect

change compared to the increased sampling locations, it did allow for a more comprehensive

assessment of the within-year analyte variation. Namely, increased sampling during the wet

season allowed the program to better characterise this period of higher variability, which is a

natural feature of tropical coastal environments. This monitoring is valuable in linking pol-

lutant concentrations to end-of-catchment loads [78, 79], another overarching objective of

the MMP WQ [18]. Moreover, increased within-year sampling at locations where other com-

ponents of the inshore environments are monitored, such as seagrass condition [74] and

coral health [80], strengthen investigations into potential water quality drivers of these com-

ponents [21].
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Conclusions

In summary, we have used a real-world example of a well-established monitoring program,

namely the GBR MMP WQ, to investigate the effect of sampling re-design on the statistical

power to detect trends in marine water quality. Using a bootstrap resampling algorithm, we

performed a comprehensive assessment of power for six water quality analytes at four separate

study areas in the GBR Marine Park and showed that the sampling re-design increased power

to detect trends in 23 of the 24 analyte-study area combinations. On average per unit sampling

effort, this increase in power was attributed more to the addition of sampling locations than

increasing the sampling frequency. However, the increased sampling frequency allowed for a

more comprehensive assessment of the within-year analyte variation, which is highly valuable

information for future sampling designs and other components of the MMP. The sampling re-

design has substantially increased the capacity of the MMP WQ to detect temporal trends in

inshore marine water quality, which is a component of its primary objective [18]. The evalua-

tion of the MMP WQ to meet its objectives following the sampling re-design has closed an

iteration of the adaptive monitoring and management cycle of review, implementation, and

re-evaluation to identify potential program improvements. The results of this study provide

confidence that the sampling re-design has improved the probability of detecting trends in

inshore water quality, including changes that may be driven by reduced end-of-catchment pol-

lutant loads because of catchment management actions.
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S9 Fig. Time series of Secchi depth for the six sampling locations in the Tully study area,
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S10 Fig. Power at 0.1 fractional change using heteroskedasticity and autocorrelation

robust standard errors for six water quality analytes for pre- and post-2015 sampling

regimes across four study areas.
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S11 Fig. Power at 0.1 fractional change for six water quality analytes using cluster robust

standard errors for pre- and post-2015 sampling regimes across four study areas.

(PDF)

S12 Fig. Power curves for investigating the change in power due to increasing sampling

frequency or adding sampling locations.

(PDF)

S1 Table. Parameter estimates for fitted model for each of the pre-2015 and post-2015

data scenarios. Table columns include analyte, Pre-2015 S1, S2, S3 and Post-2015, study area,

parameter, estimate of the parameter, standard error of the estimate, t-value, p-value, the

transformed FDR p-value, logical for parameter significance at 5% FDR and parameter group

of intercept, site, project, trend and seasonal terms.

(XLS)

S2 Table. Time in years to exceed the 10th or 90th quantile of the post-2015 data for each

constituent and study area. Table columns include REGION—four study areas, DELTA—

fractional year-on-year change, ANALYTE—analyte analysed, MEAN_TIME_Q10—time in
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