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Quantifying the similarity of spectra is an important task in
various areas of spectroscopy, for example, to identify a
compound by comparing sample spectra to those of refer-
ence standards. In mass spectrometry based discovery
proteomics, spectral comparisons are used to infer the
amino acid sequence of peptides. In targeted proteomics
by selected reaction monitoring (SRM) or SWATH MS, pre-
determined sets of fragment ion signals integrated over
chromatographic time are used to identify target peptides
in complex samples. In both cases, confidence in peptide
identification is directly related to the quality of spectral
matches. In this study, we used sets of simulated spectra of
well-controlled dissimilarity to benchmark different spectral
comparison measures and to develop a robust scoring
scheme that quantifies the similarity of fragment ion spec-
tra. We applied the normalized spectral contrast angle
score to quantify the similarity of spectra to objectively
assess fragment ion variability of tandem mass spectro-
metric datasets, to evaluate portability of peptide fragment
ion spectra for targeted mass spectrometry across different
types of mass spectrometers and to discriminate target
assays from decoys in targeted proteomics. Altogether, this
study validates the use of the normalized spectral contrast
angle as a sensitive spectral similarity measure for targeted
proteomics, and more generally provides a methodology to
assess the performance of spectral comparisons and to
support the rational selection of the most appropriate sim-
ilarity measure. The algorithms used in this study are made
publicly available as an open source toolset with a graphical
user interface. Molecular & Cellular Proteomics 13:
10.1074/mcp.O113.036475, 2056–2071, 2014.

In “bottom-up” proteomics, peptide sequences are identi-
fied by the information contained in their fragment ion spectra
(1). Various methods have been developed to generate pep-
tide fragment ion spectra and to match them to their corre-
sponding peptide sequences. They can be broadly grouped
into discovery and targeted methods. In the widely used
discovery (also referred to as shotgun) proteomic approach,
peptides are identified by establishing peptide to spectrum
matches via a method referred to as database searching.
Each acquired fragment ion spectrum is searched against
theoretical peptide fragment ion spectra computed from the
entries of a specified sequence database, whereby the data-
base search space is constrained to a user defined precursor
mass tolerance (2, 3). The quality of the match between ex-
perimental and theoretical spectra is typically expressed with
multiple scores. These include the number of matching or
nonmatching fragments, the number of consecutive fragment
ion matches among others. With few exceptions (4–7) com-
monly used search engines do not use the relative intensities
of the acquired fragment ion signals even though this infor-
mation could be expected to strengthen the confidence of
peptide identification because the relative fragment ion inten-
sity pattern acquired under controlled fragmentation condi-
tions can be considered as a unique “fingerprint” for a given
precursor. Thanks to community efforts in acquiring and shar-
ing large number of datasets, the proteomes of some species
are now essentially mapped out and experimental fragment
ion spectra covering entire proteomes are increasingly be-
coming accessible through spectral databases (8–16). This
has catalyzed the emergence of new proteomics strategies
that differ from classical database searching in that they use
prior spectral information to identify peptides. Those com-
prise inclusion list sequencing (directed sequencing), spectral
library matching, and targeted proteomics (17). These meth-
ods explicitly use the information contained in empirical frag-
ment ion spectra, including the fragment ion signal intensity to
identify the target peptide. For these methods, it is therefore
of highest importance to accurately control and quantify the
degree of reproducibility of the fragment ion spectra across
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experiments, instruments, labs, methods, and to quantita-
tively assess the similarity of spectra. To date, dot product
(18–24), its corresponding arccosine spectral contrast angle
(25–27) and (Pearson-like) spectral correlation (28–31), and
other geometrical distance measures (18, 32), have been used
in the literature for assessing spectral similarity. These mea-
sures have been used in different contexts including shotgun
spectra clustering (19, 26), spectral library searching (18, 20,
21, 24, 25, 27–29), cross-instrument fragmentation compari-
sons (22, 30) and for scoring transitions in targeted proteo-
mics analyses such as selected reaction monitoring (SRM)1

(23, 31). However, to our knowledge, those scores have never
been objectively benchmarked for their performance in dis-
criminating well-defined levels of dissimilarities between
spectra. In particular, similarity scores obtained by different
methods have not yet been compared for targeted proteo-
mics applications, where the sensitive discrimination of highly
similar spectra is critical for the confident identification of
targeted peptides.

In this study, we have developed a method to objectively
assess the similarity of fragment ion spectra. We provide an
open-source toolset that supports these analyses. Using a
computationally generated benchmark spectral library with
increasing levels of well-controlled spectral dissimilarity, we
performed a comprehensive and unbiased comparison of the
performance of the main scores used to assess spectral
similarity in mass spectrometry.

We then exemplify how this method, in conjunction with its
corresponding benchmarked perturbation spectra set, can be
applied to answer several relevant questions for MS-based
proteomics. As a first application, we show that it can effi-
ciently assess the absolute levels of peptide fragmentation
variability inherent to any given mass spectrometer. By com-
paring the instrument’s intrinsic fragmentation conservation
distribution to that of the benchmarked perturbation spectra
set, nominal values of spectral similarity scores can indeed be
translated into a more directly understandable percentage of
variability inherent to the instrument fragmentation. As a sec-
ond application, we show that the method can be used to
derive an absolute measure to estimate the conservation of
peptide fragmentation between instruments or across pro-
teomics methods. This allowed us to quantitatively evaluate,
for example, the transferability of fragment ion spectra ac-
quired by data dependent analysis in a first instrument into a
fragment/transition assay list used for targeted proteomics
applications (e.g. SRM or targeted extraction of data inde-
pendent acquisition SWATH MS (33)) on another instrument.

Third, we used the method to probe the fragmentation pat-
terns of peptides carrying a post-translation modification (e.g.
phosphorylation) by comparing the spectra of modified pep-
tide with those of their unmodified counterparts. Finally, we
used the method to determine the overall level of fragmenta-
tion conservation that is required to support target-decoy
discrimination and peptide identification in targeted proteo-
mics approaches such as SRM and SWATH MS.

EXPERIMENTAL PROCEDURES

Yeast Culture, Protein Isolation, Digestion, Phospho-enrichment,
and Dephosphorylation—The yeast strain BY4741 MATa his3� leu2�
met15� ura3� was grown in triplicate in 100 ml of S.D. medium until
an OD600 of 0.7. The cells were harvested by adding 100% of
ice-cold tricholoroacetic acid (6.25% final concentration) and centri-
fugation at 1500 � g for 5 min at 4 °C. The cell pellet was washed
twice with 10 ml of ice-cold acetone. The acetone was removed and
the final cell pellet (1 volume) was resolubilized in 1 volume of lysis
buffer (8 M urea, 0.1 M NH4HCO3, and 5 mM EDTA). The cells were
disrupted by glass bead beating (5 times 5 min at 4 °C). The five
supernatants were pooled and the total protein amount was esti-
mated by BCA Protein Assay Kit (Thermo, Rockford, US). Three
batches of 3 mg of yeast proteins were reduced with 12 mM dithiot-
reitol at 37 °C for 30 min and alkylated with 40 mM iodoacetamide at
room temperature in the dark for 30 min. Samples were diluted with
0.1 M NH4HCO3 to a final concentration of 1 M urea and the proteins
were digested with sequencing grade porcine trypsin (Promega, Mad-
ison, WI, USA) to a final enzyme:substrate ratio of 1:100. The protein
digest was stopped with formic acid to a final concentration of 1%
and the peptides were desalted using reverse phase Sep-Pak tC18
cartridges (Waters, Milford, MA, USA). The peptides were concen-
trated using a vacuum centrifuge and stored at �20 °C. For the
phospho-enrichments, 3 mg of digested peptides were incubated
with 1.25 mg of TiO2 resin (GL Sciences Inc. Tokyo, Japan) essentially
as previously reported (34). The peptides were desalted using reverse
phase MicroSpin columns (Nest Group Inc. Southborough, MA). The
peptides were concentrated using a vacuum centrifuge and stored at
�20 °C. For the dephosphorylation reaction, a batch of 30–50 �g of
phosphorylated peptides were desalted using reverse phase Micro-
Spin columns as before except that the two final washes were per-
formed with water and the elution with 300 �l of 50% ACN in water,
without any acid. The eluted peptides were concentrated using a
vacuum centrifuge. The peptides were reconstituted in 150 �l of 100
mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol at pH 7.9
and incubated with 5 �l of Alkaline Phosphatase (New England Bio-
labs, Ipswhich, MA, USA) for 3 h at 37 °C. The resulting solution was
then acidified using 50% TFA and the peptides desalted again using
the reverse phase cartridges MicroSpin Column. The eluted peptides
were concentrated using a vacuum centrifuge. The concentration of
each peptide sample was adjusted to 1 �g/�l (with 2% ACN, 0.5%
FA) according to UV absorption at 280 nm measured using a Nano-
Drop ND-1000 photometer.

For supplemental Fig. 8, the samples originated from the same
yeast strain, but were generated for a time course osmotic shock
experiment that will be the subject of a separate publication (Sele-
vsek, N. et al. submitted). The samples were prepared essentially
using the same protocol, except that an osmotic shock treatment was
triggered by addition of 0.4 M salt at time point 0. The samples used
for this paper consisted in (1) five technical replicates of the time point
0, injected either consecutively or several days apart (see below), and
in (2) three biological replicates of time point 0 (injected consecutively)
plus the first biological replicate of time point 60 min and 120 min
(injected several days apart).

1 The abbreviations used are: SRM, Selected Reaction Monitoring;
LC-MS/MS, Liquid Chromatography-Tandem Mass Spectrometry;
SWATH MS, Sequential Windowed Acquisition of all Theoretical Mass
Spectra; PTM, Post-Translational Modification; CID, collision induced
dissociation; HCD, higher-energy collision induced dissociation; XIC,
extracted ion chromatogram; GRAVY, grand average of hydropathy;
pI, isoelectric point.
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LC-MS/MS Acquisition Set-ups—The different peptide samples
were analyzed either on a Thermo LTQ Orbitrap XL, on a Thermo
Obritrap Elite (both Thermo Scientific, San Jose, CA, USA) or on a
5600 TripleTOF mass spectrometer (ABSciex, Concord, Ontario,
Canada) under typical acquisition conditions for each machine. For
the 5600 TripleTOF shotgun and SWATH MS acquisition, the chro-
matographic separations of peptides was performed on a NanoLC-
2Dplus HPLC system (Eksigent, Dublin, CA, USA) coupled to a 75 �m
diameter fused silica emitter, packed with 20 cm of Magic C18 AQ 3
�m resin (Michrom BioResources, Auburn, CA, USA). Peptides (1 �l
injections containing 1 �g peptide amount) were loaded on the col-
umn from a cooled (4 °C) Eksigent autosampler at 300 nl/min of an
isocratic 98% Buffer A (2% acetonitrile, 0.1% formic acid) and 2%
Buffer B (98% acetonitrile, 0.1% formic acid). Peptides were sepa-
rated at a flow rate of 300 nl/min with a 120 min linear gradient of 2%
to 35% Buffer B. For the 5600 TripleTOF shotgun experiments the
mass spectrometer was operated with a “top20” method, where a
500 ms survey scan (TOF-MS) was collected from which the top 20
ions were selected for subsequent automated MS/MS measurements
where each MS/MS event consisted of a 150 ms scan. The selection
criteria for parent ions included an intensity threshold of 250 counts
per second and a charge state greater than or equal to 2�. Once a
precursor ion was fragmented by MS/MS its mass and the mass of its
isotopes were excluded for a period of 15 s. Ions were isolated using
“unit” quadrupole resolution and fragmented in the collision cell using
the collision energy equation (0.0625 x m/z - 3.5) with an additional
collision energy spread of �/� 15 eV within the 150 ms accumulation
time to mimic SWATH fragmentation conditions. In the instances
where there were less than 20 parent ions per survey scan which met
the selection criteria, those ions which did were subjected to longer
extended MS/MS accumulation times to maintain a constant total
cycle time of 3.5 s. For the 5600 TripleTOF SWATH-MS experiments
the mass spectrometer was operated in a looped product ion mode.
Using an isolation width of 25 Da, a set of 32 overlapping windows (1
Da overlap) was constructed covering the mass range 400 to 1200
Da. The collision energy for each window was determined based on
the appropriate collision energy for a 2� ion centered in the respec-
tive window (equation: 0.0625 x m/z - 3.5) with a collision energy
spread of � 15 eV. An accumulation time of 100 ms was used for
each fragment ion scan and for the survey scans acquired at the
beginning of each cycle, resulting in a total cycle time of 3.3 s. The
sequential precursor isolation window set-up was as follows: [400–
425], [424–450], [449–475], [474–500]…, [1174–1200], with an effec-
tive (100%) transmission of �25 Da and �0.3 Da attrition on either
side of the isolation window.

For the LTQ Orbitrap XL data acquisition, the peptide separation
was carried out with a Proxeon EASY-nLC II liquid chromatography
system connected to an RP-HPLC column (75 �m x 10 cm) packed
with Magic C18 AQ (3uM) resin, running a linear gradient from 95%
solvent A (0.1% formic acid, 2% acetonitrile) and 5% solvent B (98%
acetonitrile, 0.1% formic acid) to 35% solvent B over 90 min at a flow
rate of 300 nl/min. The data acquisition mode was set to obtain one
high-resolution MS scan in the Orbitrap (60,000 resolution at 400
m/z). The 10 most abundant ions from the MS scan were fragmented
by collision induced dissociation (CID) and MS/MS fragment ion
spectra were acquired in the linear ion trap (LTQ) at 35% normalized
collision energy. Charge state screening was enabled and unassigned
or singly charged ions were rejected. The dynamic exclusion window
was set to 30s and limited to 500 entries.

For the Thermo Orbitrap Elite shotgun acquisition, 1 �g of sample
was separated on a Thermo Easy-nLC 1000 HPLC system using a 50
cm long, 75 �m diameter ID PepMap column (Thermo, particle size 3
�m) with a 120 min gradient from 5% B to 35% B at a flow rate of 300
nl/min. Solvents were A: 3% acetonitrile, 0.1% formic acid in water; B:

3% water, 0.1% formic acid in acetonitrile. MS/MS spectra were
acquired using ion trap-CID at 30% normalized collision energy (NCE)
or using collision cell CID (HCD) using 30 or 35% NCE by sequencing
the top 15 most abundant precursors per cycle. Resolution settings
were: MS1 � 120,000 and MS2 � normal resolution for trap-CID and
MS1 � 60,000 and MS2 � 15,000 for HCD. In both modes, precur-
sors of charge state �1 and precursors of unknown charge state were
excluded from fragmentation. Precursor isolation width was 2 m/z in
all cases and dynamic exclusion was enabled for 30 s. MS1 scans
were set to a maximum of 1,000,000 counts and a maximum fill time
of 200 ms. MS2 trap CID scans were set to a maximum of 10,000
counts and a maximum fill time of 100 ms. MS2 OT HCD scans were
set to a maximum of 50,000 counts and a maximum fill time of 100
ms. It should be noted that for all the data presented in this paper
(except supplemental Fig. S8), the samples were acquired as con-
secutive technical replicate injections, in order to minimize potential
variations in instrument stability that might have obscured the intrinsic
performance of the machine in recording reproducible fragment ion
spectra. For supplemental Fig. S8 however, the samples were either
acquired as consecutive injections or separated by several days of
measurement (see supplemental Fig. S8 caption for details).

Generation of Spectral Library and Database Searching—The shot-
gun LTQ Orbitrap XL, Orbitrap Elite (.raw) and TripleTOF (.wiff) data
files were converted to centroided mzXML using the Proteowizard
converter (35) and searched with Sorcerer-SEQUEST (TurboSequest
v4.0.3rev11 running on Sage-N Sorcerer v4.0.4) using the Saccharo-
myces cerevisiae yeast SGD database (release 03 Febr. 2011,
containing 6717 yeast protein entries, concatenated with 6717 cor-
responding “tryptic peptide pseudo-reverse” decoy protein se-
quences). For the search, we allowed for semi-tryptic digests and up
to two missed cleavages per peptide, and we used carbamidometh-
ylation as fixed modification on cysteine and oxidation as variable
modification on methionine. The Sequest search results were con-
verted to pep.xml format and further processed using PeptideProphet
(TPP version 4.5.2) (36). The search results were sorted by decreasing
PeptideProphet probability and filtered at 1% false discovery rate
(FDR) by decoy counting at the peptide spectrum matches (PSM)
level. The complete list of peptide identifications for the various
instrument modes can be found in the supplemental Tables S1.
Consensus spectra libraries were built independently for each file with
SpectraST (v. 4, included in TPP version 4.5.2) using the peptides
identified above 1% FDR for the replicate experiment (for the intrinsic
comparison, for example, Fig. 2 and 3) or for the instrument mode (for
the portability analysis, Fig. 4 and 6). For the high mass accuracy
MS/MS measurements (e.g. Elite HCD and TripleTOF), the CID-QTOF
option was used when running SpectraST to improve the quality of
consensus generation. For the TripleTOF and Elite HCD shotgun
results, the peptide library files were further converted into an input
assay list using an in-house developed python script. The script used
the SpectraST .sptxt library as input and retrieved the top 6–100 most
intense (singly or doubly charged) y or b fragment ions for each
spectra with m/z above 400 and outside of the range of the 25 Da
swath/precursor fragmentation window and whose m/z matched the
theoretical fragment ion masses within 0.05 Da tolerance. For the
phospho-peptide libraries, y and b fragment ions with neutral losses
(-80,-98) were also exported, when those obeyed the same selection
rules as above. For the dephosphorylated peptide assays used to
query for phospho-modified peptides counterparts, we used only the
transitions until the modification site, with the same relative intensities
and retention time and we modified the mass of the precursors
accordingly to the mass of the PTM. The complete sets of assay lists
used in this study can be found in the supplemental Tables S2. It
should be noted that though the assay list contains between 6 and
100 transitions for the peptides, the targeted peptides were scored
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and identified using the six most intense transitions from that assay
list (see below).

SWATH- MS Targeted Data Extraction—Targeted data extraction
of the SWATH data was performed with the ABSciex PeakView Soft-
ware (RC.2.0.3). The peak group scores in PeakView are calculated
by mapping each individual mini-score toward a corresponding local
background score distribution using 200 decoys (human, scrambled
sequences) per time/swath bin (10 min/25 Da) [Navarro, P. in prepa-
ration]. As for the targets, the decoys retention times were centered in
the middle of the extraction window. The number of decoys retrieved/
identified from those background estimates does not matter because
it is the rank of the mini-scores of the targets among the local decoys
mini-scores that is used for downstream analysis. For this, the back-
ground was trained on the first SWATH MS replicate file for each
sample type (naked, phosphorylated, and dephosphorylated peptide
analyses) using six decoy transitions, to match the number of transi-
tions used for the targets (see below). We operated PeakView to
extract the six most intense transitions of the peptides present in the
assay lists described above with a 15 min time window and 50 ppm
MS/MS tolerance. These six most intense transitions were used to
score each targeted peptide, and as many corresponding decoy-
transition assays which were generated by pseudo-reversing (keep-
ing the C-terminal residue) the sequence of the targeted peptides.
False discovery rate was determined essentially as for shotgun by
sorting the highest scored peak group for each assay by decreasing
score and counting the number of decoy assays until 5% FDR is
reached [Navarro, P. in preparation]. This first stage of data extraction
represents essentially the “standard” workflow for peptide identifica-
tion by SWATH MS targeted data extraction. To correct for cases
when a top ranked identified peptide might be inconsistent across the
different replicates, we used an in-house python script to identify the
2 min wide cluster populated with the highest number of identified
peak groups (with score above 1E6) across replicates. The peak
groups present in that most populated cluster were re-ranked to peak
group 1 and were therefore considered as identification evidences of
the targeted peptides. The complete lists of peptides identified by
SWATH MS targeted data extraction can be found in the supplemen-
tal Tables S3. Once the peptide is identified using its six most intense
transitions, its exact/experimental retention time of identification is
known for each of the individual SWATH MS measurements. At this
point, we diverged from the standard SWATH MS targeted extraction
workflow to trigger a second round of data extraction for each iden-
tified peak group (re-)ranked 1 from extraction stage 1 at its exact
experimental retention time in that SWATH MS run within a 1.5 min
time window, using this time the maximum number of transitions
available for that peptide. We use this 2nd stage extraction to retrieve
high quality fragment ion intensities for the 6–100 transitions inte-
grated for each high quality peak group. Indeed, if one would try to
extract 100 transitions for some targets in the stage 1 already, the
identification score for those peptides would be very difficult to com-
pare with those of peptides identified from six transitions extraction.
The 2nd stage extraction is therefore a method to retrieve as many
fragment ion intensities as possible for each peak group, independ-
ently of the peak group identification score, because we know already
from the 1st stage extraction that this peak group represents the right
peptide identification at the right retention time. At this 2nd extraction
stage PeakView generates a pseudo-SpectraST sptxt file containing
the integrated area for all the extracted peptide transitions for each
replicate SWATH MS measurement. These files are then used as
“SWATH-grade” peptide fragment intensity measurements that can
be processed with the same set of python scripts for the similarity
comparison (intrinsic comparison or portability analysis).

Importantly, in order to avoid any bias for the computation of the
cross-similarity, we decided to turn off the fragmentation intensity

pattern score (that evaluates in PeakView the similarity of the ex-
tracted transitions to that of the assay library) during the whole
series of SWATH MS data extraction. In this case, the peptide
identification thus relies solely on the other mini-scores such as the
transitions chromatographic peak co-elution/shape, consistency of
the retention time, mass accuracy of the extracted fragments in the
MS/MS spectra at the apex of the peak, etc. [Navarro, P. in prep-
aration]. Though this impacted on the performance of the identifi-
cation, it ensured that the retrieved peptides were not only the ones
with high similarity to that of the library assay (which would
have clearly biased our analysis) but instead had a wide range of
relative fragment ion intensity unrelated to that of the assay library
used.

Spectral Similarity Measures and Spectral Comparisons—
a. Generation of Randomized/Perturbed Mass Spectra—For ran-

domizing a mass spectrum with N top peaks (six for all data pre-
sented in this study) with increasing and decreasing peak intensities
as result of randomization, we define a value

� � �Ninc � Ndec�,

with � � [0, N] and � (mod 2) � N(mod 2)

As unidirectional increases/decreases over a large subset of peaks,
signified by high values of �, in spectral randomization would create a
bias toward low strength of randomization, we sample � from a
normal distribution of weights favoring low values of �.

w � ⎣exp��0.5� �

N/3�
2� � 0.5⎦

Using �, all N-permutations of 	inc,Dec} selected with replacement
are generated. For each simulation, a randomization frame is selected
from the set of defining the direction of randomization for each peak

For a given peak with initial intensity Ii, the randomized intensity Ir
is defined as

Ir � Ii
1 � r�,

Where, r denotes the strength of perturbation and is sampled

from a uniform distribution with r � � rcent �
1

2n
,rcent �

1
2n� , with n

showing the total number of different randomization strengths, and
rcent the central randomization strength at the corresponding ran-
domization step. For the data presented in this study, we used 20
randomization steps, yielding the following upper and lower ran-
domization bounds:

rrange �{[0,0.05],[0.05,0.10]. . .,[0.95,1.00]}

b. Spectral Normalization and Comparison—Preprocessing oper-
ations such as spectral intensity scaling prior to normalization have
been subject of previous studies (18, 29, 32) and will not be dis-
cussed here. For our analysis, we used square root intensity trans-
formation and normalized intensity vectors to unit length as
suggested elsewhere (18, 29, 32). For an input spectrum SI with N
top peaks, the normalized output spectrum SOi is calculated as
follows:

SOi �
�SIi

�	
j�1

N 
�SIj�2

Two square root-transformed and normalized spectra 
S1,S2) are
then compared as follows, yielding similarities denoted as �, depend-
ing on the used similarity measure:
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� Dot product: � � S1 � S2 � 	
j�1

N S1jS2j

� Normalized spectral contrast angle*: � � 1 �
2cos�1
S1�S2�

	

� Spectral correlation**: � � 0.5
1 �


S1 � 	
j�1

N S1j� � 
S2 � 	
j�1

N S2j�

�S1 � 	
j�1

N S1j� �S2 � 	
j�1

N S2j� �
� Bray-Curtis distance*: � � 1 �

	
j�1

N �S1j � S2j�

	
j�1

N �S1j � S2j�

� Euclidean distance*: � � 1 � �	
j�1

N 
S1j � S2j�
2

For ensuring comparability, all measures used for spectral compari-
son were mapped to the result space �0,1 with value 1 denoting the
highest similarity. As the spectral vectors were confined to unit length
with strictly positive values, results were by default confined to the
result space �0,1 except for Spectral Correlation (**), where the result
range �-1,1 was mapped to the correct range by shifting and scaling.
The correct behavior for increasing/decreasing similarity was
achieved in distance measures (*) by subtracting the result from 1.

c. Generation of Reference Benchmark Distributions—Using an
experimentally obtained dataset of diverse spectral intensity profiles
(10,000 peptides), we generated using each seed peptide, a set of
randomized spectra (100 per seed) as described in subsection a.
Then we compared each seed pairwise to each 100 randomized
spectra using the preprocessing approach and similarity measures
described in subsection b. We repeated this procedure for each of the
20 perturbation ranges, obtaining 20 similarity score distributions with
1,000,000 samples. These distributions are used both to evaluate the
sensitivity and descriptive power of the tested similarity measures;
and as a reference benchmark to map experimental result compari-
sons to a population similarity score.

d. Generation of Experimental Similarity Score Datasets—High-
confidence mass spectra from experimentally obtained datasets are
compared as described in subsection b provided that the following
criteria are fulfilled:

� Each spectral dataset originating from one run of an instrument,
contains one unique (consensus) mass spectrum for a given peptide
sequence with a given precursor charge. This is accomplished by
creating a consensus library of the search results of each run.

� For naked peptide or PTM-PTM comparisons, the assigned pep-
tide sequences including PTM locations are equal. For naked-PTM
cross-comparisons, the naked base sequences of both peptides are
equal.

� The peptides carry equal precursor charges.
� The peptides have at least N commonly identified peptide frag-

ments (N � 6 for the presented results) with charge Zf � Zprecursor that
obey the following: (1) The fragments cannot be the precursor itself or
any of its neutral loss fragments, (2) the fragments cannot contain a
heavy isotope, (3) the fragments are either of type y or b, (4) for PTM
carrying peptides’ comparisons to naked peptides, the fragments
need to be in the shared region described on supplemental Fig. S13.

For peptide pairs fulfilling this condition, the top N common pep-
tides are designated and compared as follows:

� For both mass spectra, all initial peak intensities are normalized so

that SNi �
SIi

max(SI)
.

� Following intensity normalization, nonmatching or invalid frag-
ments are discarded using the rules described above.

� The list of remaining valid fragments are merged and ordered with
respect to mean normalized intensity coming from the two compared
spectra.

� Top N fragments of the ordered list are used in the spectral
similarity analysis using the previously described similarity measures.

Finally, the filtered spectra are compared pairwise as described in
subsection b. For a data set with R replicates, a maximum of

� R
2 � �

R
R � 1�

2
such pairwise comparisons can be generated for

a peptide with a given sequence and precursor charge (3 for r � 3).
Similarity scores are then used to describe the population similarities
of the compared groups such as replicates from the same machine or
cross-comparisons.

e. Mapping Experimentally Obtained Similarity Score Distributions
to the Reference Benchmark—We cross-compared experimentally
acquired score distributions with reference benchmark distributions
as follows:

� The Kolmogorov-Smirnov statistic is used to create a pseudo-
similarity score D � 1 � D between the experimentally acquired
scores and the benchmark reference at each perturbation level.

� The experimental-benchmark cross-comparison similarities D at
20 perturbation levels are fitted to a lognormal or gamma model,
where the model which gives the smaller norm of residuals, that is, fit
error, is selected. The perturbation level yielding the maximum of the
fitted function is the estimation for the S-score. The S-score maps the
experimentally obtained similarities to a hypothetical perturbation
level, could generate the given experimental similarity distribution.
The following equations are used for the lognormal and gamma
models for x defined as the D at each perturbation level:

mlognorm
x� �
k


x�2	
exp��
ln
x� � ��2

2
2 �
mgamma
x� �

axk�1

�
k�tk
exp��x

t �
� Finally, we established bootstrap confidence intervals for the

S-score estimates by resampling both the experimentally obtained
similarities and the reference benchmarks similarities at each pertur-
bation level. During resampling, we reduced the benchmark dataset
10-fold so that each perturbation level has 100,000 reference simi-
larities, in order to reduce the computational workload. The reported
S-score is the score obtained by using the full, original benchmark
and the original experimental similarity score dataset, whereas the
reported 95% confidence intervals correspond to the 2.5th and 97.5th
percentiles of the simulated a bootstrapped distribution of 1000
S-scores.

Peptide Physicochemical Properties and Their Effect on Fragmen-
tation Variability—Peptide properties were calculated in nonmodified
peptides using Biopython v1.62. GRAVY was calculated as described
by Kyte et al. (37). The LOWESS estimation was performed in Python-
Statsmodels using default settings (frac � 0.67, it � 3).

RESULTS

Using a Benchmark of Simulated Spectra Set of Controlled
Dissimilarity to Assess the Performance of Spectral Similarity
Measures—So far, the performance of methods to assess
spectral similarity has mostly been performed by using em-
pirical data, for example, by comparing score distributions of
database searches for spectra from similar or dissimilar pep-
tide identifications (29, 32) or by assessing the recall charac-
teristics of the (correct) peptide identifications by spectral
library searches (18, 20, 24, 26, 29, 32). To test the sensitivity
of spectral similarity measures to controlled changes between
two compared spectra we extend the testing concept of Wan
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et al. (25) and stochastically generated in silico a set of bench-
mark spectra using experimental MS/MS spectra as seeds and
systematically perturbing the intensities of their six most intense
signals. By varying the strength of the perturbation, denoted by
S (0� S � 1), simulated spectra were generated with well-
controlled levels of dissimilarity to the seed. A total benchmark
spectral library of twenty million spectra was thus generated,
with 1,000,000 spectra (100 spectra per peptide from a sample
of 10,000 seed spectra) for each of the 20 levels of perturbation
(see Material & Methods for details regarding the intensity trans-
formation and normalization preprocessing steps and the sup-
plemental Figs. S1–S4 for methodological details). Using the
described benchmarked perturbation spectra set, the perform-
ance of any spectral similarity measure can be objectively
tested stepwise across the range of 0 to 100% perturbation for
the relative fragment ion intensities.

Fig. 1 shows the response of the three most commonly
used similarity measures, dot product, spectral correlation,
and normalized spectral contrast angle, toward the systematic
perturbations of our benchmark spectral library. The results
indicate that the normalized spectral contrast angle shows the
best performance among the compared similarity measures,
with a consistent decreasing trend over the whole range of
perturbation strength and with small variations and minimal
overlap for each perturbation step (Fig. 1C). In comparison,
the dot product displayed a relatively weak response to sto-
chastic perturbations (Fig. 1A), reporting scores below 0.8
only for the strongest perturbation levels (80–100%). Spectral
correlation, on the other hand, generated a large number of
low scores even for low perturbation levels, as highlighted by
the prevalence of outliers (Fig. 1B). Furthermore, its score
distribution presented important overlaps between adjacent

FIG. 1. Response of (A) dot product, (B) spectral correlation, and (C) normalized spectral contrast angle to increasing perturbations. The violin
plots combine the kernel density estimation of the score distributions with the statistical features shown by the overlaid box plots. The blue
tails denote individual outlier scores at each perturbation level.
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spectral perturbation levels. The performance assessment for
two additional geometric distance measures, Bray-Curtis dis-
tance and Euclidean distance, using the same benchmarked
perturbation spectra set approach can be seen in the supple-
mental material (supplemental Fig. S5). Both measures showed
an overall good performance. Based on these results, we de-
cided to use the normalized spectral contrast angle as the
similarity measure of choice for the remainder of this study.

Analysis of the Intrinsic Fragmentation Variability for Mass
Spectrometers Operating in Shotgun and Targeted Acquisi-
tion Modes—To assess the level of peptide fragmentation
variability generated upon collision induced dissociation
(CID), we performed consecutive technical triplicate injections
of a yeast tryptic digest on several instruments: a Thermo LTQ
Orbitrap XL in CID mode, a Thermo Orbitrap Elite in data de-
pendent CID or HCD mode, and an ABSciex 5600 TripleTOF
instrument operated in DDA shotgun or DIA SWATH MS mode.
Each MS injection was searched and representative peptides
consensus MS/MS spectra were built independently for each
run using spectra above 1% FDR. We then used the six most
intense fragments common in the consensus spectra to com-
pute the fragmentation similarity score for the peptides identi-
fied in the various technical replicates of a given instrument
mode (see Experimental Procedures). This allows essentially to
assess the intrinsic fragmentation variability inherent to each
instrument mode. Fig. 2 shows the normalized spectral con-
trast angle score distributions for the peptides commonly
identified across all instruments modes. The data indicates
that peptide fragmentation conservation is highest for the
TripleTOF 5600 in SWATH MS mode, closely followed by the
Orbitrap Elite both in CID and HCD modes. It is worth noting
that if the same analysis was performed not only for the
commonly identified peptides, but for all the peptides above
1% FDR for each instrument mode, overall the same trends
were observed (supplemental Fig. S6).

The qualitative comparison of the score distributions ob-
tained from technical replicates in each instrument provided a
first hint about the relative consistency of fragment ion pattern
obtained on the various instrument modes. We next at-
tempted to quantify the respective levels of peptide fragmen-
tation variability intrinsically produced by each instrument
mode. This was achieved by assessing the similarity between
the experimental fragmentation score distributions for each
instrument mode to that of each computed benchmark per-
turbation level using the Kolmogorov-Smirnov statistic. The
fitting of a lognormal/gamma model (supplemental Fig. S7)
yielded a direct estimation of the equivalent fragment intensity
perturbation level S for each instrument mode. The absolute
levels of fragmentation variability could therefore be esti-
mated to vary between 5.6% (SWATH MS) and 18.5% (LTQ
Orbitrap XL) on average, depending on the instrument mode
used in this study.

To assess the fragmentation reproducibility across longer
time periods and across more divergent sample sets, we

extended our analysis to compare (1) technical replicate in-
jections (same sample) recorded consecutively, (2) technical
replicate injections (same sample) but recorded several days
apart, (3) biological replicate injections (different samples but
same time point/biological condition) recorded consecutively,
and (4) biological samples injections (different biological con-
ditions) and recorded several days apart. The results are
shown on supplemental Fig. S8 and show slightly worse
fragmentation reproducibility for the biological replicates
compared with the technical replicates. However, under the
acquisition used here, the data do not show any noticeable
effect of the day of acquisition on the quality of the results. In
other words, the peptide spectra recorded by technical rep-
licate injections even across several days still retain the same
reproducibility as when acquired back-to-back.

We used the same approach to analyze the level of frag-
mentation conservation for phosphorylated peptides. We an-
alyzed in triplicate a yeast tryptic digest enriched for phos-
phopeptides using the same instrument modes as described
above and performed the spectral similarity comparison, this
time also considering fragments with neutral loss (-80/-98 Da)
if detected among the six most intense peptide fragments.
The results (Fig. 3 and supplemental Fig. S10) show overall
similar trends for the instruments performance for phospho-

FIG. 2. Conservation of fragmentation for technical replicates of
yeast naked peptides commonly identified in (I) Orbitrap ELITE HCD,
(II) Orbitrap ELITE CID, (III) LTQ Orbitrap XL CID, (IV) TripleTOF shot-
gun, and (V) TripleTOF SWATH MS. “N” indicates the number of
comparisons underlying each violin plot and “S” the level of bench-
marked perturbation (Fig. 1) that would best match the corresponding
distribution (see supplemental Fig. S7). The 95% bootstrap confi-
dence interval of the S-score is also reported between square brack-
ets. Note that, though only commonly identified peptides were used
to generate those plots, the number of comparisons “N” may slightly
vary between instrument modes. This is because the comparisons
were performed pairwise between the technical triplicates but a given
peptide may sometimes be identified only in two out of the three
measurements for some modes.
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rylated peptides as for naked peptides (Fig. 2), with a slightly
lower overall fragmentation fidelity for phosphopeptides.
These data indicate that for the instrument modes tested
phosphorylated peptides do not show significantly lower frag-
mentation reproducibility, and that the �80/�98 Da neutral
loss fragments (present between 76 and 87% of the cross
phosphopeptides spectral comparisons depending on the in-
strument mode) displayed also relatively good levels of con-
servation during fragmentation.

To confirm that these results were solely acquisition-de-
pendent and not biased by specific properties of peptides, we
next investigated the effect of physicochemical properties of
peptides on fragmentation variability. We computed (1) the
molecular weight, (2) the isoelectric point, (3) the GRAVY
(Grand average of Hydropathy) index, (4) peptide instability,
and (5) the presence of proline in the peptides (because this
amino acid usually yields atypical fragmentation patterns with
highly prominent cleavage at the N-terminal side of Pro). We
then established the effect/influence of these properties on
the measured conservation of fragmentation using the data
from the TripleTOF instrument in shotgun mode (supplemen-
tal Fig. S6, column 4). The results (supplemental Fig. S9) show
that peptide physicochemical properties have no major effect
on the fragmentation variability with the possible exception of
low molecular weight peptides which show slightly higher
fragmentation reproducibility.

Assessment of the Transferability of Fragment Ion Assays
from Shotgun to Targeted Proteomic Analyses—Targeted
proteomics via SRM or SWATH-MS (33) critically depends on
a high degree of fragmentation conservation because the
relative signal intensity of fragment ion signals (transitions) is
an important subscore in identification algorithms (31). It is

therefore important to know the level of conservation between
the spectra used to generate the reference assay (usually
originating from shotgun acquisition performed with the same
or another instrument) and the signals that will actually be
measured/extracted for the targeted peptide. Throughout this
study, we decided to focus our analysis on SWATH MS tar-
geted data extraction because too many SRM measurements
would have been required to yield the sample size necessary
for proper statistical comparisons. However, because of the
conceptual similarity of SWATH-MS and SRM as XIC-based
peptide identification methods using a defined number of
transitions to query peptides, it is very likely that most of the
methodology and conclusions described hereafter will also
apply to SRM.

Figs. 2 and 3 have already demonstrated the high levels of
fragmentation reproducibility of SWATH MS analysis as a
targeted proteomics technique. To test the transferability of
reference fragmentation assays for SWATH MS targeted data
extraction, we performed cross-device similarity analyses be-
tween the Orbitrap Elite in HCD and CID mode, LTQ Orbitrap
XL, and TripleTOF shotgun mode using this time the intensi-
ties of the fragment ion signals from the TripleTOF SWATH
MS measurements as reference for each comparison (Fig. 4).
The results show that the TripleTOF shotgun peptide frag-
mentation and Orbitrap Elite HCD peptide fragmentation pro-
vided the most similar fragmentation to that observed for
SWATH MS targeted data analysis, with 26 and 37% frag-
mentation divergence respectively. These results are consis-
tent with the intrinsic fragmentation reproducibility observed
for the different instrument designs and operation modes (Fig.
2) and follow expectations of fragmentation similarity between
quadrupole and beam-type devices (Orbitrap Elite in HCD

FIG. 3. Conservation of fragmentation for technical replicates of
yeast phosphopeptides identified in common in (I) Orbitrap ELITE
HCD, (II) Orbitrap ELITE CID, (III) LTQ Orbitrap XL, (IV) TripleTOF
shotgun, and (V) TripleTOF SWATH MS.

FIG. 4. Cross-device similarities for the peptide fragmentation pat-
terns observed in (I) Orbitrap ELITE HCD, (II) Orbitrap ELITE CID, (III)
LTQ Orbitrap XL, and (IV) TripleTOF shotgun, toward the fragment
intensities of the peptides obtained by SWATH MS data extraction
used as common reference.
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mode and TripleTOF) as opposed to resonance excitation in
ion traps (LTQ Orbitrap XL and Orbitrap Elite in CID mode) (38,
39). To ensure that this result was not biased by the fact that
the SWATH MS peptides were initially identified using a
TripleTOF shotgun library, we performed the same analysis
using peptides identified in SWATH MS extraction using frag-
ments, this time originating from the Orbitrap Elite HCD iden-
tifications. The results show that whether the original assay
library used to trigger SWATH extraction is generated by
TripleTOF (Fig. 4) or Orbitrap Elite HCD (supplemental Fig
S11), the overall similarity results retain the same trend: the
closest fragmentation patterns to SWATH MS in terms of
relative intensities originate from the TripleTOF shotgun, fol-
lowed by the Orbitrap Elite in HCD mode.

Fragmentation Conservation as a Discriminating Feature for
Peptide Identification in Targeted MS/MS—Although it is im-
portant for targeted MS/MS to know the extent of fragmen-
tation variability between the reference assays and the tran-
sition signals measured from targeted peptides, it is even
more important to know which level of fragmentation variabil-
ity is actually acceptable before it starts penalizing confidence
of the peptide identification.

To answer this question, we re-evaluated the performance
of each spectral similarity measure as a relative fragment
intensity score able to efficiently discriminate between target
and decoy signals during SWATH MS targeted data analysis.
Two sets of assays were used: First, a reference “target”
assay library that contained the mass and relative intensity
information for the six most intense fragment ions of the
peptides identified over 1% FDR in the TripleTOF 5600 shot-
gun experiments; and second, a “decoy” assay library that
was generated in silico by pseudo-reversing the amino acid
sequence for each corresponding target peptide. Each decoy
assay therefore contained the same experimental relative in-
tensities as the target assay, but associated with “wrong”
fragment ion masses (originating from the pseudo-reverse
peptide fragment sequence). The masses of the target and
decoy shotgun assays were then used to extract fragment ion
chromatograms in the SWATH MS datasets and their initial
relative intensities were assessed pairwise to those of the
corresponding SWATH MS integrated fragment ion signals as
reference, using one of the spectral similarity measures. As
above, the resulting target and decoy spectral similarity score
distributions can be matched to those of the corresponding
benchmarked perturbation libraries, allowing the estimation of
absolute levels of fragment dissimilarity for each condition.

The results are shown in Fig. 5 and supplemental Fig. S12.
As expected, for all scores, the target shotgun assays dis-
played relatively good levels of fragmentation similarity (equiv-
alent to 10–28% perturbation depending on the score used)
compared with that of the SWATH MS integrated fragment
signals. In contrast, the relative fragment ion intensities of the
decoy assays displayed a quasi-random match (equivalent to
100% perturbation) compared with that of the corresponding

SWATH MS integrated signals. Overall, all similarity measures
achieved good discrimination between the target and decoy
score distributions except spectral correlation, which attrib-
uted quite early relatively high scores to decoy spectra (Fig.
5B). Interestingly and despite the compressed response an-
ticipated from Fig. 1, the dot product achieved equivalent
performance in separating targets and decoys compared with
the normalized spectral contrast angle, after remapping the
raw score values onto the corresponding perturbation bench-
mark spectra set. Using one of those two similarity measures,
very few decoy assays displayed high similarity scores com-
pared with their corresponding target assays. Therefore, in
principle, any instrument offering overall intrinsic fragmenta-
tion reproducibility and assay transferability performance
above this threshold (35% in the case of the normalized
spectral contrast angle) should support effective peptide
identification in SWATH MS targeted extraction via relative
fragment intensity. Higher fragmentation reproducibility, of
course, would be expected to further increase the discrimi-
nation between targets and decoys and would thus
strengthen again the power of such fragmentation similarity
scores for peptide identifications.

Conservation of the Fragmentation Between Nonmodified
and Phosphorylated Peptides and New Strategies to Extract
Modified Peptides Using Nonmodified Reference Assays—As
a final application example of our tool, we sought to assess
the possibility to identify by targeted mass spectrometry mod-
ified peptides using assays originating from their nonmodified
counterpart. We questioned whether a conserved fragmenta-
tion pattern can be observed between nonmodified and phos-
phorylated peptides and whether the level of similarity be-
tween the shared fragments of the two species would support
the reliable probing and identification of the modified peptide
in targeting data sets. For this, we considered independently
two distinct fragment regions of a modified peptide and fo-
cused on the y and b fragments preceding the site of the first
modification on the modified peptide sequence that are
shared with its “naked” counterpart (supplemental Fig. S13).
We used those shared fragments with equal masses to probe
how well their relative intensities are conserved between the
modified and nonmodified peptides and whether those can be
used to search for the modified peptide starting from a library
of spectra of nonmodified peptides. We tested this hypothesis
by analyzing a sample of phospho-enriched yeast tryptic pep-
tides that were either analyzed in their phosphorylated form
or, following phosphatase treatment, in their naked form. As
low-abundant proteins make up a large subset of the yeast
phosphoproteome, we used this strategy to increase the
number of “naked” peptide assays in our spectral library that
would match to the modified peptides already identified in the
phospho-enriched samples. Fig. 6 shows the fragmentation
similarity between a set of nonmodified (phosphatase treated)
peptides with their corresponding modified peptide counter-
parts. Although the intrinsic variability of the phosphopeptide
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fragmentation within replicates of SWATH MS extractions
was around 15%, the fragmentation conservation for the
shared fragments dropped to 31% equivalent perturbation.
However, this fragmentation conservation was just enough to
support targeted extraction of the phospho-enriched SWATH
MS data using the nonmodified peptide assays and we in-
deed could retrieve 1177 phosphopeptides out of the 2758
originally identified by SWATH MS extraction using the phos-
pho shotgun library (supplemental Tables S3). Considering
that only 1462 peptide assays (1843 precursors) with at least
six shared transitions could actually be generated for those
2758 phosphopeptides using the dephosphorylated peptide

identifications, the 1177 phosphopeptides identified consti-
tute a 80% success rate for the method. Interestingly, we also
generated shared phosphopeptide assays not only for the
sequences already validated using the shotgun phosphopep-
tide library but also for any peptide sequence identified after
dephosphorylation. By doing so, we could actually retrieve by
SWATH MS data extraction 87 novel phosphopeptides (5%
FDR) that failed to be identified by shotgun analysis.

Open Source Software Package Available—The methodol-
ogy used during this study to assess the fragmentation per-
formance of MS instruments or to compare peptide fragmen-
tation processes in general may also be of interest to other

FIG. 5. Target-decoy separation characteristics of (A) dot product, (B) spectral correlation, (C) normalized spectral contrast angle. The blue
curves denote the target assay similarities whereas the red curves denote the decoy assay similarities in a TripleTOF shotgun/SWATH mode
comparison. The lognormal/gamma fit parameters as well as the fit errors (norm of residuals) are reported for each fit.
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research groups and applied to questions different from the
ones investigated in this paper. We therefore packaged the
algorithms used throughout our analyses into a graphical user
interface. This software package generates as a first step the
benchmarked spectra set of increasing perturbation strength
for the similarity measures of interest. As described in this
study, this benchmarked spectra set are used as a reference
to translate the nominal values of the various similarity mea-
sures into absolute estimates of percentage of fragment in-
tensity perturbation. The package allows the assessment of
fragmentation similarity among and across spectral libraries
provided in the open source SpectraST .sptxt format. We also
devised a flexible analysis workflow for peptides carrying
PTMs that can be fully user-defined. The details of usage of
the software package and some case studies are provided in
the supplementary materials. We believe that this toolset will
be useful for many users in academic or clinical settings as
well as for MS manufacturers or high-end users for tuning and
testing intrinsic fragmentation performance of mass spec-
trometers or for testing the portability of their assays between
instruments.

DISCUSSION

Performance of the Similarity Measures—With recent ad-
vances in spectral library searching and targeted proteomics
analyses, the use of the relative fragment ion intensities to
enhance confidence in peptide identification has gained in
importance. However, several critical questions remain to be
answered about the conservation of peptide fragmentation
characteristics. For example, which similarity measure should
be used to most sensitively assess similarity of the measured/
extracted targeted fragment ion intensities versus those of the

reference assays contained in the library? Which level of
fragmentation variation is really reflected by the nominal val-
ues of those measures? Which level of fragmentation pertur-
bation is still acceptable (for each similarity measure) to ac-
tually support proper peptide identification?

To answer those questions, we first evaluated the response of
some widely used similarity measures toward perturbations of a
set of spectra generated in silico, where increasing levels of
dissimilarity to a seed spectrum were simulated. It is important
to mention that the benchmark spectra set is not supposed to
simulate the complex phenomenon of MS/MS peptide frag-
mentation. On the contrary, it is used here as a purely math-
ematical reference for interpreting similarity scores. With this
methodology, a proper similarity measure that aims at accu-
rately quantifying spectral similarities should present the fol-
lowing characteristics: (1) consistent decrease of similarity
scores upon increasing levels of perturbation, (2) distribution
of scores in narrow bands with small variance for each per-
turbation step, and (3) little overlap of the score distributions
upon increasing perturbation strengths. According to our re-
sults, the normalized spectral contrast angle showed overall a
good performance (Fig. 1C), with a consistent decreasing
trend over the range of perturbation and with small variations
and minimal overlap for each perturbation step.

It is especially worth mentioning that dot product nominal
values only decreased from 1 to 0.95 for spectral perturbation
levels up to 60% (0� S �0.6), whereas normalized spectral
contrast angle values dropped from 1 to 0.8 for the same
range of perturbations. Researchers should therefore be
aware that seemingly “high” nominal values of the regular dot
product such as those reported in the literature (e.g. 0.96 (30)
or 0.95 (22)) do not actually necessarily guarantee high de-
grees of spectral similarity. It is also worth mentioning that
Skyline, a popular SRM analysis software tool, originally used
the regular dot product raw values to score the similarity of
the relative fragment intensities of the targets toward the
reference library assays (23). However, the software develop-
ers decided to switch to the normalized spectral contrast
angle as main scoring function for their software (Brendan
MacLean, personal communication) based on the preliminary
results of this study showing that high dot product values may
be generated even for loosely similar spectra and therefore
may appear misleading as such without mapping to its per-
turbation benchmark set (see below). The same cautionary
remarks also apply to the spectral correlation measure, which
in comparison showed a large overlap of the distributions
between each perturbation level (Fig. 1B). Therefore here
again, it may be difficult to interpret the real significance of
“high” nominal score values (e.g. 0.98) that could be pro-
duced by basically any level of perturbation between 10 and
100% perturbation, because of the broad score distribution
overlaps between the perturbation steps.

The performance of the similarity measures was also com-
pared as identification score classifiers for their ability to

FIG. 6. (I) Conservation of fragmentation for technical replicates of
yeast phosphopeptides measured in TripleTOF SWATH mode (II)
Spectral similarities between samples of dephosphorylated phospho-
peptides and phosphopeptides measured in TripleTOF SWATH
mode.
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discriminate target peptides and decoy assays score distri-
butions during targeted proteomics analysis (31). There all
investigated spectral similarity measures except for spectral
correlation, performed well by properly classifying targets
when those were less than 35% dissimilar to that of their
reference library assays (Fig. 5C). It is worth noting that the
dot product, although showing a more “compressed” re-
sponse to increasing perturbations in the benchmark (Fig. 1A),
still yielded a proper measure of similarities in a population
level, when its benchmark set was used as a reference to
convert the raw values/distribution into the equivalent per-
centage of spectra perturbation. To quantify this however, the
function used for the goodness of fit needs to be sensitive
enough for capturing the information de-emphasized by the
cosine term of the dot product. The Kolmogorov-Smirnov
statistic used throughout the study to map the experimental
similarity measure distributions onto the perturbation bench-
mark sets allowed to estimate an accurate goodness of fit
(S-score), whereas a binned histogram similarity failed to
properly map the response of the dot product onto its bench-
mark reference, although it showed equal performance when
assessing the other similarity measures (results not shown).
These findings underline again the importance of not relying on
raw score values as similarity threshold estimates but rather on
comparing the similarity measure used onto its benchmarked
reference score response and the corresponding goodness of
fit. Spectral correlation showed the weakest discrimination in
separating target and decoy populations with decoys overlap-
ping with the target distribution even for relatively high scores
(Fig. 5B). Interestingly, the spectral correlation is the similarity
measure implemented in mProphet to score the fragment inten-
sity correlation of the targeted peptides to that of the reference
assays (31). Despite the poor target-decoy separation perform-
ance that we report here, fragment intensity correlation was
reported as one of the most discriminating parameters in the
mProphet study (31). Thus, we foresee that an even higher
performance in peptide identification can be expected for the
scoring of relative fragment ion intensity when using a more
sensitive and discriminating similarity measure.

It is important to note that the S-scores evaluated by Kol-
mogorov-Smirnov statistic span a wide range of numeric val-
ues throughout this study with (1) technical replicates from the
latest generation mass spectrometers yielding high similari-
ties and acting as positive controls (0.056 � S � 0.166, Fig. 2),
(2) target-(pseudo-reversed) decoy comparisons yielding low
similarities and acting as negative controls (S�1, Fig. 5 and
supplemental Fig. S12), and (3) cross-instrument analyses
yielding intermediate values depending on the compared pair
of instruments (0.261 � S � 0.590, Fig. 4). This wide range of
response indicates that the perturbation spectra set can in-
deed capture (dis)similarities encountered in real life similarity
analysis and as such be used to provide equivalent perturba-
tion level estimates. The confidence in the perturbation level
estimates (S-scores) was further assessed by bootstrapping

and showed very good consistency by falling in very narrow
confidence intervals, especially for larger population size da-
tasets (e.g. Fig. 5 and supplemental Fig. S12).

Taken together, these results strongly suggest that only
peptide assays with a difference in relative fragment ion in-
tensities of less than 35% to the experimental targeted re-
cordings should be used for targeted proteomic measure-
ments. This does not mean that the targeted peptides will fail
to be identified if the assays are more than 35% different than
the measurements. In fact, the other scores used to identify
the peptides (e.g. co-elution of the transitions, co-elution with
its corresponding isotopically labeled reference peptide) may
still suffice to pinpoint the peptide identification. However, our
results indicate that, beyond 35% fragmentation divergence
to the reference assay, the scoring of the relative fragment ion
intensities of the targeted peptide may severely impair the
overall identification performance. Confirmation of the com-
patibility of a particular device configuration or assay library-
acquired sample match to this criterion can be done by the
toolset presented in the supplemental materials by analyzing
replicates from the same instrument or across different instru-
ments for peptide fragmentation similarity, depending on ap-
plication (see the toolset manual in supplementary materials).

Though the normalized spectral contrast angle was selected
in this study to illustrate the methodology and for estimating
the conservation of the top six most intense fragments in
targeted proteomics, it is important to note that the other
similarity measures should not be unequivocally disregarded
and may still be very relevant to use when sensitive discrim-
ination of fine dissimilarities is counterproductive. This would
be the case, for example, when the fragment intensities of the
reference spectra are not inputted at all such as with in silico
generated spectra during database search, or when they are
expected to present low fidelity such as is when fragment ion
intensities originating from other fragmentation modes or MS
instruments or from theoretical fragmentation predictors are
used. The focus of this study was specifically on targeted
proteomics, and it is therefore beyond the scope of this study
to perform exhaustive performance analysis when large num-
ber of fragments have to be matched as is the case of exten-
sive MS/MS spectra matching such as during database or
spectral library searching. But we hope that the assessment
methodology described here using a benchmarked spectra
set of controlled dissimilarity will provide new insights for the
rational evaluation and selection of the similarity measure that
would most optimally perform for each dedicated task.

Evaluation of the Reproducibility of Mass Spectrometric
Fragmentation Measurements—Having established a 35%
fragment intensity divergence as the threshold for efficient
peptide identification in targeted proteomics, we sought to
determine what was actually the intrinsic fragmentation vari-
ability encompassed in spectral libraries generated from var-
ious instrument acquisition methods. Modern mass spec-
trometers are expected to produce highly reproducible
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recordings of the peptide fragmentation events. However,
because each instrument measurement may intrinsically en-
compass a certain level of fluctuation, we aimed to quantita-
tively assess the fragmentation variability that actually affects
the experimental peptide collision recordings. We thus calcu-
lated the normalized spectral contrast angle similarity scores
for the six most intense fragment ions of peptides that were
recorded during technical replicate analyses of the same
sample using a given instrument mode. For those compari-
sons, we did not perform on purpose any specific tuning
(regarding acquisition times or ion trap filling) to artificially
improve the ion statistics of the instruments. We rather sought
to operate the instruments as close as possible to their regular
acquisition set-up for proteomic measurements and used
consecutive technical replicate injections to minimize external
biases (sample reproducibility, changes in instrument per-
formance) that might otherwise have obscured the assess-
ment of the instrument fragmentation reproducibility.

By matching the experimental fragmentation score distri-
butions of each instrument mode to the perturbation bench-
mark spectra set, it became apparent that the SWATH MS
targeted extraction analysis exhibited the highest level of
peptide fragmentation conservation with only 5% equivalent
fragmentation variability between replicates, followed by the
Orbitrap Elite HCD consensus spectra which entailed 9%
variability between replicates (Fig. 2). With this quantitative
measure, it is also easier to appreciate the qualitative jump in
fragmentation fidelity achieved between the LTQ Orbitrap XL
and the Orbitrap Elite in CID mode, where the intrinsic frag-
mentation variability decreased by almost a factor of two from
18% to 10% between those two consecutive generations of
instruments (40). The result is essentially the same for non-
modified peptides (Fig. 2) as for phosphorylated peptides (Fig.
3) which produce more complex fragmentation patterns, with
variable prominence of neutral loss fragments, depending on
the type of collision used (e.g. ion trap excitation versus
quadrupole fragmentation/HCD). The analyzed peptide pool’s
effect on our results has been shown to be insignificant (sup-
plemental Fig. S9), with exception of very short or very low-pI
peptides. The molecular weight’s effect on the scores can be
explained by the limited number of matching fragments for
shorter peptide, which limits the number of comparison com-
binations and may therefore improve the fragmentation repro-
ducibility. The use of a whole-proteome yeast peptide library
minimizes the bias caused by such outliers that may other-
wise be present when using smaller sample size such as
synthetic peptide libraries.

The greater peptide fragmentation fidelity observed for the
SWATH MS mode can easily be explained by the fact that the
fragment ion signals originate from peak areas integrated over
the chromatographic elution of the fragment ions during
SWATH MS targeted data extraction which is in contrast to
stochastic “snapshot” fragmentation recordings of DDA

which are inherently more prone to fluctuations in the ion
statistics and to chemical noise.

Overall, our results suggest that the state-of-the-art shot-
gun solutions are capable of acquiring reproducible peptide
fragmentation intensity patterns, within less than 35% intrin-
sic variation, which thus in principle supports high-quality
spectral library generation and efficient peptide identification
in targeted proteomics. As the instruments continue to im-
prove, we foresee even a further gain in the quality of the
spectra library generated and in the value of using the con-
servation of the fragmentation intensities as discriminating
score for even more effective peptide identification.

As such, the methodology presented here may actually be
used to answer several questions such as (1) what is the
intrinsic performance expected for the MS mode used (Fig. 2),
(2) what is the stability performance for that MS mode across
several days/weeks of analysis—quality control of the ma-
chine performance basically—(supplemental Fig. S8), (3) what
is the quality of the biological replicates generated for one
experiment, using the similarity of MS/MS spectra as a proxy,
and (4) how divergent are different biological samples (as
assessed by the onset of interferences/cofragmenting pep-
tides). This matrix of quality control parameters could easily
be established and/or run on preexisting shotgun data pres-
ent in any lab to estimate the quality of a given dataset before
downstream analysis.

Highly reproducible peptide fragmentation patterns do not
only facilitate peptide identification by targeted proteomics,
but also enhance the overall quantification accuracy of those
peptides. As fragmentation events are governed by physic-
ochemical phenomena and are expected to be conserved,
the source of the variability in spectral intensities may arise
from spray instability, condition fluctuations in the collision
cell or errors in the ion statistics at the detector level (41)
which directly propagate into errors in label-free quantifica-
tion approaches. Increased fragmentation pattern repro-
ducibility offered by newer generation of mass spectrome-
ters will continue to improve quantification accuracy of
mass spectrometry-based proteomics experiments. The re-
sults presented in this study confirm the superiority of an
XIC-based method, SWATH-MS over shotgun approaches
in the assessment of peptide fragmentation intensities,
which is in line with the established position of SRM in the
field as the most accurate mass spectrometry method for
peptide quantification. We believe that this study and the
accompanying open-source tool will support the assess-
ment of experimental variables including device, acquisition
settings, data analysis parameters, and their effects on
accurate peptide quantification especially in performance-
critical applications such as medical diagnostics.

Portability of Peptide Fragmentation Data for Targeted Pro-
teomics—The intrinsic fragmentation reproducibility of differ-
ent instruments is only one part of the equation. Indeed, some
instruments may appear intrinsically more reproducible than
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others, but for the purpose of library generation for targeted
proteomics it is actually more important to know which one
yields the fragmentation patterns most closely related to
those of the targeted measurement that will actually be per-
formed. To address this question, we carried out a cross-
device comparison between each instrument in shotgun
mode and the SWATH targeted data extraction. We found
that, though the Orbitrap Elite HCD was the instrument pro-
ducing intrinsically the most reproducible peptide fragmenta-
tion recordings in shotgun mode, the assays originating from
the TripleTOF 5600 shotgun acquisition still yielded the most
similar fragmentation patterns (26% divergence, Fig. 4) to that
of the fragment ion intensities extracted from the SWATH MS
files. Because this portability measure encompasses the in-
trinsic fragmentation variability of the instrument as well,
these results indicate that assays acquired on the TripleTOF
5600 in shotgun mode yield highest similarity of the fragmen-
tation to that of the TripleTOF 5600 in SWATH MS mode and
should warrant highest relative intensity score discrimination
and peptide identification during targeted analysis.

The relatively low transferability of the assays between in-
struments is somewhat contradictory to the results of previ-
ous studies where the authors assumed that a dot product
value of 0.95 or 0.98 was indicative of high fragmentation
similarity between the instruments they tested. However such
nominal value of dot product is actually indicative of already
more than 50% fragmentation divergence (Fig. 1) which, as
we showed above, may not warrant efficient peptide identifi-
cation. Therefore we re-emphasize here the importance of
carefully quantifying the nominal values of those similarity
measures and of using conditions to generate spectral librar-
ies that will be as close as possible to the targeted measure-
ments. To take full advantage of the peptide fragmentation
similarity as a powerful discriminant score for peptide identi-
fication, we therefore advocate to acquire, when possible,
instrument specific libraries and/or to purposely tune the frag-
mentation parameters (e.g. collision gas pressure or collision
energy equations) of the MS instrument used for targeted
proteomics to acquire spectra with closest similarity to those
of reported in publicly available spectral libraries (e.g. Peptide
Atlas (42) and SRM Atlas (43)). If properly used,we expect that
well-performing spectral similarity measures (such as the nor-
malized spectral contrast angle used to obtain the data pre-
sented in this study), together with a reference set of bench-
marked spectra with controlled dissimilarities, should help to
standardize fragmentation diagnostics analyses of high-end
MS devices and to assess or devise optimal targeted pro-
teomic acquisition parameters to best take advantage of pre-
existing spectral libraries generated with other instrument ac-
quisition set-ups.

Using Nonmodified Peptide Fragmentation Patterns to
Identify Their Modified Counterparts with Targeted Proteo-
mics—Compared with nonmodified peptides, the analysis of
peptides with PTMs remains challenging for targeted pro-

teomics because of the more difficult generation of the refer-
ence assays. Though the modified peptides can in principle
also be chemically synthesized on a large scale to generate
templates for library generation (44), this task remains so far
more technically challenging and costly than for nonmodified-
peptides (43). Hence, we asked whether it would be possible
to use the fragmentation patterns of “naked” peptide to gen-
erate assays for targeting peptides with PTMs. The concept of
identifying a modified peptide by targeting fragment ion sig-
nals from its nonmodified counterpart was already exempli-
fied by our group with oxidized methionine peptides in a
former publication (33). However, whether this strategy can be
applicable on a larger scale and for peptides with more labile
modifications such as phosphorylation has not yet been
quantitatively demonstrated. By computing the normalized
spectral contrast angle scores for the common fragments of
peptides identified both in their nonmodified and phosphory-
lated forms, we found a reasonable degree of fragmentation
conservation (31% divergence) between both species. This
value supports phosphopeptide identifications using the rel-
ative fragment intensities of their nonmodified counterparts.
The similarity of the common transitions shared by nonmodi-
fied and phosphopeptides would be just at the eligibility
threshold of the SWATH MS assay “portability” (35%). How-
ever, as the MS instrumentations continues to improve, there
is no reason to believe that the lower fragmentation reproduc-
ibility reported for the phosphopeptides in SWATH mode
(�10%, Fig. 3) may not reach the levels observed for the
nonmodified peptides (�5%, Fig. 2) and therefore yield even
higher recovery of phosphopeptide identifications using non-
modified libraries.

We therefore applied this strategy to mine a phospho-
enriched sample using fragmentation assays from de-phos-
phorylated peptides. The results led to the confident identifi-
cation of around half of the phosphopeptides compared with
what would have been identified from a phospho-specific
spectral library. The lower yield of this approach can be
largely explained by the low number of accessible assays for
peptides for which the modification is close to the peptide
termini and for which either the entire y or b ion series are not
common and cannot be used for relative intensity scoring.
Also, because we used the retention time of the nonmodified
peptide to trigger the data extraction of the modified form, it
may happen that the phosphorylated peptide fell outside the
extraction window. However, it is interesting to note that this
method could also retrieve completely novel phosphopep-
tides that were not identified in shotgun experiments. To-
gether with the flexible targeted data extraction capabilities of
SWATH MS datasets, we now implemented this strategy as a
preliminary screening method for the discovery of modified
peptides forms especially for those which are not known or for
which the modified peptide assays are not readily accessible.
Because this strategy works for phosphorylated peptides,
despite their complex fragmentation characteristics (45), we
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expect that it may be extended to other types of PTMs par-
ticularly those with a more stable link to the peptide
backbone.

It is important to note once again that the benchmark map-
ping methodology presented here does not aim at simulating
the fragmentation behavior of the peptides, modified or non-
modified. We used the similarity measure and its associated
perturbation benchmark set to assess whether there is signif-
icant/sufficient similarity between those experimentally ac-
quired spectra (nonmodified and modified) to use the assays
of one species to query for the other in targeted proteomics.
Fig. 5 showed that less than 35% fragmentation divergence is
necessary for efficient separation of targets and decoys by
targeted proteomics. That result was obtained by mapping
the targets and decoy distribution onto the perturbation
benchmark set of the similarity score of choice (normalized
spectral contrast angle in this case). And it is with the same
perturbation benchmark that we estimate the similarity be-
tween the modified and nonmodified peptides. Both results
are thus mapped/scaled to the same perturbation benchmark
and are therefore directly comparable. Hence the conclusion
that, if the PTM does not induce more than 35% fragmenta-
tion divergence between the common transitions of the non-
modified and modified peptides, the assays of one species
may be used to query the other by targeted proteomics.

Overall these results also open new perspectives for tar-
geted proteomics and may soften recurring criticisms regard-
ing the requirement of extensive “PTM specific” libraries for
targeting modified peptides. As shown here, such libraries
may not always be necessary when modified peptides of
sufficient fragmentation similarity to that of the nonmodified
peptides are encountered. In those cases indeed, the naked
peptide assays may actually prove sufficient to mine and
identify the modified peptide form.

Concluding Remarks—The presented results suggest that
properly tested spectral similarity measures, together with a
reference set of benchmarked spectra with controlled dissim-
ilarities, enable objective assessment of the fragmentation
performance of mass spectrometers and constitute a robust
and sensitive measure to score and identify peptides in tar-
geted proteomics. We hope that the methodology and toolset
presented here will help scientists in implementing standard-
ization protocols and in assessing the portability of their as-
says across instruments and throughout time to gain optimal
peptide identification and quantification in research and clin-
ical settings.
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